| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/video_engine/overuse_frame_detector.h" |
| |
| #include <assert.h> |
| #include <math.h> |
| |
| #include <algorithm> |
| #include <list> |
| #include <map> |
| |
| #include "webrtc/base/exp_filter.h" |
| #include "webrtc/system_wrappers/interface/clock.h" |
| #include "webrtc/system_wrappers/interface/critical_section_wrapper.h" |
| #include "webrtc/system_wrappers/interface/logging.h" |
| |
| namespace webrtc { |
| |
| // TODO(mflodman) Test different values for all of these to trigger correctly, |
| // avoid fluctuations etc. |
| namespace { |
| const int64_t kProcessIntervalMs = 5000; |
| |
| // Weight factor to apply to the standard deviation. |
| const float kWeightFactor = 0.997f; |
| // Weight factor to apply to the average. |
| const float kWeightFactorMean = 0.98f; |
| |
| // Delay between consecutive rampups. (Used for quick recovery.) |
| const int kQuickRampUpDelayMs = 10 * 1000; |
| // Delay between rampup attempts. Initially uses standard, scales up to max. |
| const int kStandardRampUpDelayMs = 40 * 1000; |
| const int kMaxRampUpDelayMs = 240 * 1000; |
| // Expontential back-off factor, to prevent annoying up-down behaviour. |
| const double kRampUpBackoffFactor = 2.0; |
| |
| // Max number of overuses detected before always applying the rampup delay. |
| const int kMaxOverusesBeforeApplyRampupDelay = 4; |
| |
| // The maximum exponent to use in VCMExpFilter. |
| const float kSampleDiffMs = 33.0f; |
| const float kMaxExp = 7.0f; |
| |
| } // namespace |
| |
| // TODO(asapersson): Remove this class. Not used. |
| Statistics::Statistics() : |
| sum_(0.0), |
| count_(0), |
| filtered_samples_(new rtc::ExpFilter(kWeightFactorMean)), |
| filtered_variance_(new rtc::ExpFilter(kWeightFactor)) { |
| Reset(); |
| } |
| |
| void Statistics::SetOptions(const CpuOveruseOptions& options) { |
| options_ = options; |
| } |
| |
| void Statistics::Reset() { |
| sum_ = 0.0; |
| count_ = 0; |
| filtered_variance_->Reset(kWeightFactor); |
| filtered_variance_->Apply(1.0f, InitialVariance()); |
| } |
| |
| void Statistics::AddSample(float sample_ms) { |
| sum_ += sample_ms; |
| ++count_; |
| |
| if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) { |
| // Initialize filtered samples. |
| filtered_samples_->Reset(kWeightFactorMean); |
| filtered_samples_->Apply(1.0f, InitialMean()); |
| return; |
| } |
| |
| float exp = sample_ms / kSampleDiffMs; |
| exp = std::min(exp, kMaxExp); |
| filtered_samples_->Apply(exp, sample_ms); |
| filtered_variance_->Apply(exp, (sample_ms - filtered_samples_->filtered()) * |
| (sample_ms - filtered_samples_->filtered())); |
| } |
| |
| float Statistics::InitialMean() const { |
| if (count_ == 0) |
| return 0.0; |
| return sum_ / count_; |
| } |
| |
| float Statistics::InitialVariance() const { |
| // Start in between the underuse and overuse threshold. |
| float average_stddev = (options_.low_capture_jitter_threshold_ms + |
| options_.high_capture_jitter_threshold_ms) / 2.0f; |
| return average_stddev * average_stddev; |
| } |
| |
| float Statistics::Mean() const { return filtered_samples_->filtered(); } |
| |
| float Statistics::StdDev() const { |
| return sqrt(std::max(filtered_variance_->filtered(), 0.0f)); |
| } |
| |
| uint64_t Statistics::Count() const { return count_; } |
| |
| |
| // Class for calculating the average encode time. |
| class OveruseFrameDetector::EncodeTimeAvg { |
| public: |
| EncodeTimeAvg() |
| : kWeightFactor(0.5f), |
| kInitialAvgEncodeTimeMs(5.0f), |
| filtered_encode_time_ms_(new rtc::ExpFilter(kWeightFactor)) { |
| filtered_encode_time_ms_->Apply(1.0f, kInitialAvgEncodeTimeMs); |
| } |
| ~EncodeTimeAvg() {} |
| |
| void AddSample(float encode_time_ms, int64_t diff_last_sample_ms) { |
| float exp = diff_last_sample_ms / kSampleDiffMs; |
| exp = std::min(exp, kMaxExp); |
| filtered_encode_time_ms_->Apply(exp, encode_time_ms); |
| } |
| |
| int Value() const { |
| return static_cast<int>(filtered_encode_time_ms_->filtered() + 0.5); |
| } |
| |
| private: |
| const float kWeightFactor; |
| const float kInitialAvgEncodeTimeMs; |
| scoped_ptr<rtc::ExpFilter> filtered_encode_time_ms_; |
| }; |
| |
| // Class for calculating the processing usage on the send-side (the average |
| // processing time of a frame divided by the average time difference between |
| // captured frames). |
| class OveruseFrameDetector::SendProcessingUsage { |
| public: |
| SendProcessingUsage() |
| : kWeightFactorFrameDiff(0.998f), |
| kWeightFactorProcessing(0.995f), |
| kInitialSampleDiffMs(40.0f), |
| kMaxSampleDiffMs(45.0f), |
| count_(0), |
| filtered_processing_ms_(new rtc::ExpFilter(kWeightFactorProcessing)), |
| filtered_frame_diff_ms_(new rtc::ExpFilter(kWeightFactorFrameDiff)) { |
| Reset(); |
| } |
| ~SendProcessingUsage() {} |
| |
| void SetOptions(const CpuOveruseOptions& options) { |
| options_ = options; |
| } |
| |
| void Reset() { |
| count_ = 0; |
| filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff); |
| filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs); |
| filtered_processing_ms_->Reset(kWeightFactorProcessing); |
| filtered_processing_ms_->Apply(1.0f, InitialProcessingMs()); |
| } |
| |
| void AddCaptureSample(float sample_ms) { |
| float exp = sample_ms / kSampleDiffMs; |
| exp = std::min(exp, kMaxExp); |
| filtered_frame_diff_ms_->Apply(exp, sample_ms); |
| } |
| |
| void AddSample(float processing_ms, int64_t diff_last_sample_ms) { |
| ++count_; |
| float exp = diff_last_sample_ms / kSampleDiffMs; |
| exp = std::min(exp, kMaxExp); |
| filtered_processing_ms_->Apply(exp, processing_ms); |
| } |
| |
| int Value() const { |
| if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) { |
| return static_cast<int>(InitialUsageInPercent() + 0.5f); |
| } |
| float frame_diff_ms = std::max(filtered_frame_diff_ms_->filtered(), 1.0f); |
| frame_diff_ms = std::min(frame_diff_ms, kMaxSampleDiffMs); |
| float encode_usage_percent = |
| 100.0f * filtered_processing_ms_->filtered() / frame_diff_ms; |
| return static_cast<int>(encode_usage_percent + 0.5); |
| } |
| |
| private: |
| float InitialUsageInPercent() const { |
| // Start in between the underuse and overuse threshold. |
| return (options_.low_encode_usage_threshold_percent + |
| options_.high_encode_usage_threshold_percent) / 2.0f; |
| } |
| |
| float InitialProcessingMs() const { |
| return InitialUsageInPercent() * kInitialSampleDiffMs / 100; |
| } |
| |
| const float kWeightFactorFrameDiff; |
| const float kWeightFactorProcessing; |
| const float kInitialSampleDiffMs; |
| const float kMaxSampleDiffMs; |
| uint64_t count_; |
| CpuOveruseOptions options_; |
| scoped_ptr<rtc::ExpFilter> filtered_processing_ms_; |
| scoped_ptr<rtc::ExpFilter> filtered_frame_diff_ms_; |
| }; |
| |
| // Class for calculating the processing time of frames. |
| class OveruseFrameDetector::FrameQueue { |
| public: |
| FrameQueue() : last_processing_time_ms_(-1) {} |
| ~FrameQueue() {} |
| |
| // Called when a frame is captured. |
| // Starts the measuring of the processing time of the frame. |
| void Start(int64_t capture_time, int64_t now) { |
| const size_t kMaxSize = 90; // Allows for processing time of 1.5s at 60fps. |
| if (frame_times_.size() > kMaxSize) { |
| LOG(LS_WARNING) << "Max size reached, removed oldest frame."; |
| frame_times_.erase(frame_times_.begin()); |
| } |
| if (frame_times_.find(capture_time) != frame_times_.end()) { |
| // Frame should not exist. |
| assert(false); |
| return; |
| } |
| frame_times_[capture_time] = now; |
| } |
| |
| // Called when the processing of a frame has finished. |
| // Returns the processing time of the frame. |
| int End(int64_t capture_time, int64_t now) { |
| std::map<int64_t, int64_t>::iterator it = frame_times_.find(capture_time); |
| if (it == frame_times_.end()) { |
| return -1; |
| } |
| // Remove any old frames up to current. |
| // Old frames have been skipped by the capture process thread. |
| // TODO(asapersson): Consider measuring time from first frame in list. |
| last_processing_time_ms_ = now - (*it).second; |
| frame_times_.erase(frame_times_.begin(), ++it); |
| return last_processing_time_ms_; |
| } |
| |
| void Reset() { frame_times_.clear(); } |
| int NumFrames() const { return frame_times_.size(); } |
| int last_processing_time_ms() const { return last_processing_time_ms_; } |
| |
| private: |
| // Captured frames mapped by the capture time. |
| std::map<int64_t, int64_t> frame_times_; |
| int last_processing_time_ms_; |
| }; |
| |
| // TODO(asapersson): Remove this class. Not used. |
| // Class for calculating the capture queue delay change. |
| class OveruseFrameDetector::CaptureQueueDelay { |
| public: |
| CaptureQueueDelay() |
| : kWeightFactor(0.5f), |
| delay_ms_(0), |
| filtered_delay_ms_per_s_(new rtc::ExpFilter(kWeightFactor)) { |
| filtered_delay_ms_per_s_->Apply(1.0f, 0.0f); |
| } |
| ~CaptureQueueDelay() {} |
| |
| void FrameCaptured(int64_t now) { |
| const size_t kMaxSize = 200; |
| if (frames_.size() > kMaxSize) { |
| frames_.pop_front(); |
| } |
| frames_.push_back(now); |
| } |
| |
| void FrameProcessingStarted(int64_t now) { |
| if (frames_.empty()) { |
| return; |
| } |
| delay_ms_ = now - frames_.front(); |
| frames_.pop_front(); |
| } |
| |
| void CalculateDelayChange(int64_t diff_last_sample_ms) { |
| if (diff_last_sample_ms <= 0) { |
| return; |
| } |
| float exp = static_cast<float>(diff_last_sample_ms) / kProcessIntervalMs; |
| exp = std::min(exp, kMaxExp); |
| filtered_delay_ms_per_s_->Apply(exp, |
| delay_ms_ * 1000.0f / diff_last_sample_ms); |
| ClearFrames(); |
| } |
| |
| void ClearFrames() { |
| frames_.clear(); |
| } |
| |
| int delay_ms() const { |
| return delay_ms_; |
| } |
| |
| int Value() const { |
| return static_cast<int>(filtered_delay_ms_per_s_->filtered() + 0.5); |
| } |
| |
| private: |
| const float kWeightFactor; |
| std::list<int64_t> frames_; |
| int delay_ms_; |
| scoped_ptr<rtc::ExpFilter> filtered_delay_ms_per_s_; |
| }; |
| |
| OveruseFrameDetector::OveruseFrameDetector(Clock* clock) |
| : crit_(CriticalSectionWrapper::CreateCriticalSection()), |
| observer_(NULL), |
| clock_(clock), |
| next_process_time_(clock_->TimeInMilliseconds()), |
| num_process_times_(0), |
| last_capture_time_(0), |
| last_overuse_time_(0), |
| checks_above_threshold_(0), |
| num_overuse_detections_(0), |
| last_rampup_time_(0), |
| in_quick_rampup_(false), |
| current_rampup_delay_ms_(kStandardRampUpDelayMs), |
| num_pixels_(0), |
| last_encode_sample_ms_(0), |
| encode_time_(new EncodeTimeAvg()), |
| usage_(new SendProcessingUsage()), |
| frame_queue_(new FrameQueue()), |
| last_sample_time_ms_(0), |
| capture_queue_delay_(new CaptureQueueDelay()) { |
| } |
| |
| OveruseFrameDetector::~OveruseFrameDetector() { |
| } |
| |
| void OveruseFrameDetector::SetObserver(CpuOveruseObserver* observer) { |
| CriticalSectionScoped cs(crit_.get()); |
| observer_ = observer; |
| } |
| |
| void OveruseFrameDetector::SetOptions(const CpuOveruseOptions& options) { |
| assert(options.min_frame_samples > 0); |
| CriticalSectionScoped cs(crit_.get()); |
| if (options_.Equals(options)) { |
| return; |
| } |
| options_ = options; |
| capture_deltas_.SetOptions(options); |
| usage_->SetOptions(options); |
| ResetAll(num_pixels_); |
| } |
| |
| int OveruseFrameDetector::CaptureQueueDelayMsPerS() const { |
| CriticalSectionScoped cs(crit_.get()); |
| return capture_queue_delay_->delay_ms(); |
| } |
| |
| int OveruseFrameDetector::LastProcessingTimeMs() const { |
| CriticalSectionScoped cs(crit_.get()); |
| return frame_queue_->last_processing_time_ms(); |
| } |
| |
| int OveruseFrameDetector::FramesInQueue() const { |
| CriticalSectionScoped cs(crit_.get()); |
| return frame_queue_->NumFrames(); |
| } |
| |
| void OveruseFrameDetector::GetCpuOveruseMetrics( |
| CpuOveruseMetrics* metrics) const { |
| CriticalSectionScoped cs(crit_.get()); |
| metrics->capture_jitter_ms = static_cast<int>(capture_deltas_.StdDev() + 0.5); |
| metrics->avg_encode_time_ms = encode_time_->Value(); |
| metrics->encode_rsd = 0; |
| metrics->encode_usage_percent = usage_->Value(); |
| metrics->capture_queue_delay_ms_per_s = capture_queue_delay_->Value(); |
| } |
| |
| int64_t OveruseFrameDetector::TimeUntilNextProcess() { |
| CriticalSectionScoped cs(crit_.get()); |
| return next_process_time_ - clock_->TimeInMilliseconds(); |
| } |
| |
| bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const { |
| if (num_pixels != num_pixels_) { |
| return true; |
| } |
| return false; |
| } |
| |
| bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now) const { |
| if (last_capture_time_ == 0) { |
| return false; |
| } |
| return (now - last_capture_time_) > options_.frame_timeout_interval_ms; |
| } |
| |
| void OveruseFrameDetector::ResetAll(int num_pixels) { |
| num_pixels_ = num_pixels; |
| capture_deltas_.Reset(); |
| usage_->Reset(); |
| frame_queue_->Reset(); |
| capture_queue_delay_->ClearFrames(); |
| last_capture_time_ = 0; |
| num_process_times_ = 0; |
| } |
| |
| void OveruseFrameDetector::FrameCaptured(int width, |
| int height, |
| int64_t capture_time_ms) { |
| CriticalSectionScoped cs(crit_.get()); |
| |
| int64_t now = clock_->TimeInMilliseconds(); |
| if (FrameSizeChanged(width * height) || FrameTimeoutDetected(now)) { |
| ResetAll(width * height); |
| } |
| |
| if (last_capture_time_ != 0) { |
| capture_deltas_.AddSample(now - last_capture_time_); |
| usage_->AddCaptureSample(now - last_capture_time_); |
| } |
| last_capture_time_ = now; |
| |
| capture_queue_delay_->FrameCaptured(now); |
| |
| if (options_.enable_extended_processing_usage) { |
| frame_queue_->Start(capture_time_ms, now); |
| } |
| } |
| |
| void OveruseFrameDetector::FrameProcessingStarted() { |
| CriticalSectionScoped cs(crit_.get()); |
| capture_queue_delay_->FrameProcessingStarted(clock_->TimeInMilliseconds()); |
| } |
| |
| void OveruseFrameDetector::FrameEncoded(int encode_time_ms) { |
| CriticalSectionScoped cs(crit_.get()); |
| int64_t now = clock_->TimeInMilliseconds(); |
| if (last_encode_sample_ms_ != 0) { |
| int64_t diff_ms = now - last_encode_sample_ms_; |
| encode_time_->AddSample(encode_time_ms, diff_ms); |
| } |
| last_encode_sample_ms_ = now; |
| |
| if (!options_.enable_extended_processing_usage) { |
| AddProcessingTime(encode_time_ms); |
| } |
| } |
| |
| void OveruseFrameDetector::FrameSent(int64_t capture_time_ms) { |
| CriticalSectionScoped cs(crit_.get()); |
| if (!options_.enable_extended_processing_usage) { |
| return; |
| } |
| int delay_ms = frame_queue_->End(capture_time_ms, |
| clock_->TimeInMilliseconds()); |
| if (delay_ms > 0) { |
| AddProcessingTime(delay_ms); |
| } |
| } |
| |
| void OveruseFrameDetector::AddProcessingTime(int elapsed_ms) { |
| int64_t now = clock_->TimeInMilliseconds(); |
| if (last_sample_time_ms_ != 0) { |
| int64_t diff_ms = now - last_sample_time_ms_; |
| usage_->AddSample(elapsed_ms, diff_ms); |
| } |
| last_sample_time_ms_ = now; |
| } |
| |
| int32_t OveruseFrameDetector::Process() { |
| CriticalSectionScoped cs(crit_.get()); |
| |
| int64_t now = clock_->TimeInMilliseconds(); |
| |
| // Used to protect against Process() being called too often. |
| if (now < next_process_time_) |
| return 0; |
| |
| int64_t diff_ms = now - next_process_time_ + kProcessIntervalMs; |
| next_process_time_ = now + kProcessIntervalMs; |
| ++num_process_times_; |
| |
| capture_queue_delay_->CalculateDelayChange(diff_ms); |
| |
| if (num_process_times_ <= options_.min_process_count) { |
| return 0; |
| } |
| |
| if (IsOverusing()) { |
| // If the last thing we did was going up, and now have to back down, we need |
| // to check if this peak was short. If so we should back off to avoid going |
| // back and forth between this load, the system doesn't seem to handle it. |
| bool check_for_backoff = last_rampup_time_ > last_overuse_time_; |
| if (check_for_backoff) { |
| if (now - last_rampup_time_ < kStandardRampUpDelayMs || |
| num_overuse_detections_ > kMaxOverusesBeforeApplyRampupDelay) { |
| // Going up was not ok for very long, back off. |
| current_rampup_delay_ms_ *= kRampUpBackoffFactor; |
| if (current_rampup_delay_ms_ > kMaxRampUpDelayMs) |
| current_rampup_delay_ms_ = kMaxRampUpDelayMs; |
| } else { |
| // Not currently backing off, reset rampup delay. |
| current_rampup_delay_ms_ = kStandardRampUpDelayMs; |
| } |
| } |
| |
| last_overuse_time_ = now; |
| in_quick_rampup_ = false; |
| checks_above_threshold_ = 0; |
| ++num_overuse_detections_; |
| |
| if (observer_ != NULL) |
| observer_->OveruseDetected(); |
| } else if (IsUnderusing(now)) { |
| last_rampup_time_ = now; |
| in_quick_rampup_ = true; |
| |
| if (observer_ != NULL) |
| observer_->NormalUsage(); |
| } |
| |
| int rampup_delay = |
| in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_; |
| LOG(LS_VERBOSE) << " Frame stats: capture avg: " << capture_deltas_.Mean() |
| << " capture stddev " << capture_deltas_.StdDev() |
| << " encode usage " << usage_->Value() |
| << " overuse detections " << num_overuse_detections_ |
| << " rampup delay " << rampup_delay; |
| return 0; |
| } |
| |
| bool OveruseFrameDetector::IsOverusing() { |
| bool overusing = false; |
| if (options_.enable_capture_jitter_method) { |
| overusing = capture_deltas_.StdDev() >= |
| options_.high_capture_jitter_threshold_ms; |
| } else if (options_.enable_encode_usage_method) { |
| overusing = usage_->Value() >= options_.high_encode_usage_threshold_percent; |
| } |
| |
| if (overusing) { |
| ++checks_above_threshold_; |
| } else { |
| checks_above_threshold_ = 0; |
| } |
| return checks_above_threshold_ >= options_.high_threshold_consecutive_count; |
| } |
| |
| bool OveruseFrameDetector::IsUnderusing(int64_t time_now) { |
| int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_; |
| if (time_now < last_rampup_time_ + delay) |
| return false; |
| |
| bool underusing = false; |
| if (options_.enable_capture_jitter_method) { |
| underusing = capture_deltas_.StdDev() < |
| options_.low_capture_jitter_threshold_ms; |
| } else if (options_.enable_encode_usage_method) { |
| underusing = usage_->Value() < options_.low_encode_usage_threshold_percent; |
| } |
| return underusing; |
| } |
| } // namespace webrtc |