blob: 51778e6cf37f2b099b0c518b070b363ba4473027 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/test/gtest.h"
#include "webrtc/base/random.h"
#include "webrtc/modules/congestion_controller/trendline_estimator.h"
namespace webrtc {
namespace {
constexpr size_t kWindowSize = 15;
constexpr double kSmoothing = 0.0;
constexpr double kGain = 1;
constexpr int64_t kAvgTimeBetweenPackets = 10;
} // namespace
TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) {
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
Random rand(0x1234567);
double now_ms = rand.Rand<double>() * 10000;
for (size_t i = 1; i < 2 * kWindowSize; i++) {
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
double recv_delta = 2 * send_delta;
now_ms += recv_delta;
estimator.Update(recv_delta, send_delta, now_ms);
if (i < kWindowSize)
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
else
EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001);
}
}
TEST(TrendlineEstimator, PerfectLineSlopeMinusOne) {
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
Random rand(0x1234567);
double now_ms = rand.Rand<double>() * 10000;
for (size_t i = 1; i < 2 * kWindowSize; i++) {
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
double recv_delta = 0.5 * send_delta;
now_ms += recv_delta;
estimator.Update(recv_delta, send_delta, now_ms);
if (i < kWindowSize)
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
else
EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001);
}
}
TEST(TrendlineEstimator, PerfectLineSlopeZero) {
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
Random rand(0x1234567);
double now_ms = rand.Rand<double>() * 10000;
for (size_t i = 1; i < 2 * kWindowSize; i++) {
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
double recv_delta = send_delta;
now_ms += recv_delta;
estimator.Update(recv_delta, send_delta, now_ms);
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
}
}
TEST(TrendlineEstimator, JitteryLineSlopeOneHalf) {
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
Random rand(0x1234567);
double now_ms = rand.Rand<double>() * 10000;
for (size_t i = 1; i < 2 * kWindowSize; i++) {
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3);
now_ms += recv_delta;
estimator.Update(recv_delta, send_delta, now_ms);
if (i < kWindowSize)
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
else
EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1);
}
}
TEST(TrendlineEstimator, JitteryLineSlopeMinusOne) {
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
Random rand(0x1234567);
double now_ms = rand.Rand<double>() * 10000;
for (size_t i = 1; i < 2 * kWindowSize; i++) {
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 25);
now_ms += recv_delta;
estimator.Update(recv_delta, send_delta, now_ms);
if (i < kWindowSize)
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
else
EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1);
}
}
TEST(TrendlineEstimator, JitteryLineSlopeZero) {
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
Random rand(0x1234567);
double now_ms = rand.Rand<double>() * 10000;
for (size_t i = 1; i < 2 * kWindowSize; i++) {
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
double recv_delta = send_delta + rand.Gaussian(0, send_delta / 8);
now_ms += recv_delta;
estimator.Update(recv_delta, send_delta, now_ms);
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1);
}
}
} // namespace webrtc