| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/test/gtest.h" |
| #include "webrtc/base/random.h" |
| #include "webrtc/modules/congestion_controller/trendline_estimator.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| constexpr size_t kWindowSize = 15; |
| constexpr double kSmoothing = 0.0; |
| constexpr double kGain = 1; |
| constexpr int64_t kAvgTimeBetweenPackets = 10; |
| } // namespace |
| |
| TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) { |
| TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
| Random rand(0x1234567); |
| double now_ms = rand.Rand<double>() * 10000; |
| for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| double recv_delta = 2 * send_delta; |
| now_ms += recv_delta; |
| estimator.Update(recv_delta, send_delta, now_ms); |
| if (i < kWindowSize) |
| EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| else |
| EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001); |
| } |
| } |
| |
| TEST(TrendlineEstimator, PerfectLineSlopeMinusOne) { |
| TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
| Random rand(0x1234567); |
| double now_ms = rand.Rand<double>() * 10000; |
| for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| double recv_delta = 0.5 * send_delta; |
| now_ms += recv_delta; |
| estimator.Update(recv_delta, send_delta, now_ms); |
| if (i < kWindowSize) |
| EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| else |
| EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001); |
| } |
| } |
| |
| TEST(TrendlineEstimator, PerfectLineSlopeZero) { |
| TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
| Random rand(0x1234567); |
| double now_ms = rand.Rand<double>() * 10000; |
| for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| double recv_delta = send_delta; |
| now_ms += recv_delta; |
| estimator.Update(recv_delta, send_delta, now_ms); |
| EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| } |
| } |
| |
| TEST(TrendlineEstimator, JitteryLineSlopeOneHalf) { |
| TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
| Random rand(0x1234567); |
| double now_ms = rand.Rand<double>() * 10000; |
| for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3); |
| now_ms += recv_delta; |
| estimator.Update(recv_delta, send_delta, now_ms); |
| if (i < kWindowSize) |
| EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| else |
| EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1); |
| } |
| } |
| |
| TEST(TrendlineEstimator, JitteryLineSlopeMinusOne) { |
| TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
| Random rand(0x1234567); |
| double now_ms = rand.Rand<double>() * 10000; |
| for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 25); |
| now_ms += recv_delta; |
| estimator.Update(recv_delta, send_delta, now_ms); |
| if (i < kWindowSize) |
| EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001); |
| else |
| EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1); |
| } |
| } |
| |
| TEST(TrendlineEstimator, JitteryLineSlopeZero) { |
| TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain); |
| Random rand(0x1234567); |
| double now_ms = rand.Rand<double>() * 10000; |
| for (size_t i = 1; i < 2 * kWindowSize; i++) { |
| double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets; |
| double recv_delta = send_delta + rand.Gaussian(0, send_delta / 8); |
| now_ms += recv_delta; |
| estimator.Update(recv_delta, send_delta, now_ms); |
| EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1); |
| } |
| } |
| |
| } // namespace webrtc |