blob: 0eea1d55c1c8c7477efb0fb342ce30365adc577f [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include <signal.h>
#include <stdarg.h>
#include "webrtc/base/gunit.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/networkmonitor.h"
#include "webrtc/base/physicalsocketserver.h"
#include "webrtc/base/socket_unittest.h"
#include "webrtc/base/testutils.h"
#include "webrtc/base/thread.h"
namespace rtc {
#define MAYBE_SKIP_IPV6 \
if (!HasIPv6Enabled()) { \
LOG(LS_INFO) << "No IPv6... skipping"; \
return; \
}
class PhysicalSocketTest;
class FakeSocketDispatcher : public SocketDispatcher {
public:
explicit FakeSocketDispatcher(PhysicalSocketServer* ss)
: SocketDispatcher(ss) {
}
FakeSocketDispatcher(SOCKET s, PhysicalSocketServer* ss)
: SocketDispatcher(s, ss) {
}
protected:
SOCKET DoAccept(SOCKET socket, sockaddr* addr, socklen_t* addrlen) override;
int DoSend(SOCKET socket, const char* buf, int len, int flags) override;
int DoSendTo(SOCKET socket, const char* buf, int len, int flags,
const struct sockaddr* dest_addr, socklen_t addrlen) override;
};
class FakePhysicalSocketServer : public PhysicalSocketServer {
public:
explicit FakePhysicalSocketServer(PhysicalSocketTest* test)
: test_(test) {
}
AsyncSocket* CreateAsyncSocket(int type) override {
SocketDispatcher* dispatcher = new FakeSocketDispatcher(this);
if (!dispatcher->Create(type)) {
delete dispatcher;
return nullptr;
}
return dispatcher;
}
AsyncSocket* CreateAsyncSocket(int family, int type) override {
SocketDispatcher* dispatcher = new FakeSocketDispatcher(this);
if (!dispatcher->Create(family, type)) {
delete dispatcher;
return nullptr;
}
return dispatcher;
}
AsyncSocket* WrapSocket(SOCKET s) override {
SocketDispatcher* dispatcher = new FakeSocketDispatcher(s, this);
if (!dispatcher->Initialize()) {
delete dispatcher;
return nullptr;
}
return dispatcher;
}
PhysicalSocketTest* GetTest() const { return test_; }
private:
PhysicalSocketTest* test_;
};
class FakeNetworkBinder : public NetworkBinderInterface {
public:
NetworkBindingResult BindSocketToNetwork(int, const IPAddress&) override {
++num_binds_;
return result_;
}
void set_result(NetworkBindingResult result) { result_ = result; }
int num_binds() { return num_binds_; }
private:
NetworkBindingResult result_ = NetworkBindingResult::SUCCESS;
int num_binds_ = 0;
};
class PhysicalSocketTest : public SocketTest {
public:
// Set flag to simluate failures when calling "::accept" on a AsyncSocket.
void SetFailAccept(bool fail) { fail_accept_ = fail; }
bool FailAccept() const { return fail_accept_; }
// Maximum size to ::send to a socket. Set to < 0 to disable limiting.
void SetMaxSendSize(int max_size) { max_send_size_ = max_size; }
int MaxSendSize() const { return max_send_size_; }
protected:
PhysicalSocketTest()
: server_(new FakePhysicalSocketServer(this)),
scope_(server_.get()),
fail_accept_(false),
max_send_size_(-1) {
}
void ConnectInternalAcceptError(const IPAddress& loopback);
void WritableAfterPartialWrite(const IPAddress& loopback);
std::unique_ptr<FakePhysicalSocketServer> server_;
SocketServerScope scope_;
bool fail_accept_;
int max_send_size_;
};
SOCKET FakeSocketDispatcher::DoAccept(SOCKET socket,
sockaddr* addr,
socklen_t* addrlen) {
FakePhysicalSocketServer* ss =
static_cast<FakePhysicalSocketServer*>(socketserver());
if (ss->GetTest()->FailAccept()) {
return INVALID_SOCKET;
}
return SocketDispatcher::DoAccept(socket, addr, addrlen);
}
int FakeSocketDispatcher::DoSend(SOCKET socket, const char* buf, int len,
int flags) {
FakePhysicalSocketServer* ss =
static_cast<FakePhysicalSocketServer*>(socketserver());
if (ss->GetTest()->MaxSendSize() >= 0) {
len = std::min(len, ss->GetTest()->MaxSendSize());
}
return SocketDispatcher::DoSend(socket, buf, len, flags);
}
int FakeSocketDispatcher::DoSendTo(SOCKET socket, const char* buf, int len,
int flags, const struct sockaddr* dest_addr, socklen_t addrlen) {
FakePhysicalSocketServer* ss =
static_cast<FakePhysicalSocketServer*>(socketserver());
if (ss->GetTest()->MaxSendSize() >= 0) {
len = std::min(len, ss->GetTest()->MaxSendSize());
}
return SocketDispatcher::DoSendTo(socket, buf, len, flags, dest_addr,
addrlen);
}
TEST_F(PhysicalSocketTest, TestConnectIPv4) {
SocketTest::TestConnectIPv4();
}
TEST_F(PhysicalSocketTest, TestConnectIPv6) {
SocketTest::TestConnectIPv6();
}
TEST_F(PhysicalSocketTest, TestConnectWithDnsLookupIPv4) {
SocketTest::TestConnectWithDnsLookupIPv4();
}
TEST_F(PhysicalSocketTest, TestConnectWithDnsLookupIPv6) {
SocketTest::TestConnectWithDnsLookupIPv6();
}
TEST_F(PhysicalSocketTest, TestConnectFailIPv4) {
SocketTest::TestConnectFailIPv4();
}
void PhysicalSocketTest::ConnectInternalAcceptError(const IPAddress& loopback) {
testing::StreamSink sink;
SocketAddress accept_addr;
// Create two clients.
std::unique_ptr<AsyncSocket> client1(
server_->CreateAsyncSocket(loopback.family(), SOCK_STREAM));
sink.Monitor(client1.get());
EXPECT_EQ(AsyncSocket::CS_CLOSED, client1->GetState());
EXPECT_PRED1(IsUnspecOrEmptyIP, client1->GetLocalAddress().ipaddr());
std::unique_ptr<AsyncSocket> client2(
server_->CreateAsyncSocket(loopback.family(), SOCK_STREAM));
sink.Monitor(client2.get());
EXPECT_EQ(AsyncSocket::CS_CLOSED, client2->GetState());
EXPECT_PRED1(IsUnspecOrEmptyIP, client2->GetLocalAddress().ipaddr());
// Create server and listen.
std::unique_ptr<AsyncSocket> server(
server_->CreateAsyncSocket(loopback.family(), SOCK_STREAM));
sink.Monitor(server.get());
EXPECT_EQ(0, server->Bind(SocketAddress(loopback, 0)));
EXPECT_EQ(0, server->Listen(5));
EXPECT_EQ(AsyncSocket::CS_CONNECTING, server->GetState());
// Ensure no pending server connections, since we haven't done anything yet.
EXPECT_FALSE(sink.Check(server.get(), testing::SSE_READ));
EXPECT_TRUE(nullptr == server->Accept(&accept_addr));
EXPECT_TRUE(accept_addr.IsNil());
// Attempt first connect to listening socket.
EXPECT_EQ(0, client1->Connect(server->GetLocalAddress()));
EXPECT_FALSE(client1->GetLocalAddress().IsNil());
EXPECT_NE(server->GetLocalAddress(), client1->GetLocalAddress());
// Client is connecting, outcome not yet determined.
EXPECT_EQ(AsyncSocket::CS_CONNECTING, client1->GetState());
EXPECT_FALSE(sink.Check(client1.get(), testing::SSE_OPEN));
EXPECT_FALSE(sink.Check(client1.get(), testing::SSE_CLOSE));
// Server has pending connection, try to accept it (will fail).
EXPECT_TRUE_WAIT((sink.Check(server.get(), testing::SSE_READ)), kTimeout);
// Simulate "::accept" returning an error.
SetFailAccept(true);
std::unique_ptr<AsyncSocket> accepted(server->Accept(&accept_addr));
EXPECT_FALSE(accepted);
ASSERT_TRUE(accept_addr.IsNil());
// Ensure no more pending server connections.
EXPECT_FALSE(sink.Check(server.get(), testing::SSE_READ));
EXPECT_TRUE(nullptr == server->Accept(&accept_addr));
EXPECT_TRUE(accept_addr.IsNil());
// Attempt second connect to listening socket.
EXPECT_EQ(0, client2->Connect(server->GetLocalAddress()));
EXPECT_FALSE(client2->GetLocalAddress().IsNil());
EXPECT_NE(server->GetLocalAddress(), client2->GetLocalAddress());
// Client is connecting, outcome not yet determined.
EXPECT_EQ(AsyncSocket::CS_CONNECTING, client2->GetState());
EXPECT_FALSE(sink.Check(client2.get(), testing::SSE_OPEN));
EXPECT_FALSE(sink.Check(client2.get(), testing::SSE_CLOSE));
// Server has pending connection, try to accept it (will succeed).
EXPECT_TRUE_WAIT((sink.Check(server.get(), testing::SSE_READ)), kTimeout);
SetFailAccept(false);
std::unique_ptr<AsyncSocket> accepted2(server->Accept(&accept_addr));
ASSERT_TRUE(accepted2);
EXPECT_FALSE(accept_addr.IsNil());
EXPECT_EQ(accepted2->GetRemoteAddress(), accept_addr);
}
TEST_F(PhysicalSocketTest, TestConnectAcceptErrorIPv4) {
ConnectInternalAcceptError(kIPv4Loopback);
}
TEST_F(PhysicalSocketTest, TestConnectAcceptErrorIPv6) {
MAYBE_SKIP_IPV6;
ConnectInternalAcceptError(kIPv6Loopback);
}
void PhysicalSocketTest::WritableAfterPartialWrite(const IPAddress& loopback) {
// Simulate a really small maximum send size.
const int kMaxSendSize = 128;
SetMaxSendSize(kMaxSendSize);
// Run the default send/receive socket tests with a smaller amount of data
// to avoid long running times due to the small maximum send size.
const size_t kDataSize = 128 * 1024;
TcpInternal(loopback, kDataSize, kMaxSendSize);
}
// https://bugs.chromium.org/p/webrtc/issues/detail?id=6167
#if defined(WEBRTC_WIN)
#define MAYBE_TestWritableAfterPartialWriteIPv4 DISABLED_TestWritableAfterPartialWriteIPv4
#else
#define MAYBE_TestWritableAfterPartialWriteIPv4 TestWritableAfterPartialWriteIPv4
#endif
TEST_F(PhysicalSocketTest, MAYBE_TestWritableAfterPartialWriteIPv4) {
WritableAfterPartialWrite(kIPv4Loopback);
}
// https://bugs.chromium.org/p/webrtc/issues/detail?id=6167
#if defined(WEBRTC_WIN)
#define MAYBE_TestWritableAfterPartialWriteIPv6 DISABLED_TestWritableAfterPartialWriteIPv6
#else
#define MAYBE_TestWritableAfterPartialWriteIPv6 TestWritableAfterPartialWriteIPv6
#endif
TEST_F(PhysicalSocketTest, MAYBE_TestWritableAfterPartialWriteIPv6) {
MAYBE_SKIP_IPV6;
WritableAfterPartialWrite(kIPv6Loopback);
}
TEST_F(PhysicalSocketTest, TestConnectFailIPv6) {
SocketTest::TestConnectFailIPv6();
}
TEST_F(PhysicalSocketTest, TestConnectWithDnsLookupFailIPv4) {
SocketTest::TestConnectWithDnsLookupFailIPv4();
}
TEST_F(PhysicalSocketTest, TestConnectWithDnsLookupFailIPv6) {
SocketTest::TestConnectWithDnsLookupFailIPv6();
}
TEST_F(PhysicalSocketTest, TestConnectWithClosedSocketIPv4) {
SocketTest::TestConnectWithClosedSocketIPv4();
}
TEST_F(PhysicalSocketTest, TestConnectWithClosedSocketIPv6) {
SocketTest::TestConnectWithClosedSocketIPv6();
}
TEST_F(PhysicalSocketTest, TestConnectWhileNotClosedIPv4) {
SocketTest::TestConnectWhileNotClosedIPv4();
}
TEST_F(PhysicalSocketTest, TestConnectWhileNotClosedIPv6) {
SocketTest::TestConnectWhileNotClosedIPv6();
}
TEST_F(PhysicalSocketTest, TestServerCloseDuringConnectIPv4) {
SocketTest::TestServerCloseDuringConnectIPv4();
}
TEST_F(PhysicalSocketTest, TestServerCloseDuringConnectIPv6) {
SocketTest::TestServerCloseDuringConnectIPv6();
}
TEST_F(PhysicalSocketTest, TestClientCloseDuringConnectIPv4) {
SocketTest::TestClientCloseDuringConnectIPv4();
}
TEST_F(PhysicalSocketTest, TestClientCloseDuringConnectIPv6) {
SocketTest::TestClientCloseDuringConnectIPv6();
}
TEST_F(PhysicalSocketTest, TestServerCloseIPv4) {
SocketTest::TestServerCloseIPv4();
}
TEST_F(PhysicalSocketTest, TestServerCloseIPv6) {
SocketTest::TestServerCloseIPv6();
}
TEST_F(PhysicalSocketTest, TestCloseInClosedCallbackIPv4) {
SocketTest::TestCloseInClosedCallbackIPv4();
}
TEST_F(PhysicalSocketTest, TestCloseInClosedCallbackIPv6) {
SocketTest::TestCloseInClosedCallbackIPv6();
}
TEST_F(PhysicalSocketTest, TestSocketServerWaitIPv4) {
SocketTest::TestSocketServerWaitIPv4();
}
TEST_F(PhysicalSocketTest, TestSocketServerWaitIPv6) {
SocketTest::TestSocketServerWaitIPv6();
}
TEST_F(PhysicalSocketTest, TestTcpIPv4) {
SocketTest::TestTcpIPv4();
}
TEST_F(PhysicalSocketTest, TestTcpIPv6) {
SocketTest::TestTcpIPv6();
}
TEST_F(PhysicalSocketTest, TestUdpIPv4) {
SocketTest::TestUdpIPv4();
}
TEST_F(PhysicalSocketTest, TestUdpIPv6) {
SocketTest::TestUdpIPv6();
}
// Disable for TSan v2, see
// https://code.google.com/p/webrtc/issues/detail?id=3498 for details.
// Also disable for MSan, see:
// https://code.google.com/p/webrtc/issues/detail?id=4958
// TODO(deadbeef): Enable again once test is reimplemented to be unflaky.
// Also disable for ASan.
// Disabled on Android: https://code.google.com/p/webrtc/issues/detail?id=4364
// Disabled on Linux: https://bugs.chromium.org/p/webrtc/issues/detail?id=5233
#if defined(THREAD_SANITIZER) || defined(MEMORY_SANITIZER) || \
defined(ADDRESS_SANITIZER) || defined(WEBRTC_ANDROID) || \
defined(WEBRTC_LINUX)
#define MAYBE_TestUdpReadyToSendIPv4 DISABLED_TestUdpReadyToSendIPv4
#else
#define MAYBE_TestUdpReadyToSendIPv4 TestUdpReadyToSendIPv4
#endif
TEST_F(PhysicalSocketTest, MAYBE_TestUdpReadyToSendIPv4) {
SocketTest::TestUdpReadyToSendIPv4();
}
// https://bugs.chromium.org/p/webrtc/issues/detail?id=6167
#if defined(WEBRTC_WIN)
#define MAYBE_TestUdpReadyToSendIPv6 DISABLED_TestUdpReadyToSendIPv6
#else
#define MAYBE_TestUdpReadyToSendIPv6 TestUdpReadyToSendIPv6
#endif
TEST_F(PhysicalSocketTest, MAYBE_TestUdpReadyToSendIPv6) {
SocketTest::TestUdpReadyToSendIPv6();
}
TEST_F(PhysicalSocketTest, TestGetSetOptionsIPv4) {
SocketTest::TestGetSetOptionsIPv4();
}
TEST_F(PhysicalSocketTest, TestGetSetOptionsIPv6) {
SocketTest::TestGetSetOptionsIPv6();
}
#if defined(WEBRTC_POSIX)
// We don't get recv timestamps on Mac.
#if !defined(WEBRTC_MAC)
TEST_F(PhysicalSocketTest, TestSocketRecvTimestampIPv4) {
SocketTest::TestSocketRecvTimestampIPv4();
}
TEST_F(PhysicalSocketTest, TestSocketRecvTimestampIPv6) {
SocketTest::TestSocketRecvTimestampIPv6();
}
#endif
// Verify that if the socket was unable to be bound to a real network interface
// (not loopback), Bind will return an error.
TEST_F(PhysicalSocketTest,
BindFailsIfNetworkBinderFailsForNonLoopbackInterface) {
FakeNetworkBinder fake_network_binder;
server_->set_network_binder(&fake_network_binder);
std::unique_ptr<AsyncSocket> socket(
server_->CreateAsyncSocket(AF_INET, SOCK_DGRAM));
fake_network_binder.set_result(NetworkBindingResult::FAILURE);
EXPECT_EQ(-1, socket->Bind(SocketAddress("192.168.0.1", 0)));
server_->set_network_binder(nullptr);
}
// Network binder shouldn't be used if the socket is bound to the "any" IP.
TEST_F(PhysicalSocketTest,
NetworkBinderIsNotUsedForAnyIp) {
FakeNetworkBinder fake_network_binder;
server_->set_network_binder(&fake_network_binder);
std::unique_ptr<AsyncSocket> socket(
server_->CreateAsyncSocket(AF_INET, SOCK_DGRAM));
EXPECT_EQ(0, socket->Bind(SocketAddress("0.0.0.0", 0)));
EXPECT_EQ(0, fake_network_binder.num_binds());
server_->set_network_binder(nullptr);
}
// For a loopback interface, failures to bind to the interface should be
// tolerated.
TEST_F(PhysicalSocketTest,
BindSucceedsIfNetworkBinderFailsForLoopbackInterface) {
FakeNetworkBinder fake_network_binder;
server_->set_network_binder(&fake_network_binder);
std::unique_ptr<AsyncSocket> socket(
server_->CreateAsyncSocket(AF_INET, SOCK_DGRAM));
fake_network_binder.set_result(NetworkBindingResult::FAILURE);
EXPECT_EQ(0, socket->Bind(SocketAddress(kIPv4Loopback, 0)));
server_->set_network_binder(nullptr);
}
class PosixSignalDeliveryTest : public testing::Test {
public:
static void RecordSignal(int signum) {
signals_received_.push_back(signum);
signaled_thread_ = Thread::Current();
}
protected:
void SetUp() {
ss_.reset(new PhysicalSocketServer());
}
void TearDown() {
ss_.reset(nullptr);
signals_received_.clear();
signaled_thread_ = nullptr;
}
bool ExpectSignal(int signum) {
if (signals_received_.empty()) {
LOG(LS_ERROR) << "ExpectSignal(): No signal received";
return false;
}
if (signals_received_[0] != signum) {
LOG(LS_ERROR) << "ExpectSignal(): Received signal " <<
signals_received_[0] << ", expected " << signum;
return false;
}
signals_received_.erase(signals_received_.begin());
return true;
}
bool ExpectNone() {
bool ret = signals_received_.empty();
if (!ret) {
LOG(LS_ERROR) << "ExpectNone(): Received signal " << signals_received_[0]
<< ", expected none";
}
return ret;
}
static std::vector<int> signals_received_;
static Thread *signaled_thread_;
std::unique_ptr<PhysicalSocketServer> ss_;
};
std::vector<int> PosixSignalDeliveryTest::signals_received_;
Thread* PosixSignalDeliveryTest::signaled_thread_ = nullptr;
// Test receiving a synchronous signal while not in Wait() and then entering
// Wait() afterwards.
TEST_F(PosixSignalDeliveryTest, RaiseThenWait) {
ASSERT_TRUE(ss_->SetPosixSignalHandler(SIGTERM, &RecordSignal));
raise(SIGTERM);
EXPECT_TRUE(ss_->Wait(0, true));
EXPECT_TRUE(ExpectSignal(SIGTERM));
EXPECT_TRUE(ExpectNone());
}
// Test that we can handle getting tons of repeated signals and that we see all
// the different ones.
TEST_F(PosixSignalDeliveryTest, InsanelyManySignals) {
ss_->SetPosixSignalHandler(SIGTERM, &RecordSignal);
ss_->SetPosixSignalHandler(SIGINT, &RecordSignal);
for (int i = 0; i < 10000; ++i) {
raise(SIGTERM);
}
raise(SIGINT);
EXPECT_TRUE(ss_->Wait(0, true));
// Order will be lowest signal numbers first.
EXPECT_TRUE(ExpectSignal(SIGINT));
EXPECT_TRUE(ExpectSignal(SIGTERM));
EXPECT_TRUE(ExpectNone());
}
// Test that a signal during a Wait() call is detected.
TEST_F(PosixSignalDeliveryTest, SignalDuringWait) {
ss_->SetPosixSignalHandler(SIGALRM, &RecordSignal);
alarm(1);
EXPECT_TRUE(ss_->Wait(1500, true));
EXPECT_TRUE(ExpectSignal(SIGALRM));
EXPECT_TRUE(ExpectNone());
}
class RaiseSigTermRunnable : public Runnable {
void Run(Thread *thread) {
thread->socketserver()->Wait(1000, false);
// Allow SIGTERM. This will be the only thread with it not masked so it will
// be delivered to us.
sigset_t mask;
sigemptyset(&mask);
pthread_sigmask(SIG_SETMASK, &mask, nullptr);
// Raise it.
raise(SIGTERM);
}
};
// Test that it works no matter what thread the kernel chooses to give the
// signal to (since it's not guaranteed to be the one that Wait() runs on).
TEST_F(PosixSignalDeliveryTest, SignalOnDifferentThread) {
ss_->SetPosixSignalHandler(SIGTERM, &RecordSignal);
// Mask out SIGTERM so that it can't be delivered to this thread.
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGTERM);
EXPECT_EQ(0, pthread_sigmask(SIG_SETMASK, &mask, nullptr));
// Start a new thread that raises it. It will have to be delivered to that
// thread. Our implementation should safely handle it and dispatch
// RecordSignal() on this thread.
std::unique_ptr<Thread> thread(new Thread());
std::unique_ptr<RaiseSigTermRunnable> runnable(new RaiseSigTermRunnable());
thread->Start(runnable.get());
EXPECT_TRUE(ss_->Wait(1500, true));
EXPECT_TRUE(ExpectSignal(SIGTERM));
EXPECT_EQ(Thread::Current(), signaled_thread_);
EXPECT_TRUE(ExpectNone());
}
#endif
} // namespace rtc