|  | /* | 
|  | *  Copyright 2004 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "webrtc/base/virtualsocketserver.h" | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <map> | 
|  | #include <vector> | 
|  |  | 
|  | #include "webrtc/base/common.h" | 
|  | #include "webrtc/base/logging.h" | 
|  | #include "webrtc/base/physicalsocketserver.h" | 
|  | #include "webrtc/base/socketaddresspair.h" | 
|  | #include "webrtc/base/thread.h" | 
|  | #include "webrtc/base/timeutils.h" | 
|  |  | 
|  | namespace rtc { | 
|  | #if defined(WEBRTC_WIN) | 
|  | const in_addr kInitialNextIPv4 = { {0x01, 0, 0, 0} }; | 
|  | #else | 
|  | // This value is entirely arbitrary, hence the lack of concern about endianness. | 
|  | const in_addr kInitialNextIPv4 = { 0x01000000 }; | 
|  | #endif | 
|  | // Starts at ::2 so as to not cause confusion with ::1. | 
|  | const in6_addr kInitialNextIPv6 = { { { | 
|  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 | 
|  | } } }; | 
|  |  | 
|  | const uint16 kFirstEphemeralPort = 49152; | 
|  | const uint16 kLastEphemeralPort = 65535; | 
|  | const uint16 kEphemeralPortCount = kLastEphemeralPort - kFirstEphemeralPort + 1; | 
|  | const uint32 kDefaultNetworkCapacity = 64 * 1024; | 
|  | const uint32 kDefaultTcpBufferSize = 32 * 1024; | 
|  |  | 
|  | const uint32 UDP_HEADER_SIZE = 28;  // IP + UDP headers | 
|  | const uint32 TCP_HEADER_SIZE = 40;  // IP + TCP headers | 
|  | const uint32 TCP_MSS = 1400;  // Maximum segment size | 
|  |  | 
|  | // Note: The current algorithm doesn't work for sample sizes smaller than this. | 
|  | const int NUM_SAMPLES = 1000; | 
|  |  | 
|  | enum { | 
|  | MSG_ID_PACKET, | 
|  | MSG_ID_CONNECT, | 
|  | MSG_ID_DISCONNECT, | 
|  | }; | 
|  |  | 
|  | // Packets are passed between sockets as messages.  We copy the data just like | 
|  | // the kernel does. | 
|  | class Packet : public MessageData { | 
|  | public: | 
|  | Packet(const char* data, size_t size, const SocketAddress& from) | 
|  | : size_(size), consumed_(0), from_(from) { | 
|  | ASSERT(NULL != data); | 
|  | data_ = new char[size_]; | 
|  | memcpy(data_, data, size_); | 
|  | } | 
|  |  | 
|  | virtual ~Packet() { | 
|  | delete[] data_; | 
|  | } | 
|  |  | 
|  | const char* data() const { return data_ + consumed_; } | 
|  | size_t size() const { return size_ - consumed_; } | 
|  | const SocketAddress& from() const { return from_; } | 
|  |  | 
|  | // Remove the first size bytes from the data. | 
|  | void Consume(size_t size) { | 
|  | ASSERT(size + consumed_ < size_); | 
|  | consumed_ += size; | 
|  | } | 
|  |  | 
|  | private: | 
|  | char* data_; | 
|  | size_t size_, consumed_; | 
|  | SocketAddress from_; | 
|  | }; | 
|  |  | 
|  | struct MessageAddress : public MessageData { | 
|  | explicit MessageAddress(const SocketAddress& a) : addr(a) { } | 
|  | SocketAddress addr; | 
|  | }; | 
|  |  | 
|  | // Implements the socket interface using the virtual network.  Packets are | 
|  | // passed as messages using the message queue of the socket server. | 
|  | class VirtualSocket : public AsyncSocket, public MessageHandler { | 
|  | public: | 
|  | VirtualSocket(VirtualSocketServer* server, int family, int type, bool async) | 
|  | : server_(server), family_(family), type_(type), async_(async), | 
|  | state_(CS_CLOSED), error_(0), listen_queue_(NULL), | 
|  | write_enabled_(false), | 
|  | network_size_(0), recv_buffer_size_(0), bound_(false), was_any_(false) { | 
|  | ASSERT((type_ == SOCK_DGRAM) || (type_ == SOCK_STREAM)); | 
|  | ASSERT(async_ || (type_ != SOCK_STREAM));  // We only support async streams | 
|  | } | 
|  |  | 
|  | virtual ~VirtualSocket() { | 
|  | Close(); | 
|  |  | 
|  | for (RecvBuffer::iterator it = recv_buffer_.begin(); | 
|  | it != recv_buffer_.end(); ++it) { | 
|  | delete *it; | 
|  | } | 
|  | } | 
|  |  | 
|  | virtual SocketAddress GetLocalAddress() const { | 
|  | return local_addr_; | 
|  | } | 
|  |  | 
|  | virtual SocketAddress GetRemoteAddress() const { | 
|  | return remote_addr_; | 
|  | } | 
|  |  | 
|  | // Used by server sockets to set the local address without binding. | 
|  | void SetLocalAddress(const SocketAddress& addr) { | 
|  | local_addr_ = addr; | 
|  | } | 
|  |  | 
|  | virtual int Bind(const SocketAddress& addr) { | 
|  | if (!local_addr_.IsNil()) { | 
|  | error_ = EINVAL; | 
|  | return -1; | 
|  | } | 
|  | local_addr_ = addr; | 
|  | int result = server_->Bind(this, &local_addr_); | 
|  | if (result != 0) { | 
|  | local_addr_.Clear(); | 
|  | error_ = EADDRINUSE; | 
|  | } else { | 
|  | bound_ = true; | 
|  | was_any_ = addr.IsAnyIP(); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | virtual int Connect(const SocketAddress& addr) { | 
|  | return InitiateConnect(addr, true); | 
|  | } | 
|  |  | 
|  | virtual int Close() { | 
|  | if (!local_addr_.IsNil() && bound_) { | 
|  | // Remove from the binding table. | 
|  | server_->Unbind(local_addr_, this); | 
|  | bound_ = false; | 
|  | } | 
|  |  | 
|  | if (SOCK_STREAM == type_) { | 
|  | // Cancel pending sockets | 
|  | if (listen_queue_) { | 
|  | while (!listen_queue_->empty()) { | 
|  | SocketAddress addr = listen_queue_->front(); | 
|  |  | 
|  | // Disconnect listening socket. | 
|  | server_->Disconnect(server_->LookupBinding(addr)); | 
|  | listen_queue_->pop_front(); | 
|  | } | 
|  | delete listen_queue_; | 
|  | listen_queue_ = NULL; | 
|  | } | 
|  | // Disconnect stream sockets | 
|  | if (CS_CONNECTED == state_) { | 
|  | // Disconnect remote socket, check if it is a child of a server socket. | 
|  | VirtualSocket* socket = | 
|  | server_->LookupConnection(local_addr_, remote_addr_); | 
|  | if (!socket) { | 
|  | // Not a server socket child, then see if it is bound. | 
|  | // TODO: If this is indeed a server socket that has no | 
|  | // children this will cause the server socket to be | 
|  | // closed. This might lead to unexpected results, how to fix this? | 
|  | socket = server_->LookupBinding(remote_addr_); | 
|  | } | 
|  | server_->Disconnect(socket); | 
|  |  | 
|  | // Remove mapping for both directions. | 
|  | server_->RemoveConnection(remote_addr_, local_addr_); | 
|  | server_->RemoveConnection(local_addr_, remote_addr_); | 
|  | } | 
|  | // Cancel potential connects | 
|  | MessageList msgs; | 
|  | if (server_->msg_queue_) { | 
|  | server_->msg_queue_->Clear(this, MSG_ID_CONNECT, &msgs); | 
|  | } | 
|  | for (MessageList::iterator it = msgs.begin(); it != msgs.end(); ++it) { | 
|  | ASSERT(NULL != it->pdata); | 
|  | MessageAddress* data = static_cast<MessageAddress*>(it->pdata); | 
|  |  | 
|  | // Lookup remote side. | 
|  | VirtualSocket* socket = server_->LookupConnection(local_addr_, | 
|  | data->addr); | 
|  | if (socket) { | 
|  | // Server socket, remote side is a socket retreived by | 
|  | // accept. Accepted sockets are not bound so we will not | 
|  | // find it by looking in the bindings table. | 
|  | server_->Disconnect(socket); | 
|  | server_->RemoveConnection(local_addr_, data->addr); | 
|  | } else { | 
|  | server_->Disconnect(server_->LookupBinding(data->addr)); | 
|  | } | 
|  | delete data; | 
|  | } | 
|  | // Clear incoming packets and disconnect messages | 
|  | if (server_->msg_queue_) { | 
|  | server_->msg_queue_->Clear(this); | 
|  | } | 
|  | } | 
|  |  | 
|  | state_ = CS_CLOSED; | 
|  | local_addr_.Clear(); | 
|  | remote_addr_.Clear(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | virtual int Send(const void *pv, size_t cb) { | 
|  | if (CS_CONNECTED != state_) { | 
|  | error_ = ENOTCONN; | 
|  | return -1; | 
|  | } | 
|  | if (SOCK_DGRAM == type_) { | 
|  | return SendUdp(pv, cb, remote_addr_); | 
|  | } else { | 
|  | return SendTcp(pv, cb); | 
|  | } | 
|  | } | 
|  |  | 
|  | virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr) { | 
|  | if (SOCK_DGRAM == type_) { | 
|  | return SendUdp(pv, cb, addr); | 
|  | } else { | 
|  | if (CS_CONNECTED != state_) { | 
|  | error_ = ENOTCONN; | 
|  | return -1; | 
|  | } | 
|  | return SendTcp(pv, cb); | 
|  | } | 
|  | } | 
|  |  | 
|  | virtual int Recv(void *pv, size_t cb) { | 
|  | SocketAddress addr; | 
|  | return RecvFrom(pv, cb, &addr); | 
|  | } | 
|  |  | 
|  | virtual int RecvFrom(void *pv, size_t cb, SocketAddress *paddr) { | 
|  | // If we don't have a packet, then either error or wait for one to arrive. | 
|  | if (recv_buffer_.empty()) { | 
|  | if (async_) { | 
|  | error_ = EAGAIN; | 
|  | return -1; | 
|  | } | 
|  | while (recv_buffer_.empty()) { | 
|  | Message msg; | 
|  | server_->msg_queue_->Get(&msg); | 
|  | server_->msg_queue_->Dispatch(&msg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return the packet at the front of the queue. | 
|  | Packet* packet = recv_buffer_.front(); | 
|  | size_t data_read = _min(cb, packet->size()); | 
|  | memcpy(pv, packet->data(), data_read); | 
|  | *paddr = packet->from(); | 
|  |  | 
|  | if (data_read < packet->size()) { | 
|  | packet->Consume(data_read); | 
|  | } else { | 
|  | recv_buffer_.pop_front(); | 
|  | delete packet; | 
|  | } | 
|  |  | 
|  | if (SOCK_STREAM == type_) { | 
|  | bool was_full = (recv_buffer_size_ == server_->recv_buffer_capacity_); | 
|  | recv_buffer_size_ -= data_read; | 
|  | if (was_full) { | 
|  | VirtualSocket* sender = server_->LookupBinding(remote_addr_); | 
|  | ASSERT(NULL != sender); | 
|  | server_->SendTcp(sender); | 
|  | } | 
|  | } | 
|  |  | 
|  | return static_cast<int>(data_read); | 
|  | } | 
|  |  | 
|  | virtual int Listen(int backlog) { | 
|  | ASSERT(SOCK_STREAM == type_); | 
|  | ASSERT(CS_CLOSED == state_); | 
|  | if (local_addr_.IsNil()) { | 
|  | error_ = EINVAL; | 
|  | return -1; | 
|  | } | 
|  | ASSERT(NULL == listen_queue_); | 
|  | listen_queue_ = new ListenQueue; | 
|  | state_ = CS_CONNECTING; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | virtual VirtualSocket* Accept(SocketAddress *paddr) { | 
|  | if (NULL == listen_queue_) { | 
|  | error_ = EINVAL; | 
|  | return NULL; | 
|  | } | 
|  | while (!listen_queue_->empty()) { | 
|  | VirtualSocket* socket = new VirtualSocket(server_, AF_INET, type_, | 
|  | async_); | 
|  |  | 
|  | // Set the new local address to the same as this server socket. | 
|  | socket->SetLocalAddress(local_addr_); | 
|  | // Sockets made from a socket that 'was Any' need to inherit that. | 
|  | socket->set_was_any(was_any_); | 
|  | SocketAddress remote_addr(listen_queue_->front()); | 
|  | int result = socket->InitiateConnect(remote_addr, false); | 
|  | listen_queue_->pop_front(); | 
|  | if (result != 0) { | 
|  | delete socket; | 
|  | continue; | 
|  | } | 
|  | socket->CompleteConnect(remote_addr, false); | 
|  | if (paddr) { | 
|  | *paddr = remote_addr; | 
|  | } | 
|  | return socket; | 
|  | } | 
|  | error_ = EWOULDBLOCK; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | virtual int GetError() const { | 
|  | return error_; | 
|  | } | 
|  |  | 
|  | virtual void SetError(int error) { | 
|  | error_ = error; | 
|  | } | 
|  |  | 
|  | virtual ConnState GetState() const { | 
|  | return state_; | 
|  | } | 
|  |  | 
|  | virtual int GetOption(Option opt, int* value) { | 
|  | OptionsMap::const_iterator it = options_map_.find(opt); | 
|  | if (it == options_map_.end()) { | 
|  | return -1; | 
|  | } | 
|  | *value = it->second; | 
|  | return 0;  // 0 is success to emulate getsockopt() | 
|  | } | 
|  |  | 
|  | virtual int SetOption(Option opt, int value) { | 
|  | options_map_[opt] = value; | 
|  | return 0;  // 0 is success to emulate setsockopt() | 
|  | } | 
|  |  | 
|  | virtual int EstimateMTU(uint16* mtu) { | 
|  | if (CS_CONNECTED != state_) | 
|  | return ENOTCONN; | 
|  | else | 
|  | return 65536; | 
|  | } | 
|  |  | 
|  | void OnMessage(Message *pmsg) { | 
|  | if (pmsg->message_id == MSG_ID_PACKET) { | 
|  | //ASSERT(!local_addr_.IsAny()); | 
|  | ASSERT(NULL != pmsg->pdata); | 
|  | Packet* packet = static_cast<Packet*>(pmsg->pdata); | 
|  |  | 
|  | recv_buffer_.push_back(packet); | 
|  |  | 
|  | if (async_) { | 
|  | SignalReadEvent(this); | 
|  | } | 
|  | } else if (pmsg->message_id == MSG_ID_CONNECT) { | 
|  | ASSERT(NULL != pmsg->pdata); | 
|  | MessageAddress* data = static_cast<MessageAddress*>(pmsg->pdata); | 
|  | if (listen_queue_ != NULL) { | 
|  | listen_queue_->push_back(data->addr); | 
|  | if (async_) { | 
|  | SignalReadEvent(this); | 
|  | } | 
|  | } else if ((SOCK_STREAM == type_) && (CS_CONNECTING == state_)) { | 
|  | CompleteConnect(data->addr, true); | 
|  | } else { | 
|  | LOG(LS_VERBOSE) << "Socket at " << local_addr_ << " is not listening"; | 
|  | server_->Disconnect(server_->LookupBinding(data->addr)); | 
|  | } | 
|  | delete data; | 
|  | } else if (pmsg->message_id == MSG_ID_DISCONNECT) { | 
|  | ASSERT(SOCK_STREAM == type_); | 
|  | if (CS_CLOSED != state_) { | 
|  | int error = (CS_CONNECTING == state_) ? ECONNREFUSED : 0; | 
|  | state_ = CS_CLOSED; | 
|  | remote_addr_.Clear(); | 
|  | if (async_) { | 
|  | SignalCloseEvent(this, error); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | ASSERT(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool was_any() { return was_any_; } | 
|  | void set_was_any(bool was_any) { was_any_ = was_any; } | 
|  |  | 
|  | private: | 
|  | struct NetworkEntry { | 
|  | size_t size; | 
|  | uint32 done_time; | 
|  | }; | 
|  |  | 
|  | typedef std::deque<SocketAddress> ListenQueue; | 
|  | typedef std::deque<NetworkEntry> NetworkQueue; | 
|  | typedef std::vector<char> SendBuffer; | 
|  | typedef std::list<Packet*> RecvBuffer; | 
|  | typedef std::map<Option, int> OptionsMap; | 
|  |  | 
|  | int InitiateConnect(const SocketAddress& addr, bool use_delay) { | 
|  | if (!remote_addr_.IsNil()) { | 
|  | error_ = (CS_CONNECTED == state_) ? EISCONN : EINPROGRESS; | 
|  | return -1; | 
|  | } | 
|  | if (local_addr_.IsNil()) { | 
|  | // If there's no local address set, grab a random one in the correct AF. | 
|  | int result = 0; | 
|  | if (addr.ipaddr().family() == AF_INET) { | 
|  | result = Bind(SocketAddress("0.0.0.0", 0)); | 
|  | } else if (addr.ipaddr().family() == AF_INET6) { | 
|  | result = Bind(SocketAddress("::", 0)); | 
|  | } | 
|  | if (result != 0) { | 
|  | return result; | 
|  | } | 
|  | } | 
|  | if (type_ == SOCK_DGRAM) { | 
|  | remote_addr_ = addr; | 
|  | state_ = CS_CONNECTED; | 
|  | } else { | 
|  | int result = server_->Connect(this, addr, use_delay); | 
|  | if (result != 0) { | 
|  | error_ = EHOSTUNREACH; | 
|  | return -1; | 
|  | } | 
|  | state_ = CS_CONNECTING; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void CompleteConnect(const SocketAddress& addr, bool notify) { | 
|  | ASSERT(CS_CONNECTING == state_); | 
|  | remote_addr_ = addr; | 
|  | state_ = CS_CONNECTED; | 
|  | server_->AddConnection(remote_addr_, local_addr_, this); | 
|  | if (async_ && notify) { | 
|  | SignalConnectEvent(this); | 
|  | } | 
|  | } | 
|  |  | 
|  | int SendUdp(const void* pv, size_t cb, const SocketAddress& addr) { | 
|  | // If we have not been assigned a local port, then get one. | 
|  | if (local_addr_.IsNil()) { | 
|  | local_addr_ = EmptySocketAddressWithFamily(addr.ipaddr().family()); | 
|  | int result = server_->Bind(this, &local_addr_); | 
|  | if (result != 0) { | 
|  | local_addr_.Clear(); | 
|  | error_ = EADDRINUSE; | 
|  | return result; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Send the data in a message to the appropriate socket. | 
|  | return server_->SendUdp(this, static_cast<const char*>(pv), cb, addr); | 
|  | } | 
|  |  | 
|  | int SendTcp(const void* pv, size_t cb) { | 
|  | size_t capacity = server_->send_buffer_capacity_ - send_buffer_.size(); | 
|  | if (0 == capacity) { | 
|  | write_enabled_ = true; | 
|  | error_ = EWOULDBLOCK; | 
|  | return -1; | 
|  | } | 
|  | size_t consumed = _min(cb, capacity); | 
|  | const char* cpv = static_cast<const char*>(pv); | 
|  | send_buffer_.insert(send_buffer_.end(), cpv, cpv + consumed); | 
|  | server_->SendTcp(this); | 
|  | return static_cast<int>(consumed); | 
|  | } | 
|  |  | 
|  | VirtualSocketServer* server_; | 
|  | int family_; | 
|  | int type_; | 
|  | bool async_; | 
|  | ConnState state_; | 
|  | int error_; | 
|  | SocketAddress local_addr_; | 
|  | SocketAddress remote_addr_; | 
|  |  | 
|  | // Pending sockets which can be Accepted | 
|  | ListenQueue* listen_queue_; | 
|  |  | 
|  | // Data which tcp has buffered for sending | 
|  | SendBuffer send_buffer_; | 
|  | bool write_enabled_; | 
|  |  | 
|  | // Critical section to protect the recv_buffer and queue_ | 
|  | CriticalSection crit_; | 
|  |  | 
|  | // Network model that enforces bandwidth and capacity constraints | 
|  | NetworkQueue network_; | 
|  | size_t network_size_; | 
|  |  | 
|  | // Data which has been received from the network | 
|  | RecvBuffer recv_buffer_; | 
|  | // The amount of data which is in flight or in recv_buffer_ | 
|  | size_t recv_buffer_size_; | 
|  |  | 
|  | // Is this socket bound? | 
|  | bool bound_; | 
|  |  | 
|  | // When we bind a socket to Any, VSS's Bind gives it another address. For | 
|  | // dual-stack sockets, we want to distinguish between sockets that were | 
|  | // explicitly given a particular address and sockets that had one picked | 
|  | // for them by VSS. | 
|  | bool was_any_; | 
|  |  | 
|  | // Store the options that are set | 
|  | OptionsMap options_map_; | 
|  |  | 
|  | friend class VirtualSocketServer; | 
|  | }; | 
|  |  | 
|  | VirtualSocketServer::VirtualSocketServer(SocketServer* ss) | 
|  | : server_(ss), server_owned_(false), msg_queue_(NULL), stop_on_idle_(false), | 
|  | network_delay_(Time()), next_ipv4_(kInitialNextIPv4), | 
|  | next_ipv6_(kInitialNextIPv6), next_port_(kFirstEphemeralPort), | 
|  | bindings_(new AddressMap()), connections_(new ConnectionMap()), | 
|  | bandwidth_(0), network_capacity_(kDefaultNetworkCapacity), | 
|  | send_buffer_capacity_(kDefaultTcpBufferSize), | 
|  | recv_buffer_capacity_(kDefaultTcpBufferSize), | 
|  | delay_mean_(0), delay_stddev_(0), delay_samples_(NUM_SAMPLES), | 
|  | delay_dist_(NULL), drop_prob_(0.0) { | 
|  | if (!server_) { | 
|  | server_ = new PhysicalSocketServer(); | 
|  | server_owned_ = true; | 
|  | } | 
|  | UpdateDelayDistribution(); | 
|  | } | 
|  |  | 
|  | VirtualSocketServer::~VirtualSocketServer() { | 
|  | delete bindings_; | 
|  | delete connections_; | 
|  | delete delay_dist_; | 
|  | if (server_owned_) { | 
|  | delete server_; | 
|  | } | 
|  | } | 
|  |  | 
|  | IPAddress VirtualSocketServer::GetNextIP(int family) { | 
|  | if (family == AF_INET) { | 
|  | IPAddress next_ip(next_ipv4_); | 
|  | next_ipv4_.s_addr = | 
|  | HostToNetwork32(NetworkToHost32(next_ipv4_.s_addr) + 1); | 
|  | return next_ip; | 
|  | } else if (family == AF_INET6) { | 
|  | IPAddress next_ip(next_ipv6_); | 
|  | uint32* as_ints = reinterpret_cast<uint32*>(&next_ipv6_.s6_addr); | 
|  | as_ints[3] += 1; | 
|  | return next_ip; | 
|  | } | 
|  | return IPAddress(); | 
|  | } | 
|  |  | 
|  | uint16 VirtualSocketServer::GetNextPort() { | 
|  | uint16 port = next_port_; | 
|  | if (next_port_ < kLastEphemeralPort) { | 
|  | ++next_port_; | 
|  | } else { | 
|  | next_port_ = kFirstEphemeralPort; | 
|  | } | 
|  | return port; | 
|  | } | 
|  |  | 
|  | Socket* VirtualSocketServer::CreateSocket(int type) { | 
|  | return CreateSocket(AF_INET, type); | 
|  | } | 
|  |  | 
|  | Socket* VirtualSocketServer::CreateSocket(int family, int type) { | 
|  | return CreateSocketInternal(family, type); | 
|  | } | 
|  |  | 
|  | AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int type) { | 
|  | return CreateAsyncSocket(AF_INET, type); | 
|  | } | 
|  |  | 
|  | AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int family, int type) { | 
|  | return CreateSocketInternal(family, type); | 
|  | } | 
|  |  | 
|  | VirtualSocket* VirtualSocketServer::CreateSocketInternal(int family, int type) { | 
|  | return new VirtualSocket(this, family, type, true); | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::SetMessageQueue(MessageQueue* msg_queue) { | 
|  | msg_queue_ = msg_queue; | 
|  | if (msg_queue_) { | 
|  | msg_queue_->SignalQueueDestroyed.connect(this, | 
|  | &VirtualSocketServer::OnMessageQueueDestroyed); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool VirtualSocketServer::Wait(int cmsWait, bool process_io) { | 
|  | ASSERT(msg_queue_ == Thread::Current()); | 
|  | if (stop_on_idle_ && Thread::Current()->empty()) { | 
|  | return false; | 
|  | } | 
|  | return socketserver()->Wait(cmsWait, process_io); | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::WakeUp() { | 
|  | socketserver()->WakeUp(); | 
|  | } | 
|  |  | 
|  | bool VirtualSocketServer::ProcessMessagesUntilIdle() { | 
|  | ASSERT(msg_queue_ == Thread::Current()); | 
|  | stop_on_idle_ = true; | 
|  | while (!msg_queue_->empty()) { | 
|  | Message msg; | 
|  | if (msg_queue_->Get(&msg, kForever)) { | 
|  | msg_queue_->Dispatch(&msg); | 
|  | } | 
|  | } | 
|  | stop_on_idle_ = false; | 
|  | return !msg_queue_->IsQuitting(); | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::SetNextPortForTesting(uint16 port) { | 
|  | next_port_ = port; | 
|  | } | 
|  |  | 
|  | int VirtualSocketServer::Bind(VirtualSocket* socket, | 
|  | const SocketAddress& addr) { | 
|  | ASSERT(NULL != socket); | 
|  | // Address must be completely specified at this point | 
|  | ASSERT(!IPIsUnspec(addr.ipaddr())); | 
|  | ASSERT(addr.port() != 0); | 
|  |  | 
|  | // Normalize the address (turns v6-mapped addresses into v4-addresses). | 
|  | SocketAddress normalized(addr.ipaddr().Normalized(), addr.port()); | 
|  |  | 
|  | AddressMap::value_type entry(normalized, socket); | 
|  | return bindings_->insert(entry).second ? 0 : -1; | 
|  | } | 
|  |  | 
|  | int VirtualSocketServer::Bind(VirtualSocket* socket, SocketAddress* addr) { | 
|  | ASSERT(NULL != socket); | 
|  |  | 
|  | if (IPIsAny(addr->ipaddr())) { | 
|  | addr->SetIP(GetNextIP(addr->ipaddr().family())); | 
|  | } else if (!IPIsUnspec(addr->ipaddr())) { | 
|  | addr->SetIP(addr->ipaddr().Normalized()); | 
|  | } else { | 
|  | ASSERT(false); | 
|  | } | 
|  |  | 
|  | if (addr->port() == 0) { | 
|  | for (int i = 0; i < kEphemeralPortCount; ++i) { | 
|  | addr->SetPort(GetNextPort()); | 
|  | if (bindings_->find(*addr) == bindings_->end()) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Bind(socket, *addr); | 
|  | } | 
|  |  | 
|  | VirtualSocket* VirtualSocketServer::LookupBinding(const SocketAddress& addr) { | 
|  | SocketAddress normalized(addr.ipaddr().Normalized(), | 
|  | addr.port()); | 
|  | AddressMap::iterator it = bindings_->find(normalized); | 
|  | return (bindings_->end() != it) ? it->second : NULL; | 
|  | } | 
|  |  | 
|  | int VirtualSocketServer::Unbind(const SocketAddress& addr, | 
|  | VirtualSocket* socket) { | 
|  | SocketAddress normalized(addr.ipaddr().Normalized(), | 
|  | addr.port()); | 
|  | ASSERT((*bindings_)[normalized] == socket); | 
|  | bindings_->erase(bindings_->find(normalized)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::AddConnection(const SocketAddress& local, | 
|  | const SocketAddress& remote, | 
|  | VirtualSocket* remote_socket) { | 
|  | // Add this socket pair to our routing table. This will allow | 
|  | // multiple clients to connect to the same server address. | 
|  | SocketAddress local_normalized(local.ipaddr().Normalized(), | 
|  | local.port()); | 
|  | SocketAddress remote_normalized(remote.ipaddr().Normalized(), | 
|  | remote.port()); | 
|  | SocketAddressPair address_pair(local_normalized, remote_normalized); | 
|  | connections_->insert(std::pair<SocketAddressPair, | 
|  | VirtualSocket*>(address_pair, remote_socket)); | 
|  | } | 
|  |  | 
|  | VirtualSocket* VirtualSocketServer::LookupConnection( | 
|  | const SocketAddress& local, | 
|  | const SocketAddress& remote) { | 
|  | SocketAddress local_normalized(local.ipaddr().Normalized(), | 
|  | local.port()); | 
|  | SocketAddress remote_normalized(remote.ipaddr().Normalized(), | 
|  | remote.port()); | 
|  | SocketAddressPair address_pair(local_normalized, remote_normalized); | 
|  | ConnectionMap::iterator it = connections_->find(address_pair); | 
|  | return (connections_->end() != it) ? it->second : NULL; | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::RemoveConnection(const SocketAddress& local, | 
|  | const SocketAddress& remote) { | 
|  | SocketAddress local_normalized(local.ipaddr().Normalized(), | 
|  | local.port()); | 
|  | SocketAddress remote_normalized(remote.ipaddr().Normalized(), | 
|  | remote.port()); | 
|  | SocketAddressPair address_pair(local_normalized, remote_normalized); | 
|  | connections_->erase(address_pair); | 
|  | } | 
|  |  | 
|  | static double Random() { | 
|  | return static_cast<double>(rand()) / RAND_MAX; | 
|  | } | 
|  |  | 
|  | int VirtualSocketServer::Connect(VirtualSocket* socket, | 
|  | const SocketAddress& remote_addr, | 
|  | bool use_delay) { | 
|  | uint32 delay = use_delay ? GetRandomTransitDelay() : 0; | 
|  | VirtualSocket* remote = LookupBinding(remote_addr); | 
|  | if (!CanInteractWith(socket, remote)) { | 
|  | LOG(LS_INFO) << "Address family mismatch between " | 
|  | << socket->GetLocalAddress() << " and " << remote_addr; | 
|  | return -1; | 
|  | } | 
|  | if (remote != NULL) { | 
|  | SocketAddress addr = socket->GetLocalAddress(); | 
|  | msg_queue_->PostDelayed(delay, remote, MSG_ID_CONNECT, | 
|  | new MessageAddress(addr)); | 
|  | } else { | 
|  | LOG(LS_INFO) << "No one listening at " << remote_addr; | 
|  | msg_queue_->PostDelayed(delay, socket, MSG_ID_DISCONNECT); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool VirtualSocketServer::Disconnect(VirtualSocket* socket) { | 
|  | if (socket) { | 
|  | // Remove the mapping. | 
|  | msg_queue_->Post(socket, MSG_ID_DISCONNECT); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int VirtualSocketServer::SendUdp(VirtualSocket* socket, | 
|  | const char* data, size_t data_size, | 
|  | const SocketAddress& remote_addr) { | 
|  | // See if we want to drop this packet. | 
|  | if (Random() < drop_prob_) { | 
|  | LOG(LS_VERBOSE) << "Dropping packet: bad luck"; | 
|  | return static_cast<int>(data_size); | 
|  | } | 
|  |  | 
|  | VirtualSocket* recipient = LookupBinding(remote_addr); | 
|  | if (!recipient) { | 
|  | // Make a fake recipient for address family checking. | 
|  | scoped_ptr<VirtualSocket> dummy_socket( | 
|  | CreateSocketInternal(AF_INET, SOCK_DGRAM)); | 
|  | dummy_socket->SetLocalAddress(remote_addr); | 
|  | if (!CanInteractWith(socket, dummy_socket.get())) { | 
|  | LOG(LS_VERBOSE) << "Incompatible address families: " | 
|  | << socket->GetLocalAddress() << " and " << remote_addr; | 
|  | return -1; | 
|  | } | 
|  | LOG(LS_VERBOSE) << "No one listening at " << remote_addr; | 
|  | return static_cast<int>(data_size); | 
|  | } | 
|  |  | 
|  | if (!CanInteractWith(socket, recipient)) { | 
|  | LOG(LS_VERBOSE) << "Incompatible address families: " | 
|  | << socket->GetLocalAddress() << " and " << remote_addr; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | CritScope cs(&socket->crit_); | 
|  |  | 
|  | uint32 cur_time = Time(); | 
|  | PurgeNetworkPackets(socket, cur_time); | 
|  |  | 
|  | // Determine whether we have enough bandwidth to accept this packet.  To do | 
|  | // this, we need to update the send queue.  Once we know it's current size, | 
|  | // we know whether we can fit this packet. | 
|  | // | 
|  | // NOTE: There are better algorithms for maintaining such a queue (such as | 
|  | // "Derivative Random Drop"); however, this algorithm is a more accurate | 
|  | // simulation of what a normal network would do. | 
|  |  | 
|  | size_t packet_size = data_size + UDP_HEADER_SIZE; | 
|  | if (socket->network_size_ + packet_size > network_capacity_) { | 
|  | LOG(LS_VERBOSE) << "Dropping packet: network capacity exceeded"; | 
|  | return static_cast<int>(data_size); | 
|  | } | 
|  |  | 
|  | AddPacketToNetwork(socket, recipient, cur_time, data, data_size, | 
|  | UDP_HEADER_SIZE, false); | 
|  |  | 
|  | return static_cast<int>(data_size); | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::SendTcp(VirtualSocket* socket) { | 
|  | // TCP can't send more data than will fill up the receiver's buffer. | 
|  | // We track the data that is in the buffer plus data in flight using the | 
|  | // recipient's recv_buffer_size_.  Anything beyond that must be stored in the | 
|  | // sender's buffer.  We will trigger the buffered data to be sent when data | 
|  | // is read from the recv_buffer. | 
|  |  | 
|  | // Lookup the local/remote pair in the connections table. | 
|  | VirtualSocket* recipient = LookupConnection(socket->local_addr_, | 
|  | socket->remote_addr_); | 
|  | if (!recipient) { | 
|  | LOG(LS_VERBOSE) << "Sending data to no one."; | 
|  | return; | 
|  | } | 
|  |  | 
|  | CritScope cs(&socket->crit_); | 
|  |  | 
|  | uint32 cur_time = Time(); | 
|  | PurgeNetworkPackets(socket, cur_time); | 
|  |  | 
|  | while (true) { | 
|  | size_t available = recv_buffer_capacity_ - recipient->recv_buffer_size_; | 
|  | size_t max_data_size = _min<size_t>(available, TCP_MSS - TCP_HEADER_SIZE); | 
|  | size_t data_size = _min(socket->send_buffer_.size(), max_data_size); | 
|  | if (0 == data_size) | 
|  | break; | 
|  |  | 
|  | AddPacketToNetwork(socket, recipient, cur_time, &socket->send_buffer_[0], | 
|  | data_size, TCP_HEADER_SIZE, true); | 
|  | recipient->recv_buffer_size_ += data_size; | 
|  |  | 
|  | size_t new_buffer_size = socket->send_buffer_.size() - data_size; | 
|  | // Avoid undefined access beyond the last element of the vector. | 
|  | // This only happens when new_buffer_size is 0. | 
|  | if (data_size < socket->send_buffer_.size()) { | 
|  | // memmove is required for potentially overlapping source/destination. | 
|  | memmove(&socket->send_buffer_[0], &socket->send_buffer_[data_size], | 
|  | new_buffer_size); | 
|  | } | 
|  | socket->send_buffer_.resize(new_buffer_size); | 
|  | } | 
|  |  | 
|  | if (socket->write_enabled_ | 
|  | && (socket->send_buffer_.size() < send_buffer_capacity_)) { | 
|  | socket->write_enabled_ = false; | 
|  | socket->SignalWriteEvent(socket); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::AddPacketToNetwork(VirtualSocket* sender, | 
|  | VirtualSocket* recipient, | 
|  | uint32 cur_time, | 
|  | const char* data, | 
|  | size_t data_size, | 
|  | size_t header_size, | 
|  | bool ordered) { | 
|  | VirtualSocket::NetworkEntry entry; | 
|  | entry.size = data_size + header_size; | 
|  |  | 
|  | sender->network_size_ += entry.size; | 
|  | uint32 send_delay = SendDelay(static_cast<uint32>(sender->network_size_)); | 
|  | entry.done_time = cur_time + send_delay; | 
|  | sender->network_.push_back(entry); | 
|  |  | 
|  | // Find the delay for crossing the many virtual hops of the network. | 
|  | uint32 transit_delay = GetRandomTransitDelay(); | 
|  |  | 
|  | // Post the packet as a message to be delivered (on our own thread) | 
|  | Packet* p = new Packet(data, data_size, sender->local_addr_); | 
|  | uint32 ts = TimeAfter(send_delay + transit_delay); | 
|  | if (ordered) { | 
|  | // Ensure that new packets arrive after previous ones | 
|  | // TODO: consider ordering on a per-socket basis, since this | 
|  | // introduces artifical delay. | 
|  | ts = TimeMax(ts, network_delay_); | 
|  | } | 
|  | msg_queue_->PostAt(ts, recipient, MSG_ID_PACKET, p); | 
|  | network_delay_ = TimeMax(ts, network_delay_); | 
|  | } | 
|  |  | 
|  | void VirtualSocketServer::PurgeNetworkPackets(VirtualSocket* socket, | 
|  | uint32 cur_time) { | 
|  | while (!socket->network_.empty() && | 
|  | (socket->network_.front().done_time <= cur_time)) { | 
|  | ASSERT(socket->network_size_ >= socket->network_.front().size); | 
|  | socket->network_size_ -= socket->network_.front().size; | 
|  | socket->network_.pop_front(); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32 VirtualSocketServer::SendDelay(uint32 size) { | 
|  | if (bandwidth_ == 0) | 
|  | return 0; | 
|  | else | 
|  | return 1000 * size / bandwidth_; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | void PrintFunction(std::vector<std::pair<double, double> >* f) { | 
|  | return; | 
|  | double sum = 0; | 
|  | for (uint32 i = 0; i < f->size(); ++i) { | 
|  | std::cout << (*f)[i].first << '\t' << (*f)[i].second << std::endl; | 
|  | sum += (*f)[i].second; | 
|  | } | 
|  | if (!f->empty()) { | 
|  | const double mean = sum / f->size(); | 
|  | double sum_sq_dev = 0; | 
|  | for (uint32 i = 0; i < f->size(); ++i) { | 
|  | double dev = (*f)[i].second - mean; | 
|  | sum_sq_dev += dev * dev; | 
|  | } | 
|  | std::cout << "Mean = " << mean << " StdDev = " | 
|  | << sqrt(sum_sq_dev / f->size()) << std::endl; | 
|  | } | 
|  | } | 
|  | #endif  // <unused> | 
|  |  | 
|  | void VirtualSocketServer::UpdateDelayDistribution() { | 
|  | Function* dist = CreateDistribution(delay_mean_, delay_stddev_, | 
|  | delay_samples_); | 
|  | // We take a lock just to make sure we don't leak memory. | 
|  | { | 
|  | CritScope cs(&delay_crit_); | 
|  | delete delay_dist_; | 
|  | delay_dist_ = dist; | 
|  | } | 
|  | } | 
|  |  | 
|  | static double PI = 4 * atan(1.0); | 
|  |  | 
|  | static double Normal(double x, double mean, double stddev) { | 
|  | double a = (x - mean) * (x - mean) / (2 * stddev * stddev); | 
|  | return exp(-a) / (stddev * sqrt(2 * PI)); | 
|  | } | 
|  |  | 
|  | #if 0  // static unused gives a warning | 
|  | static double Pareto(double x, double min, double k) { | 
|  | if (x < min) | 
|  | return 0; | 
|  | else | 
|  | return k * std::pow(min, k) / std::pow(x, k+1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | VirtualSocketServer::Function* VirtualSocketServer::CreateDistribution( | 
|  | uint32 mean, uint32 stddev, uint32 samples) { | 
|  | Function* f = new Function(); | 
|  |  | 
|  | if (0 == stddev) { | 
|  | f->push_back(Point(mean, 1.0)); | 
|  | } else { | 
|  | double start = 0; | 
|  | if (mean >= 4 * static_cast<double>(stddev)) | 
|  | start = mean - 4 * static_cast<double>(stddev); | 
|  | double end = mean + 4 * static_cast<double>(stddev); | 
|  |  | 
|  | for (uint32 i = 0; i < samples; i++) { | 
|  | double x = start + (end - start) * i / (samples - 1); | 
|  | double y = Normal(x, mean, stddev); | 
|  | f->push_back(Point(x, y)); | 
|  | } | 
|  | } | 
|  | return Resample(Invert(Accumulate(f)), 0, 1, samples); | 
|  | } | 
|  |  | 
|  | uint32 VirtualSocketServer::GetRandomTransitDelay() { | 
|  | size_t index = rand() % delay_dist_->size(); | 
|  | double delay = (*delay_dist_)[index].second; | 
|  | //LOG_F(LS_INFO) << "random[" << index << "] = " << delay; | 
|  | return static_cast<uint32>(delay); | 
|  | } | 
|  |  | 
|  | struct FunctionDomainCmp { | 
|  | bool operator()(const VirtualSocketServer::Point& p1, | 
|  | const VirtualSocketServer::Point& p2) { | 
|  | return p1.first < p2.first; | 
|  | } | 
|  | bool operator()(double v1, const VirtualSocketServer::Point& p2) { | 
|  | return v1 < p2.first; | 
|  | } | 
|  | bool operator()(const VirtualSocketServer::Point& p1, double v2) { | 
|  | return p1.first < v2; | 
|  | } | 
|  | }; | 
|  |  | 
|  | VirtualSocketServer::Function* VirtualSocketServer::Accumulate(Function* f) { | 
|  | ASSERT(f->size() >= 1); | 
|  | double v = 0; | 
|  | for (Function::size_type i = 0; i < f->size() - 1; ++i) { | 
|  | double dx = (*f)[i + 1].first - (*f)[i].first; | 
|  | double avgy = ((*f)[i + 1].second + (*f)[i].second) / 2; | 
|  | (*f)[i].second = v; | 
|  | v = v + dx * avgy; | 
|  | } | 
|  | (*f)[f->size()-1].second = v; | 
|  | return f; | 
|  | } | 
|  |  | 
|  | VirtualSocketServer::Function* VirtualSocketServer::Invert(Function* f) { | 
|  | for (Function::size_type i = 0; i < f->size(); ++i) | 
|  | std::swap((*f)[i].first, (*f)[i].second); | 
|  |  | 
|  | std::sort(f->begin(), f->end(), FunctionDomainCmp()); | 
|  | return f; | 
|  | } | 
|  |  | 
|  | VirtualSocketServer::Function* VirtualSocketServer::Resample( | 
|  | Function* f, double x1, double x2, uint32 samples) { | 
|  | Function* g = new Function(); | 
|  |  | 
|  | for (size_t i = 0; i < samples; i++) { | 
|  | double x = x1 + (x2 - x1) * i / (samples - 1); | 
|  | double y = Evaluate(f, x); | 
|  | g->push_back(Point(x, y)); | 
|  | } | 
|  |  | 
|  | delete f; | 
|  | return g; | 
|  | } | 
|  |  | 
|  | double VirtualSocketServer::Evaluate(Function* f, double x) { | 
|  | Function::iterator iter = | 
|  | std::lower_bound(f->begin(), f->end(), x, FunctionDomainCmp()); | 
|  | if (iter == f->begin()) { | 
|  | return (*f)[0].second; | 
|  | } else if (iter == f->end()) { | 
|  | ASSERT(f->size() >= 1); | 
|  | return (*f)[f->size() - 1].second; | 
|  | } else if (iter->first == x) { | 
|  | return iter->second; | 
|  | } else { | 
|  | double x1 = (iter - 1)->first; | 
|  | double y1 = (iter - 1)->second; | 
|  | double x2 = iter->first; | 
|  | double y2 = iter->second; | 
|  | return y1 + (y2 - y1) * (x - x1) / (x2 - x1); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool VirtualSocketServer::CanInteractWith(VirtualSocket* local, | 
|  | VirtualSocket* remote) { | 
|  | if (!local || !remote) { | 
|  | return false; | 
|  | } | 
|  | IPAddress local_ip = local->GetLocalAddress().ipaddr(); | 
|  | IPAddress remote_ip = remote->GetLocalAddress().ipaddr(); | 
|  | IPAddress local_normalized = local_ip.Normalized(); | 
|  | IPAddress remote_normalized = remote_ip.Normalized(); | 
|  | // Check if the addresses are the same family after Normalization (turns | 
|  | // mapped IPv6 address into IPv4 addresses). | 
|  | // This will stop unmapped V6 addresses from talking to mapped V6 addresses. | 
|  | if (local_normalized.family() == remote_normalized.family()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If ip1 is IPv4 and ip2 is :: and ip2 is not IPV6_V6ONLY. | 
|  | int remote_v6_only = 0; | 
|  | remote->GetOption(Socket::OPT_IPV6_V6ONLY, &remote_v6_only); | 
|  | if (local_ip.family() == AF_INET && !remote_v6_only && IPIsAny(remote_ip)) { | 
|  | return true; | 
|  | } | 
|  | // Same check, backwards. | 
|  | int local_v6_only = 0; | 
|  | local->GetOption(Socket::OPT_IPV6_V6ONLY, &local_v6_only); | 
|  | if (remote_ip.family() == AF_INET && !local_v6_only && IPIsAny(local_ip)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check to see if either socket was explicitly bound to IPv6-any. | 
|  | // These sockets can talk with anyone. | 
|  | if (local_ip.family() == AF_INET6 && local->was_any()) { | 
|  | return true; | 
|  | } | 
|  | if (remote_ip.family() == AF_INET6 && remote->was_any()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | }  // namespace rtc |