| /* |
| * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // |
| // Implements core class for intelligibility enhancer. |
| // |
| // Details of the model and algorithm can be found in the original paper: |
| // http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6882788 |
| // |
| |
| #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h" |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <algorithm> |
| #include <numeric> |
| |
| #include "webrtc/base/checks.h" |
| #include "webrtc/common_audio/include/audio_util.h" |
| #include "webrtc/common_audio/window_generator.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| const size_t kErbResolution = 2; |
| const int kWindowSizeMs = 2; |
| const int kChunkSizeMs = 10; // Size provided by APM. |
| const float kClipFreq = 200.0f; |
| const float kConfigRho = 0.02f; // Default production and interpretation SNR. |
| const float kKbdAlpha = 1.5f; |
| const float kLambdaBot = -1.0f; // Extreme values in bisection |
| const float kLambdaTop = -10e-18f; // search for lamda. |
| |
| } // namespace |
| |
| using std::complex; |
| using std::max; |
| using std::min; |
| using VarianceType = intelligibility::VarianceArray::StepType; |
| |
| IntelligibilityEnhancer::TransformCallback::TransformCallback( |
| IntelligibilityEnhancer* parent, |
| IntelligibilityEnhancer::AudioSource source) |
| : parent_(parent), source_(source) { |
| } |
| |
| void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock( |
| const complex<float>* const* in_block, |
| int in_channels, |
| size_t frames, |
| int /* out_channels */, |
| complex<float>* const* out_block) { |
| RTC_DCHECK_EQ(parent_->freqs_, frames); |
| for (int i = 0; i < in_channels; ++i) { |
| parent_->DispatchAudio(source_, in_block[i], out_block[i]); |
| } |
| } |
| |
| IntelligibilityEnhancer::IntelligibilityEnhancer() |
| : IntelligibilityEnhancer(IntelligibilityEnhancer::Config()) { |
| } |
| |
| IntelligibilityEnhancer::IntelligibilityEnhancer(const Config& config) |
| : freqs_(RealFourier::ComplexLength( |
| RealFourier::FftOrder(config.sample_rate_hz * kWindowSizeMs / 1000))), |
| window_size_(static_cast<size_t>(1 << RealFourier::FftOrder(freqs_))), |
| chunk_length_( |
| static_cast<size_t>(config.sample_rate_hz * kChunkSizeMs / 1000)), |
| bank_size_(GetBankSize(config.sample_rate_hz, kErbResolution)), |
| sample_rate_hz_(config.sample_rate_hz), |
| erb_resolution_(kErbResolution), |
| num_capture_channels_(config.num_capture_channels), |
| num_render_channels_(config.num_render_channels), |
| analysis_rate_(config.analysis_rate), |
| active_(true), |
| clear_variance_(freqs_, |
| config.var_type, |
| config.var_window_size, |
| config.var_decay_rate), |
| noise_variance_(freqs_, |
| config.var_type, |
| config.var_window_size, |
| config.var_decay_rate), |
| filtered_clear_var_(new float[bank_size_]), |
| filtered_noise_var_(new float[bank_size_]), |
| filter_bank_(bank_size_), |
| center_freqs_(new float[bank_size_]), |
| rho_(new float[bank_size_]), |
| gains_eq_(new float[bank_size_]), |
| gain_applier_(freqs_, config.gain_change_limit), |
| temp_render_out_buffer_(chunk_length_, num_render_channels_), |
| temp_capture_out_buffer_(chunk_length_, num_capture_channels_), |
| kbd_window_(new float[window_size_]), |
| render_callback_(this, AudioSource::kRenderStream), |
| capture_callback_(this, AudioSource::kCaptureStream), |
| block_count_(0), |
| analysis_step_(0) { |
| RTC_DCHECK_LE(config.rho, 1.0f); |
| |
| CreateErbBank(); |
| |
| // Assumes all rho equal. |
| for (size_t i = 0; i < bank_size_; ++i) { |
| rho_[i] = config.rho * config.rho; |
| } |
| |
| float freqs_khz = kClipFreq / 1000.0f; |
| size_t erb_index = static_cast<size_t>(ceilf( |
| 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f)); |
| start_freq_ = std::max(static_cast<size_t>(1), erb_index * erb_resolution_); |
| |
| WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_, |
| kbd_window_.get()); |
| render_mangler_.reset(new LappedTransform( |
| num_render_channels_, num_render_channels_, chunk_length_, |
| kbd_window_.get(), window_size_, window_size_ / 2, &render_callback_)); |
| capture_mangler_.reset(new LappedTransform( |
| num_capture_channels_, num_capture_channels_, chunk_length_, |
| kbd_window_.get(), window_size_, window_size_ / 2, &capture_callback_)); |
| } |
| |
| void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio, |
| int sample_rate_hz, |
| int num_channels) { |
| RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz); |
| RTC_CHECK_EQ(num_render_channels_, num_channels); |
| |
| if (active_) { |
| render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels()); |
| } |
| |
| if (active_) { |
| for (int i = 0; i < num_render_channels_; ++i) { |
| memcpy(audio[i], temp_render_out_buffer_.channels()[i], |
| chunk_length_ * sizeof(**audio)); |
| } |
| } |
| } |
| |
| void IntelligibilityEnhancer::AnalyzeCaptureAudio(float* const* audio, |
| int sample_rate_hz, |
| int num_channels) { |
| RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz); |
| RTC_CHECK_EQ(num_capture_channels_, num_channels); |
| |
| capture_mangler_->ProcessChunk(audio, temp_capture_out_buffer_.channels()); |
| } |
| |
| void IntelligibilityEnhancer::DispatchAudio( |
| IntelligibilityEnhancer::AudioSource source, |
| const complex<float>* in_block, |
| complex<float>* out_block) { |
| switch (source) { |
| case kRenderStream: |
| ProcessClearBlock(in_block, out_block); |
| break; |
| case kCaptureStream: |
| ProcessNoiseBlock(in_block, out_block); |
| break; |
| } |
| } |
| |
| void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block, |
| complex<float>* out_block) { |
| if (block_count_ < 2) { |
| memset(out_block, 0, freqs_ * sizeof(*out_block)); |
| ++block_count_; |
| return; |
| } |
| |
| // TODO(ekm): Use VAD to |Step| and |AnalyzeClearBlock| only if necessary. |
| if (true) { |
| clear_variance_.Step(in_block, false); |
| if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { |
| const float power_target = std::accumulate( |
| clear_variance_.variance(), clear_variance_.variance() + freqs_, 0.f); |
| AnalyzeClearBlock(power_target); |
| ++analysis_step_; |
| } |
| ++block_count_; |
| } |
| |
| if (active_) { |
| gain_applier_.Apply(in_block, out_block); |
| } |
| } |
| |
| void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) { |
| FilterVariance(clear_variance_.variance(), filtered_clear_var_.get()); |
| FilterVariance(noise_variance_.variance(), filtered_noise_var_.get()); |
| |
| SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); |
| const float power_top = |
| DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
| SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); |
| const float power_bot = |
| DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
| if (power_target >= power_bot && power_target <= power_top) { |
| SolveForLambda(power_target, power_bot, power_top); |
| UpdateErbGains(); |
| } // Else experiencing variance underflow, so do nothing. |
| } |
| |
| void IntelligibilityEnhancer::SolveForLambda(float power_target, |
| float power_bot, |
| float power_top) { |
| const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values |
| const int kMaxIters = 100; // for these, based on experiments. |
| |
| const float reciprocal_power_target = 1.f / power_target; |
| float lambda_bot = kLambdaBot; |
| float lambda_top = kLambdaTop; |
| float power_ratio = 2.0f; // Ratio of achieved power to target power. |
| int iters = 0; |
| while (std::fabs(power_ratio - 1.0f) > kConvergeThresh && |
| iters <= kMaxIters) { |
| const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; |
| SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); |
| const float power = |
| DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
| if (power < power_target) { |
| lambda_bot = lambda; |
| } else { |
| lambda_top = lambda; |
| } |
| power_ratio = std::fabs(power * reciprocal_power_target); |
| ++iters; |
| } |
| } |
| |
| void IntelligibilityEnhancer::UpdateErbGains() { |
| // (ERB gain) = filterbank' * (freq gain) |
| float* gains = gain_applier_.target(); |
| for (size_t i = 0; i < freqs_; ++i) { |
| gains[i] = 0.0f; |
| for (size_t j = 0; j < bank_size_; ++j) { |
| gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]); |
| } |
| } |
| } |
| |
| void IntelligibilityEnhancer::ProcessNoiseBlock(const complex<float>* in_block, |
| complex<float>* /*out_block*/) { |
| noise_variance_.Step(in_block); |
| } |
| |
| size_t IntelligibilityEnhancer::GetBankSize(int sample_rate, |
| size_t erb_resolution) { |
| float freq_limit = sample_rate / 2000.0f; |
| size_t erb_scale = static_cast<size_t>(ceilf( |
| 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f)); |
| return erb_scale * erb_resolution; |
| } |
| |
| void IntelligibilityEnhancer::CreateErbBank() { |
| size_t lf = 1, rf = 4; |
| |
| for (size_t i = 0; i < bank_size_; ++i) { |
| float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_)); |
| center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); |
| center_freqs_[i] -= 14678.49f; |
| } |
| float last_center_freq = center_freqs_[bank_size_ - 1]; |
| for (size_t i = 0; i < bank_size_; ++i) { |
| center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; |
| } |
| |
| for (size_t i = 0; i < bank_size_; ++i) { |
| filter_bank_[i].resize(freqs_); |
| } |
| |
| for (size_t i = 1; i <= bank_size_; ++i) { |
| size_t lll, ll, rr, rrr; |
| static const size_t kOne = 1; // Avoids repeated static_cast<>s below. |
| lll = static_cast<size_t>(round( |
| center_freqs_[max(kOne, i - lf) - 1] * freqs_ / |
| (0.5f * sample_rate_hz_))); |
| ll = static_cast<size_t>(round( |
| center_freqs_[max(kOne, i) - 1] * freqs_ / (0.5f * sample_rate_hz_))); |
| lll = min(freqs_, max(lll, kOne)) - 1; |
| ll = min(freqs_, max(ll, kOne)) - 1; |
| |
| rrr = static_cast<size_t>(round( |
| center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ / |
| (0.5f * sample_rate_hz_))); |
| rr = static_cast<size_t>(round( |
| center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ / |
| (0.5f * sample_rate_hz_))); |
| rrr = min(freqs_, max(rrr, kOne)) - 1; |
| rr = min(freqs_, max(rr, kOne)) - 1; |
| |
| float step, element; |
| |
| step = 1.0f / (ll - lll); |
| element = 0.0f; |
| for (size_t j = lll; j <= ll; ++j) { |
| filter_bank_[i - 1][j] = element; |
| element += step; |
| } |
| step = 1.0f / (rrr - rr); |
| element = 1.0f; |
| for (size_t j = rr; j <= rrr; ++j) { |
| filter_bank_[i - 1][j] = element; |
| element -= step; |
| } |
| for (size_t j = ll; j <= rr; ++j) { |
| filter_bank_[i - 1][j] = 1.0f; |
| } |
| } |
| |
| float sum; |
| for (size_t i = 0; i < freqs_; ++i) { |
| sum = 0.0f; |
| for (size_t j = 0; j < bank_size_; ++j) { |
| sum += filter_bank_[j][i]; |
| } |
| for (size_t j = 0; j < bank_size_; ++j) { |
| filter_bank_[j][i] /= sum; |
| } |
| } |
| } |
| |
| void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, |
| size_t start_freq, |
| float* sols) { |
| bool quadratic = (kConfigRho < 1.0f); |
| const float* var_x0 = filtered_clear_var_.get(); |
| const float* var_n0 = filtered_noise_var_.get(); |
| |
| for (size_t n = 0; n < start_freq; ++n) { |
| sols[n] = 1.0f; |
| } |
| |
| // Analytic solution for optimal gains. See paper for derivation. |
| for (size_t n = start_freq - 1; n < bank_size_; ++n) { |
| float alpha0, beta0, gamma0; |
| gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] + |
| lambda * var_x0[n] * var_n0[n] * var_n0[n]; |
| beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n]; |
| if (quadratic) { |
| alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n]; |
| sols[n] = |
| (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / (2 * alpha0); |
| } else { |
| sols[n] = -gamma0 / beta0; |
| } |
| sols[n] = fmax(0, sols[n]); |
| } |
| } |
| |
| void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) { |
| RTC_DCHECK_GT(freqs_, 0u); |
| for (size_t i = 0; i < bank_size_; ++i) { |
| result[i] = DotProduct(&filter_bank_[i][0], var, freqs_); |
| } |
| } |
| |
| float IntelligibilityEnhancer::DotProduct(const float* a, |
| const float* b, |
| size_t length) { |
| float ret = 0.0f; |
| |
| for (size_t i = 0; i < length; ++i) { |
| ret = fmaf(a[i], b[i], ret); |
| } |
| return ret; |
| } |
| |
| bool IntelligibilityEnhancer::active() const { |
| return active_; |
| } |
| |
| } // namespace webrtc |