| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <string> |
| |
| #include "webrtc/p2p/base/stun.h" |
| #include "webrtc/rtc_base/arraysize.h" |
| #include "webrtc/rtc_base/bytebuffer.h" |
| #include "webrtc/rtc_base/gunit.h" |
| #include "webrtc/rtc_base/logging.h" |
| #include "webrtc/rtc_base/messagedigest.h" |
| #include "webrtc/rtc_base/ptr_util.h" |
| #include "webrtc/rtc_base/socketaddress.h" |
| |
| namespace cricket { |
| |
| class StunTest : public ::testing::Test { |
| protected: |
| void CheckStunHeader(const StunMessage& msg, StunMessageType expected_type, |
| size_t expected_length) { |
| ASSERT_EQ(expected_type, msg.type()); |
| ASSERT_EQ(expected_length, msg.length()); |
| } |
| |
| void CheckStunTransactionID(const StunMessage& msg, |
| const unsigned char* expectedID, size_t length) { |
| ASSERT_EQ(length, msg.transaction_id().size()); |
| ASSERT_EQ(length == kStunTransactionIdLength + 4, msg.IsLegacy()); |
| ASSERT_EQ(length == kStunTransactionIdLength, !msg.IsLegacy()); |
| ASSERT_EQ(0, memcmp(msg.transaction_id().c_str(), expectedID, length)); |
| } |
| |
| void CheckStunAddressAttribute(const StunAddressAttribute* addr, |
| StunAddressFamily expected_family, |
| int expected_port, |
| rtc::IPAddress expected_address) { |
| ASSERT_EQ(expected_family, addr->family()); |
| ASSERT_EQ(expected_port, addr->port()); |
| |
| if (addr->family() == STUN_ADDRESS_IPV4) { |
| in_addr v4_address = expected_address.ipv4_address(); |
| in_addr stun_address = addr->ipaddr().ipv4_address(); |
| ASSERT_EQ(0, memcmp(&v4_address, &stun_address, sizeof(stun_address))); |
| } else if (addr->family() == STUN_ADDRESS_IPV6) { |
| in6_addr v6_address = expected_address.ipv6_address(); |
| in6_addr stun_address = addr->ipaddr().ipv6_address(); |
| ASSERT_EQ(0, memcmp(&v6_address, &stun_address, sizeof(stun_address))); |
| } else { |
| ASSERT_TRUE(addr->family() == STUN_ADDRESS_IPV6 || |
| addr->family() == STUN_ADDRESS_IPV4); |
| } |
| } |
| |
| size_t ReadStunMessageTestCase(StunMessage* msg, |
| const unsigned char* testcase, |
| size_t size) { |
| const char* input = reinterpret_cast<const char*>(testcase); |
| rtc::ByteBufferReader buf(input, size); |
| if (msg->Read(&buf)) { |
| // Returns the size the stun message should report itself as being |
| return (size - 20); |
| } else { |
| return 0; |
| } |
| } |
| }; |
| |
| |
| // Sample STUN packets with various attributes |
| // Gathered by wiresharking pjproject's pjnath test programs |
| // pjproject available at www.pjsip.org |
| |
| static const unsigned char kStunMessageWithIPv6MappedAddress[] = { |
| 0x00, 0x01, 0x00, 0x18, // message header |
| 0x21, 0x12, 0xa4, 0x42, // transaction id |
| 0x29, 0x1f, 0xcd, 0x7c, |
| 0xba, 0x58, 0xab, 0xd7, |
| 0xf2, 0x41, 0x01, 0x00, |
| 0x00, 0x01, 0x00, 0x14, // Address type (mapped), length |
| 0x00, 0x02, 0xb8, 0x81, // family (IPv6), port |
| 0x24, 0x01, 0xfa, 0x00, // an IPv6 address |
| 0x00, 0x04, 0x10, 0x00, |
| 0xbe, 0x30, 0x5b, 0xff, |
| 0xfe, 0xe5, 0x00, 0xc3 |
| }; |
| |
| static const unsigned char kStunMessageWithIPv4MappedAddress[] = { |
| 0x01, 0x01, 0x00, 0x0c, // binding response, length 12 |
| 0x21, 0x12, 0xa4, 0x42, // magic cookie |
| 0x29, 0x1f, 0xcd, 0x7c, // transaction ID |
| 0xba, 0x58, 0xab, 0xd7, |
| 0xf2, 0x41, 0x01, 0x00, |
| 0x00, 0x01, 0x00, 0x08, // Mapped, 8 byte length |
| 0x00, 0x01, 0x9d, 0xfc, // AF_INET, unxor-ed port |
| 0xac, 0x17, 0x44, 0xe6 // IPv4 address |
| }; |
| |
| // Test XOR-mapped IP addresses: |
| static const unsigned char kStunMessageWithIPv6XorMappedAddress[] = { |
| 0x01, 0x01, 0x00, 0x18, // message header (binding response) |
| 0x21, 0x12, 0xa4, 0x42, // magic cookie (rfc5389) |
| 0xe3, 0xa9, 0x46, 0xe1, // transaction ID |
| 0x7c, 0x00, 0xc2, 0x62, |
| 0x54, 0x08, 0x01, 0x00, |
| 0x00, 0x20, 0x00, 0x14, // Address Type (XOR), length |
| 0x00, 0x02, 0xcb, 0x5b, // family, XOR-ed port |
| 0x05, 0x13, 0x5e, 0x42, // XOR-ed IPv6 address |
| 0xe3, 0xad, 0x56, 0xe1, |
| 0xc2, 0x30, 0x99, 0x9d, |
| 0xaa, 0xed, 0x01, 0xc3 |
| }; |
| |
| static const unsigned char kStunMessageWithIPv4XorMappedAddress[] = { |
| 0x01, 0x01, 0x00, 0x0c, // message header (binding response) |
| 0x21, 0x12, 0xa4, 0x42, // magic cookie |
| 0x29, 0x1f, 0xcd, 0x7c, // transaction ID |
| 0xba, 0x58, 0xab, 0xd7, |
| 0xf2, 0x41, 0x01, 0x00, |
| 0x00, 0x20, 0x00, 0x08, // address type (xor), length |
| 0x00, 0x01, 0xfc, 0xb5, // family (AF_INET), XOR-ed port |
| 0x8d, 0x05, 0xe0, 0xa4 // IPv4 address |
| }; |
| |
| // ByteString Attribute (username) |
| static const unsigned char kStunMessageWithByteStringAttribute[] = { |
| 0x00, 0x01, 0x00, 0x0c, |
| 0x21, 0x12, 0xa4, 0x42, |
| 0xe3, 0xa9, 0x46, 0xe1, |
| 0x7c, 0x00, 0xc2, 0x62, |
| 0x54, 0x08, 0x01, 0x00, |
| 0x00, 0x06, 0x00, 0x08, // username attribute (length 8) |
| 0x61, 0x62, 0x63, 0x64, // abcdefgh |
| 0x65, 0x66, 0x67, 0x68 |
| }; |
| |
| // Message with an unknown but comprehensible optional attribute. |
| // Parsing should succeed despite this unknown attribute. |
| static const unsigned char kStunMessageWithUnknownAttribute[] = { |
| 0x00, 0x01, 0x00, 0x14, |
| 0x21, 0x12, 0xa4, 0x42, |
| 0xe3, 0xa9, 0x46, 0xe1, |
| 0x7c, 0x00, 0xc2, 0x62, |
| 0x54, 0x08, 0x01, 0x00, |
| 0x00, 0xaa, 0x00, 0x07, // Unknown attribute, length 7 (needs padding!) |
| 0x61, 0x62, 0x63, 0x64, // abcdefg + padding |
| 0x65, 0x66, 0x67, 0x00, |
| 0x00, 0x06, 0x00, 0x03, // Followed by a known attribute we can |
| 0x61, 0x62, 0x63, 0x00 // check for (username of length 3) |
| }; |
| |
| // ByteString Attribute (username) with padding byte |
| static const unsigned char kStunMessageWithPaddedByteStringAttribute[] = { |
| 0x00, 0x01, 0x00, 0x08, |
| 0x21, 0x12, 0xa4, 0x42, |
| 0xe3, 0xa9, 0x46, 0xe1, |
| 0x7c, 0x00, 0xc2, 0x62, |
| 0x54, 0x08, 0x01, 0x00, |
| 0x00, 0x06, 0x00, 0x03, // username attribute (length 3) |
| 0x61, 0x62, 0x63, 0xcc // abc |
| }; |
| |
| // Message with an Unknown Attributes (uint16_t list) attribute. |
| static const unsigned char kStunMessageWithUInt16ListAttribute[] = { |
| 0x00, 0x01, 0x00, 0x0c, |
| 0x21, 0x12, 0xa4, 0x42, |
| 0xe3, 0xa9, 0x46, 0xe1, |
| 0x7c, 0x00, 0xc2, 0x62, |
| 0x54, 0x08, 0x01, 0x00, |
| 0x00, 0x0a, 0x00, 0x06, // username attribute (length 6) |
| 0x00, 0x01, 0x10, 0x00, // three attributes plus padding |
| 0xAB, 0xCU, 0xBE, 0xEF |
| }; |
| |
| // Error response message (unauthorized) |
| static const unsigned char kStunMessageWithErrorAttribute[] = { |
| 0x01, 0x11, 0x00, 0x14, |
| 0x21, 0x12, 0xa4, 0x42, |
| 0x29, 0x1f, 0xcd, 0x7c, |
| 0xba, 0x58, 0xab, 0xd7, |
| 0xf2, 0x41, 0x01, 0x00, |
| 0x00, 0x09, 0x00, 0x10, |
| 0x00, 0x00, 0x04, 0x01, |
| 0x55, 0x6e, 0x61, 0x75, |
| 0x74, 0x68, 0x6f, 0x72, |
| 0x69, 0x7a, 0x65, 0x64 |
| }; |
| |
| static const unsigned char kStunMessageWithOriginAttribute[] = { |
| 0x00, 0x01, 0x00, 0x18, // message header (binding request), length 24 |
| 0x21, 0x12, 0xA4, 0x42, // magic cookie |
| 0x29, 0x1f, 0xcd, 0x7c, // transaction id |
| 0xba, 0x58, 0xab, 0xd7, |
| 0xf2, 0x41, 0x01, 0x00, |
| 0x80, 0x2f, 0x00, 0x12, // origin attribute (length 18) |
| 0x68, 0x74, 0x74, 0x70, // http://example.com |
| 0x3A, 0x2F, 0x2F, 0x65, |
| 0x78, 0x61, 0x6d, 0x70, |
| 0x6c, 0x65, 0x2e, 0x63, |
| 0x6f, 0x6d, 0x00, 0x00, |
| }; |
| |
| // Sample messages with an invalid length Field |
| |
| // The actual length in bytes of the invalid messages (including STUN header) |
| static const int kRealLengthOfInvalidLengthTestCases = 32; |
| |
| static const unsigned char kStunMessageWithZeroLength[] = { |
| 0x00, 0x01, 0x00, 0x00, // length of 0 (last 2 bytes) |
| 0x21, 0x12, 0xA4, 0x42, // magic cookie |
| '0', '1', '2', '3', // transaction id |
| '4', '5', '6', '7', |
| '8', '9', 'a', 'b', |
| 0x00, 0x20, 0x00, 0x08, // xor mapped address |
| 0x00, 0x01, 0x21, 0x1F, |
| 0x21, 0x12, 0xA4, 0x53, |
| }; |
| |
| static const unsigned char kStunMessageWithExcessLength[] = { |
| 0x00, 0x01, 0x00, 0x55, // length of 85 |
| 0x21, 0x12, 0xA4, 0x42, // magic cookie |
| '0', '1', '2', '3', // transaction id |
| '4', '5', '6', '7', |
| '8', '9', 'a', 'b', |
| 0x00, 0x20, 0x00, 0x08, // xor mapped address |
| 0x00, 0x01, 0x21, 0x1F, |
| 0x21, 0x12, 0xA4, 0x53, |
| }; |
| |
| static const unsigned char kStunMessageWithSmallLength[] = { |
| 0x00, 0x01, 0x00, 0x03, // length of 3 |
| 0x21, 0x12, 0xA4, 0x42, // magic cookie |
| '0', '1', '2', '3', // transaction id |
| '4', '5', '6', '7', |
| '8', '9', 'a', 'b', |
| 0x00, 0x20, 0x00, 0x08, // xor mapped address |
| 0x00, 0x01, 0x21, 0x1F, |
| 0x21, 0x12, 0xA4, 0x53, |
| }; |
| |
| static const unsigned char kStunMessageWithBadHmacAtEnd[] = { |
| 0x00, 0x01, 0x00, 0x14, // message length exactly 20 |
| 0x21, 0x12, 0xA4, 0x42, // magic cookie |
| '0', '1', '2', '3', // transaction ID |
| '4', '5', '6', '7', |
| '8', '9', 'a', 'b', |
| 0x00, 0x08, 0x00, 0x14, // type=STUN_ATTR_MESSAGE_INTEGRITY, length=20 |
| '0', '0', '0', '0', // We lied, there are only 16 bytes of HMAC. |
| '0', '0', '0', '0', |
| '0', '0', '0', '0', |
| '0', '0', '0', '0', |
| }; |
| |
| // RTCP packet, for testing we correctly ignore non stun packet types. |
| // V=2, P=false, RC=0, Type=200, Len=6, Sender-SSRC=85, etc |
| static const unsigned char kRtcpPacket[] = { |
| 0x80, 0xc8, 0x00, 0x06, 0x00, 0x00, 0x00, 0x55, |
| 0xce, 0xa5, 0x18, 0x3a, 0x39, 0xcc, 0x7d, 0x09, |
| 0x23, 0xed, 0x19, 0x07, 0x00, 0x00, 0x01, 0x56, |
| 0x00, 0x03, 0x73, 0x50, |
| }; |
| |
| // RFC5769 Test Vectors |
| // Software name (request): "STUN test client" (without quotes) |
| // Software name (response): "test vector" (without quotes) |
| // Username: "evtj:h6vY" (without quotes) |
| // Password: "VOkJxbRl1RmTxUk/WvJxBt" (without quotes) |
| static const unsigned char kRfc5769SampleMsgTransactionId[] = { |
| 0xb7, 0xe7, 0xa7, 0x01, 0xbc, 0x34, 0xd6, 0x86, 0xfa, 0x87, 0xdf, 0xae |
| }; |
| static const char kRfc5769SampleMsgClientSoftware[] = "STUN test client"; |
| static const char kRfc5769SampleMsgServerSoftware[] = "test vector"; |
| static const char kRfc5769SampleMsgUsername[] = "evtj:h6vY"; |
| static const char kRfc5769SampleMsgPassword[] = "VOkJxbRl1RmTxUk/WvJxBt"; |
| static const rtc::SocketAddress kRfc5769SampleMsgMappedAddress( |
| "192.0.2.1", 32853); |
| static const rtc::SocketAddress kRfc5769SampleMsgIPv6MappedAddress( |
| "2001:db8:1234:5678:11:2233:4455:6677", 32853); |
| |
| static const unsigned char kRfc5769SampleMsgWithAuthTransactionId[] = { |
| 0x78, 0xad, 0x34, 0x33, 0xc6, 0xad, 0x72, 0xc0, 0x29, 0xda, 0x41, 0x2e |
| }; |
| static const char kRfc5769SampleMsgWithAuthUsername[] = |
| "\xe3\x83\x9e\xe3\x83\x88\xe3\x83\xaa\xe3\x83\x83\xe3\x82\xaf\xe3\x82\xb9"; |
| static const char kRfc5769SampleMsgWithAuthPassword[] = "TheMatrIX"; |
| static const char kRfc5769SampleMsgWithAuthNonce[] = |
| "f//499k954d6OL34oL9FSTvy64sA"; |
| static const char kRfc5769SampleMsgWithAuthRealm[] = "example.org"; |
| |
| // 2.1. Sample Request |
| static const unsigned char kRfc5769SampleRequest[] = { |
| 0x00, 0x01, 0x00, 0x58, // Request type and message length |
| 0x21, 0x12, 0xa4, 0x42, // Magic cookie |
| 0xb7, 0xe7, 0xa7, 0x01, // } |
| 0xbc, 0x34, 0xd6, 0x86, // } Transaction ID |
| 0xfa, 0x87, 0xdf, 0xae, // } |
| 0x80, 0x22, 0x00, 0x10, // SOFTWARE attribute header |
| 0x53, 0x54, 0x55, 0x4e, // } |
| 0x20, 0x74, 0x65, 0x73, // } User-agent... |
| 0x74, 0x20, 0x63, 0x6c, // } ...name |
| 0x69, 0x65, 0x6e, 0x74, // } |
| 0x00, 0x24, 0x00, 0x04, // PRIORITY attribute header |
| 0x6e, 0x00, 0x01, 0xff, // ICE priority value |
| 0x80, 0x29, 0x00, 0x08, // ICE-CONTROLLED attribute header |
| 0x93, 0x2f, 0xf9, 0xb1, // } Pseudo-random tie breaker... |
| 0x51, 0x26, 0x3b, 0x36, // } ...for ICE control |
| 0x00, 0x06, 0x00, 0x09, // USERNAME attribute header |
| 0x65, 0x76, 0x74, 0x6a, // } |
| 0x3a, 0x68, 0x36, 0x76, // } Username (9 bytes) and padding (3 bytes) |
| 0x59, 0x20, 0x20, 0x20, // } |
| 0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header |
| 0x9a, 0xea, 0xa7, 0x0c, // } |
| 0xbf, 0xd8, 0xcb, 0x56, // } |
| 0x78, 0x1e, 0xf2, 0xb5, // } HMAC-SHA1 fingerprint |
| 0xb2, 0xd3, 0xf2, 0x49, // } |
| 0xc1, 0xb5, 0x71, 0xa2, // } |
| 0x80, 0x28, 0x00, 0x04, // FINGERPRINT attribute header |
| 0xe5, 0x7a, 0x3b, 0xcf // CRC32 fingerprint |
| }; |
| |
| // 2.2. Sample IPv4 Response |
| static const unsigned char kRfc5769SampleResponse[] = { |
| 0x01, 0x01, 0x00, 0x3c, // Response type and message length |
| 0x21, 0x12, 0xa4, 0x42, // Magic cookie |
| 0xb7, 0xe7, 0xa7, 0x01, // } |
| 0xbc, 0x34, 0xd6, 0x86, // } Transaction ID |
| 0xfa, 0x87, 0xdf, 0xae, // } |
| 0x80, 0x22, 0x00, 0x0b, // SOFTWARE attribute header |
| 0x74, 0x65, 0x73, 0x74, // } |
| 0x20, 0x76, 0x65, 0x63, // } UTF-8 server name |
| 0x74, 0x6f, 0x72, 0x20, // } |
| 0x00, 0x20, 0x00, 0x08, // XOR-MAPPED-ADDRESS attribute header |
| 0x00, 0x01, 0xa1, 0x47, // Address family (IPv4) and xor'd mapped port |
| 0xe1, 0x12, 0xa6, 0x43, // Xor'd mapped IPv4 address |
| 0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header |
| 0x2b, 0x91, 0xf5, 0x99, // } |
| 0xfd, 0x9e, 0x90, 0xc3, // } |
| 0x8c, 0x74, 0x89, 0xf9, // } HMAC-SHA1 fingerprint |
| 0x2a, 0xf9, 0xba, 0x53, // } |
| 0xf0, 0x6b, 0xe7, 0xd7, // } |
| 0x80, 0x28, 0x00, 0x04, // FINGERPRINT attribute header |
| 0xc0, 0x7d, 0x4c, 0x96 // CRC32 fingerprint |
| }; |
| |
| // 2.3. Sample IPv6 Response |
| static const unsigned char kRfc5769SampleResponseIPv6[] = { |
| 0x01, 0x01, 0x00, 0x48, // Response type and message length |
| 0x21, 0x12, 0xa4, 0x42, // Magic cookie |
| 0xb7, 0xe7, 0xa7, 0x01, // } |
| 0xbc, 0x34, 0xd6, 0x86, // } Transaction ID |
| 0xfa, 0x87, 0xdf, 0xae, // } |
| 0x80, 0x22, 0x00, 0x0b, // SOFTWARE attribute header |
| 0x74, 0x65, 0x73, 0x74, // } |
| 0x20, 0x76, 0x65, 0x63, // } UTF-8 server name |
| 0x74, 0x6f, 0x72, 0x20, // } |
| 0x00, 0x20, 0x00, 0x14, // XOR-MAPPED-ADDRESS attribute header |
| 0x00, 0x02, 0xa1, 0x47, // Address family (IPv6) and xor'd mapped port. |
| 0x01, 0x13, 0xa9, 0xfa, // } |
| 0xa5, 0xd3, 0xf1, 0x79, // } Xor'd mapped IPv6 address |
| 0xbc, 0x25, 0xf4, 0xb5, // } |
| 0xbe, 0xd2, 0xb9, 0xd9, // } |
| 0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header |
| 0xa3, 0x82, 0x95, 0x4e, // } |
| 0x4b, 0xe6, 0x7b, 0xf1, // } |
| 0x17, 0x84, 0xc9, 0x7c, // } HMAC-SHA1 fingerprint |
| 0x82, 0x92, 0xc2, 0x75, // } |
| 0xbf, 0xe3, 0xed, 0x41, // } |
| 0x80, 0x28, 0x00, 0x04, // FINGERPRINT attribute header |
| 0xc8, 0xfb, 0x0b, 0x4c // CRC32 fingerprint |
| }; |
| |
| // 2.4. Sample Request with Long-Term Authentication |
| static const unsigned char kRfc5769SampleRequestLongTermAuth[] = { |
| 0x00, 0x01, 0x00, 0x60, // Request type and message length |
| 0x21, 0x12, 0xa4, 0x42, // Magic cookie |
| 0x78, 0xad, 0x34, 0x33, // } |
| 0xc6, 0xad, 0x72, 0xc0, // } Transaction ID |
| 0x29, 0xda, 0x41, 0x2e, // } |
| 0x00, 0x06, 0x00, 0x12, // USERNAME attribute header |
| 0xe3, 0x83, 0x9e, 0xe3, // } |
| 0x83, 0x88, 0xe3, 0x83, // } |
| 0xaa, 0xe3, 0x83, 0x83, // } Username value (18 bytes) and padding (2 bytes) |
| 0xe3, 0x82, 0xaf, 0xe3, // } |
| 0x82, 0xb9, 0x00, 0x00, // } |
| 0x00, 0x15, 0x00, 0x1c, // NONCE attribute header |
| 0x66, 0x2f, 0x2f, 0x34, // } |
| 0x39, 0x39, 0x6b, 0x39, // } |
| 0x35, 0x34, 0x64, 0x36, // } |
| 0x4f, 0x4c, 0x33, 0x34, // } Nonce value |
| 0x6f, 0x4c, 0x39, 0x46, // } |
| 0x53, 0x54, 0x76, 0x79, // } |
| 0x36, 0x34, 0x73, 0x41, // } |
| 0x00, 0x14, 0x00, 0x0b, // REALM attribute header |
| 0x65, 0x78, 0x61, 0x6d, // } |
| 0x70, 0x6c, 0x65, 0x2e, // } Realm value (11 bytes) and padding (1 byte) |
| 0x6f, 0x72, 0x67, 0x00, // } |
| 0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header |
| 0xf6, 0x70, 0x24, 0x65, // } |
| 0x6d, 0xd6, 0x4a, 0x3e, // } |
| 0x02, 0xb8, 0xe0, 0x71, // } HMAC-SHA1 fingerprint |
| 0x2e, 0x85, 0xc9, 0xa2, // } |
| 0x8c, 0xa8, 0x96, 0x66 // } |
| }; |
| |
| // Length parameter is changed to 0x38 from 0x58. |
| // AddMessageIntegrity will add MI information and update the length param |
| // accordingly. |
| static const unsigned char kRfc5769SampleRequestWithoutMI[] = { |
| 0x00, 0x01, 0x00, 0x38, // Request type and message length |
| 0x21, 0x12, 0xa4, 0x42, // Magic cookie |
| 0xb7, 0xe7, 0xa7, 0x01, // } |
| 0xbc, 0x34, 0xd6, 0x86, // } Transaction ID |
| 0xfa, 0x87, 0xdf, 0xae, // } |
| 0x80, 0x22, 0x00, 0x10, // SOFTWARE attribute header |
| 0x53, 0x54, 0x55, 0x4e, // } |
| 0x20, 0x74, 0x65, 0x73, // } User-agent... |
| 0x74, 0x20, 0x63, 0x6c, // } ...name |
| 0x69, 0x65, 0x6e, 0x74, // } |
| 0x00, 0x24, 0x00, 0x04, // PRIORITY attribute header |
| 0x6e, 0x00, 0x01, 0xff, // ICE priority value |
| 0x80, 0x29, 0x00, 0x08, // ICE-CONTROLLED attribute header |
| 0x93, 0x2f, 0xf9, 0xb1, // } Pseudo-random tie breaker... |
| 0x51, 0x26, 0x3b, 0x36, // } ...for ICE control |
| 0x00, 0x06, 0x00, 0x09, // USERNAME attribute header |
| 0x65, 0x76, 0x74, 0x6a, // } |
| 0x3a, 0x68, 0x36, 0x76, // } Username (9 bytes) and padding (3 bytes) |
| 0x59, 0x20, 0x20, 0x20 // } |
| }; |
| |
| // This HMAC differs from the RFC 5769 SampleRequest message. This differs |
| // because spec uses 0x20 for the padding where as our implementation uses 0. |
| static const unsigned char kCalculatedHmac1[] = { |
| 0x79, 0x07, 0xc2, 0xd2, // } |
| 0xed, 0xbf, 0xea, 0x48, // } |
| 0x0e, 0x4c, 0x76, 0xd8, // } HMAC-SHA1 fingerprint |
| 0x29, 0x62, 0xd5, 0xc3, // } |
| 0x74, 0x2a, 0xf9, 0xe3 // } |
| }; |
| |
| // Length parameter is changed to 0x1c from 0x3c. |
| // AddMessageIntegrity will add MI information and update the length param |
| // accordingly. |
| static const unsigned char kRfc5769SampleResponseWithoutMI[] = { |
| 0x01, 0x01, 0x00, 0x1c, // Response type and message length |
| 0x21, 0x12, 0xa4, 0x42, // Magic cookie |
| 0xb7, 0xe7, 0xa7, 0x01, // } |
| 0xbc, 0x34, 0xd6, 0x86, // } Transaction ID |
| 0xfa, 0x87, 0xdf, 0xae, // } |
| 0x80, 0x22, 0x00, 0x0b, // SOFTWARE attribute header |
| 0x74, 0x65, 0x73, 0x74, // } |
| 0x20, 0x76, 0x65, 0x63, // } UTF-8 server name |
| 0x74, 0x6f, 0x72, 0x20, // } |
| 0x00, 0x20, 0x00, 0x08, // XOR-MAPPED-ADDRESS attribute header |
| 0x00, 0x01, 0xa1, 0x47, // Address family (IPv4) and xor'd mapped port |
| 0xe1, 0x12, 0xa6, 0x43 // Xor'd mapped IPv4 address |
| }; |
| |
| // This HMAC differs from the RFC 5769 SampleResponse message. This differs |
| // because spec uses 0x20 for the padding where as our implementation uses 0. |
| static const unsigned char kCalculatedHmac2[] = { |
| 0x5d, 0x6b, 0x58, 0xbe, // } |
| 0xad, 0x94, 0xe0, 0x7e, // } |
| 0xef, 0x0d, 0xfc, 0x12, // } HMAC-SHA1 fingerprint |
| 0x82, 0xa2, 0xbd, 0x08, // } |
| 0x43, 0x14, 0x10, 0x28 // } |
| }; |
| |
| // A transaction ID without the 'magic cookie' portion |
| // pjnat's test programs use this transaction ID a lot. |
| const unsigned char kTestTransactionId1[] = { 0x029, 0x01f, 0x0cd, 0x07c, |
| 0x0ba, 0x058, 0x0ab, 0x0d7, |
| 0x0f2, 0x041, 0x001, 0x000 }; |
| |
| // They use this one sometimes too. |
| const unsigned char kTestTransactionId2[] = { 0x0e3, 0x0a9, 0x046, 0x0e1, |
| 0x07c, 0x000, 0x0c2, 0x062, |
| 0x054, 0x008, 0x001, 0x000 }; |
| |
| const in6_addr kIPv6TestAddress1 = { { { 0x24, 0x01, 0xfa, 0x00, |
| 0x00, 0x04, 0x10, 0x00, |
| 0xbe, 0x30, 0x5b, 0xff, |
| 0xfe, 0xe5, 0x00, 0xc3 } } }; |
| const in6_addr kIPv6TestAddress2 = { { { 0x24, 0x01, 0xfa, 0x00, |
| 0x00, 0x04, 0x10, 0x12, |
| 0x06, 0x0c, 0xce, 0xff, |
| 0xfe, 0x1f, 0x61, 0xa4 } } }; |
| |
| #ifdef WEBRTC_POSIX |
| const in_addr kIPv4TestAddress1 = { 0xe64417ac }; |
| #elif defined WEBRTC_WIN |
| // Windows in_addr has a union with a uchar[] array first. |
| const in_addr kIPv4TestAddress1 = { { { 0x0ac, 0x017, 0x044, 0x0e6 } } }; |
| #endif |
| const char kTestUserName1[] = "abcdefgh"; |
| const char kTestUserName2[] = "abc"; |
| const char kTestErrorReason[] = "Unauthorized"; |
| const char kTestOrigin[] = "http://example.com"; |
| const int kTestErrorClass = 4; |
| const int kTestErrorNumber = 1; |
| const int kTestErrorCode = 401; |
| |
| const int kTestMessagePort1 = 59977; |
| const int kTestMessagePort2 = 47233; |
| const int kTestMessagePort3 = 56743; |
| const int kTestMessagePort4 = 40444; |
| |
| #define ReadStunMessage(X, Y) ReadStunMessageTestCase(X, Y, sizeof(Y)); |
| |
| // Test that the GetStun*Type and IsStun*Type methods work as expected. |
| TEST_F(StunTest, MessageTypes) { |
| EXPECT_EQ(STUN_BINDING_RESPONSE, |
| GetStunSuccessResponseType(STUN_BINDING_REQUEST)); |
| EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, |
| GetStunErrorResponseType(STUN_BINDING_REQUEST)); |
| EXPECT_EQ(-1, GetStunSuccessResponseType(STUN_BINDING_INDICATION)); |
| EXPECT_EQ(-1, GetStunSuccessResponseType(STUN_BINDING_RESPONSE)); |
| EXPECT_EQ(-1, GetStunSuccessResponseType(STUN_BINDING_ERROR_RESPONSE)); |
| EXPECT_EQ(-1, GetStunErrorResponseType(STUN_BINDING_INDICATION)); |
| EXPECT_EQ(-1, GetStunErrorResponseType(STUN_BINDING_RESPONSE)); |
| EXPECT_EQ(-1, GetStunErrorResponseType(STUN_BINDING_ERROR_RESPONSE)); |
| |
| int types[] = { |
| STUN_BINDING_REQUEST, STUN_BINDING_INDICATION, |
| STUN_BINDING_RESPONSE, STUN_BINDING_ERROR_RESPONSE |
| }; |
| for (size_t i = 0; i < arraysize(types); ++i) { |
| EXPECT_EQ(i == 0U, IsStunRequestType(types[i])); |
| EXPECT_EQ(i == 1U, IsStunIndicationType(types[i])); |
| EXPECT_EQ(i == 2U, IsStunSuccessResponseType(types[i])); |
| EXPECT_EQ(i == 3U, IsStunErrorResponseType(types[i])); |
| EXPECT_EQ(1, types[i] & 0xFEEF); |
| } |
| } |
| |
| TEST_F(StunTest, ReadMessageWithIPv4AddressAttribute) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, kStunMessageWithIPv4MappedAddress); |
| CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); |
| CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); |
| |
| const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS); |
| rtc::IPAddress test_address(kIPv4TestAddress1); |
| CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4, |
| kTestMessagePort4, test_address); |
| } |
| |
| TEST_F(StunTest, ReadMessageWithIPv4XorAddressAttribute) { |
| StunMessage msg; |
| StunMessage msg2; |
| size_t size = ReadStunMessage(&msg, kStunMessageWithIPv4XorMappedAddress); |
| CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); |
| CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); |
| |
| const StunAddressAttribute* addr = |
| msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); |
| rtc::IPAddress test_address(kIPv4TestAddress1); |
| CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4, |
| kTestMessagePort3, test_address); |
| } |
| |
| TEST_F(StunTest, ReadMessageWithIPv6AddressAttribute) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6MappedAddress); |
| CheckStunHeader(msg, STUN_BINDING_REQUEST, size); |
| CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); |
| |
| rtc::IPAddress test_address(kIPv6TestAddress1); |
| |
| const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS); |
| CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6, |
| kTestMessagePort2, test_address); |
| } |
| |
| TEST_F(StunTest, ReadMessageWithInvalidAddressAttribute) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6MappedAddress); |
| CheckStunHeader(msg, STUN_BINDING_REQUEST, size); |
| CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); |
| |
| rtc::IPAddress test_address(kIPv6TestAddress1); |
| |
| const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS); |
| CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6, |
| kTestMessagePort2, test_address); |
| } |
| |
| TEST_F(StunTest, ReadMessageWithIPv6XorAddressAttribute) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6XorMappedAddress); |
| |
| rtc::IPAddress test_address(kIPv6TestAddress1); |
| |
| CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); |
| CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength); |
| |
| const StunAddressAttribute* addr = |
| msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); |
| CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6, |
| kTestMessagePort1, test_address); |
| } |
| |
| // Read the RFC5389 fields from the RFC5769 sample STUN request. |
| TEST_F(StunTest, ReadRfc5769RequestMessage) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, kRfc5769SampleRequest); |
| CheckStunHeader(msg, STUN_BINDING_REQUEST, size); |
| CheckStunTransactionID(msg, kRfc5769SampleMsgTransactionId, |
| kStunTransactionIdLength); |
| |
| const StunByteStringAttribute* software = |
| msg.GetByteString(STUN_ATTR_SOFTWARE); |
| ASSERT_TRUE(software != NULL); |
| EXPECT_EQ(kRfc5769SampleMsgClientSoftware, software->GetString()); |
| |
| const StunByteStringAttribute* username = |
| msg.GetByteString(STUN_ATTR_USERNAME); |
| ASSERT_TRUE(username != NULL); |
| EXPECT_EQ(kRfc5769SampleMsgUsername, username->GetString()); |
| |
| // Actual M-I value checked in a later test. |
| ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); |
| |
| // Fingerprint checked in a later test, but double-check the value here. |
| const StunUInt32Attribute* fingerprint = |
| msg.GetUInt32(STUN_ATTR_FINGERPRINT); |
| ASSERT_TRUE(fingerprint != NULL); |
| EXPECT_EQ(0xe57a3bcf, fingerprint->value()); |
| } |
| |
| // Read the RFC5389 fields from the RFC5769 sample STUN response. |
| TEST_F(StunTest, ReadRfc5769ResponseMessage) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, kRfc5769SampleResponse); |
| CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); |
| CheckStunTransactionID(msg, kRfc5769SampleMsgTransactionId, |
| kStunTransactionIdLength); |
| |
| const StunByteStringAttribute* software = |
| msg.GetByteString(STUN_ATTR_SOFTWARE); |
| ASSERT_TRUE(software != NULL); |
| EXPECT_EQ(kRfc5769SampleMsgServerSoftware, software->GetString()); |
| |
| const StunAddressAttribute* mapped_address = |
| msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); |
| ASSERT_TRUE(mapped_address != NULL); |
| EXPECT_EQ(kRfc5769SampleMsgMappedAddress, mapped_address->GetAddress()); |
| |
| // Actual M-I and fingerprint checked in later tests. |
| ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); |
| ASSERT_TRUE(msg.GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); |
| } |
| |
| // Read the RFC5389 fields from the RFC5769 sample STUN response for IPv6. |
| TEST_F(StunTest, ReadRfc5769ResponseMessageIPv6) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, kRfc5769SampleResponseIPv6); |
| CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); |
| CheckStunTransactionID(msg, kRfc5769SampleMsgTransactionId, |
| kStunTransactionIdLength); |
| |
| const StunByteStringAttribute* software = |
| msg.GetByteString(STUN_ATTR_SOFTWARE); |
| ASSERT_TRUE(software != NULL); |
| EXPECT_EQ(kRfc5769SampleMsgServerSoftware, software->GetString()); |
| |
| const StunAddressAttribute* mapped_address = |
| msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); |
| ASSERT_TRUE(mapped_address != NULL); |
| EXPECT_EQ(kRfc5769SampleMsgIPv6MappedAddress, mapped_address->GetAddress()); |
| |
| // Actual M-I and fingerprint checked in later tests. |
| ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); |
| ASSERT_TRUE(msg.GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); |
| } |
| |
| // Read the RFC5389 fields from the RFC5769 sample STUN response with auth. |
| TEST_F(StunTest, ReadRfc5769RequestMessageLongTermAuth) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, kRfc5769SampleRequestLongTermAuth); |
| CheckStunHeader(msg, STUN_BINDING_REQUEST, size); |
| CheckStunTransactionID(msg, kRfc5769SampleMsgWithAuthTransactionId, |
| kStunTransactionIdLength); |
| |
| const StunByteStringAttribute* username = |
| msg.GetByteString(STUN_ATTR_USERNAME); |
| ASSERT_TRUE(username != NULL); |
| EXPECT_EQ(kRfc5769SampleMsgWithAuthUsername, username->GetString()); |
| |
| const StunByteStringAttribute* nonce = |
| msg.GetByteString(STUN_ATTR_NONCE); |
| ASSERT_TRUE(nonce != NULL); |
| EXPECT_EQ(kRfc5769SampleMsgWithAuthNonce, nonce->GetString()); |
| |
| const StunByteStringAttribute* realm = |
| msg.GetByteString(STUN_ATTR_REALM); |
| ASSERT_TRUE(realm != NULL); |
| EXPECT_EQ(kRfc5769SampleMsgWithAuthRealm, realm->GetString()); |
| |
| // No fingerprint, actual M-I checked in later tests. |
| ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); |
| ASSERT_TRUE(msg.GetUInt32(STUN_ATTR_FINGERPRINT) == NULL); |
| } |
| |
| // The RFC3489 packet in this test is the same as |
| // kStunMessageWithIPv4MappedAddress, but with a different value where the |
| // magic cookie was. |
| TEST_F(StunTest, ReadLegacyMessage) { |
| unsigned char rfc3489_packet[sizeof(kStunMessageWithIPv4MappedAddress)]; |
| memcpy(rfc3489_packet, kStunMessageWithIPv4MappedAddress, |
| sizeof(kStunMessageWithIPv4MappedAddress)); |
| // Overwrite the magic cookie here. |
| memcpy(&rfc3489_packet[4], "ABCD", 4); |
| |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, rfc3489_packet); |
| CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); |
| CheckStunTransactionID(msg, &rfc3489_packet[4], kStunTransactionIdLength + 4); |
| |
| const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS); |
| rtc::IPAddress test_address(kIPv4TestAddress1); |
| CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4, |
| kTestMessagePort4, test_address); |
| } |
| |
| TEST_F(StunTest, SetIPv6XorAddressAttributeOwner) { |
| StunMessage msg; |
| StunMessage msg2; |
| size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6XorMappedAddress); |
| |
| rtc::IPAddress test_address(kIPv6TestAddress1); |
| |
| CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); |
| CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength); |
| |
| const StunAddressAttribute* addr = |
| msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); |
| CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6, |
| kTestMessagePort1, test_address); |
| |
| // Owner with a different transaction ID. |
| msg2.SetTransactionID("ABCDABCDABCD"); |
| StunXorAddressAttribute addr2(STUN_ATTR_XOR_MAPPED_ADDRESS, 20, NULL); |
| addr2.SetIP(addr->ipaddr()); |
| addr2.SetPort(addr->port()); |
| addr2.SetOwner(&msg2); |
| // The internal IP address shouldn't change. |
| ASSERT_EQ(addr2.ipaddr(), addr->ipaddr()); |
| |
| rtc::ByteBufferWriter correct_buf; |
| rtc::ByteBufferWriter wrong_buf; |
| EXPECT_TRUE(addr->Write(&correct_buf)); |
| EXPECT_TRUE(addr2.Write(&wrong_buf)); |
| // But when written out, the buffers should look different. |
| ASSERT_NE(0, |
| memcmp(correct_buf.Data(), wrong_buf.Data(), wrong_buf.Length())); |
| // And when reading a known good value, the address should be wrong. |
| rtc::ByteBufferReader read_buf(correct_buf); |
| addr2.Read(&read_buf); |
| ASSERT_NE(addr->ipaddr(), addr2.ipaddr()); |
| addr2.SetIP(addr->ipaddr()); |
| addr2.SetPort(addr->port()); |
| // Try writing with no owner at all, should fail and write nothing. |
| addr2.SetOwner(NULL); |
| ASSERT_EQ(addr2.ipaddr(), addr->ipaddr()); |
| wrong_buf.Clear(); |
| EXPECT_FALSE(addr2.Write(&wrong_buf)); |
| ASSERT_EQ(0U, wrong_buf.Length()); |
| } |
| |
| TEST_F(StunTest, SetIPv4XorAddressAttributeOwner) { |
| // Unlike the IPv6XorAddressAttributeOwner test, IPv4 XOR address attributes |
| // should _not_ be affected by a change in owner. IPv4 XOR address uses the |
| // magic cookie value which is fixed. |
| StunMessage msg; |
| StunMessage msg2; |
| size_t size = ReadStunMessage(&msg, kStunMessageWithIPv4XorMappedAddress); |
| |
| rtc::IPAddress test_address(kIPv4TestAddress1); |
| |
| CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); |
| CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); |
| |
| const StunAddressAttribute* addr = |
| msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); |
| CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4, |
| kTestMessagePort3, test_address); |
| |
| // Owner with a different transaction ID. |
| msg2.SetTransactionID("ABCDABCDABCD"); |
| StunXorAddressAttribute addr2(STUN_ATTR_XOR_MAPPED_ADDRESS, 20, NULL); |
| addr2.SetIP(addr->ipaddr()); |
| addr2.SetPort(addr->port()); |
| addr2.SetOwner(&msg2); |
| // The internal IP address shouldn't change. |
| ASSERT_EQ(addr2.ipaddr(), addr->ipaddr()); |
| |
| rtc::ByteBufferWriter correct_buf; |
| rtc::ByteBufferWriter wrong_buf; |
| EXPECT_TRUE(addr->Write(&correct_buf)); |
| EXPECT_TRUE(addr2.Write(&wrong_buf)); |
| // The same address data should be written. |
| ASSERT_EQ(0, |
| memcmp(correct_buf.Data(), wrong_buf.Data(), wrong_buf.Length())); |
| // And an attribute should be able to un-XOR an address belonging to a message |
| // with a different transaction ID. |
| rtc::ByteBufferReader read_buf(correct_buf); |
| EXPECT_TRUE(addr2.Read(&read_buf)); |
| ASSERT_EQ(addr->ipaddr(), addr2.ipaddr()); |
| |
| // However, no owner is still an error, should fail and write nothing. |
| addr2.SetOwner(NULL); |
| ASSERT_EQ(addr2.ipaddr(), addr->ipaddr()); |
| wrong_buf.Clear(); |
| EXPECT_FALSE(addr2.Write(&wrong_buf)); |
| } |
| |
| TEST_F(StunTest, CreateIPv6AddressAttribute) { |
| rtc::IPAddress test_ip(kIPv6TestAddress2); |
| |
| auto addr = StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS); |
| rtc::SocketAddress test_addr(test_ip, kTestMessagePort2); |
| addr->SetAddress(test_addr); |
| |
| CheckStunAddressAttribute(addr.get(), STUN_ADDRESS_IPV6, kTestMessagePort2, |
| test_ip); |
| } |
| |
| TEST_F(StunTest, CreateIPv4AddressAttribute) { |
| struct in_addr test_in_addr; |
| test_in_addr.s_addr = 0xBEB0B0BE; |
| rtc::IPAddress test_ip(test_in_addr); |
| |
| auto addr = StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS); |
| rtc::SocketAddress test_addr(test_ip, kTestMessagePort2); |
| addr->SetAddress(test_addr); |
| |
| CheckStunAddressAttribute(addr.get(), STUN_ADDRESS_IPV4, kTestMessagePort2, |
| test_ip); |
| } |
| |
| // Test that we don't care what order we set the parts of an address |
| TEST_F(StunTest, CreateAddressInArbitraryOrder) { |
| auto addr = StunAttribute::CreateAddress(STUN_ATTR_DESTINATION_ADDRESS); |
| // Port first |
| addr->SetPort(kTestMessagePort1); |
| addr->SetIP(rtc::IPAddress(kIPv4TestAddress1)); |
| ASSERT_EQ(kTestMessagePort1, addr->port()); |
| ASSERT_EQ(rtc::IPAddress(kIPv4TestAddress1), addr->ipaddr()); |
| |
| auto addr2 = StunAttribute::CreateAddress(STUN_ATTR_DESTINATION_ADDRESS); |
| // IP first |
| addr2->SetIP(rtc::IPAddress(kIPv4TestAddress1)); |
| addr2->SetPort(kTestMessagePort2); |
| ASSERT_EQ(kTestMessagePort2, addr2->port()); |
| ASSERT_EQ(rtc::IPAddress(kIPv4TestAddress1), addr2->ipaddr()); |
| } |
| |
| TEST_F(StunTest, WriteMessageWithIPv6AddressAttribute) { |
| StunMessage msg; |
| size_t size = sizeof(kStunMessageWithIPv6MappedAddress); |
| |
| rtc::IPAddress test_ip(kIPv6TestAddress1); |
| |
| msg.SetType(STUN_BINDING_REQUEST); |
| msg.SetTransactionID( |
| std::string(reinterpret_cast<const char*>(kTestTransactionId1), |
| kStunTransactionIdLength)); |
| CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); |
| |
| auto addr = StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS); |
| rtc::SocketAddress test_addr(test_ip, kTestMessagePort2); |
| addr->SetAddress(test_addr); |
| msg.AddAttribute(std::move(addr)); |
| |
| CheckStunHeader(msg, STUN_BINDING_REQUEST, (size - 20)); |
| |
| rtc::ByteBufferWriter out; |
| EXPECT_TRUE(msg.Write(&out)); |
| ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv6MappedAddress)); |
| int len1 = static_cast<int>(out.Length()); |
| rtc::ByteBufferReader read_buf(out); |
| std::string bytes; |
| read_buf.ReadString(&bytes, len1); |
| ASSERT_EQ(0, memcmp(bytes.c_str(), kStunMessageWithIPv6MappedAddress, len1)); |
| } |
| |
| TEST_F(StunTest, WriteMessageWithIPv4AddressAttribute) { |
| StunMessage msg; |
| size_t size = sizeof(kStunMessageWithIPv4MappedAddress); |
| |
| rtc::IPAddress test_ip(kIPv4TestAddress1); |
| |
| msg.SetType(STUN_BINDING_RESPONSE); |
| msg.SetTransactionID( |
| std::string(reinterpret_cast<const char*>(kTestTransactionId1), |
| kStunTransactionIdLength)); |
| CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); |
| |
| auto addr = StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS); |
| rtc::SocketAddress test_addr(test_ip, kTestMessagePort4); |
| addr->SetAddress(test_addr); |
| msg.AddAttribute(std::move(addr)); |
| |
| CheckStunHeader(msg, STUN_BINDING_RESPONSE, (size - 20)); |
| |
| rtc::ByteBufferWriter out; |
| EXPECT_TRUE(msg.Write(&out)); |
| ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv4MappedAddress)); |
| int len1 = static_cast<int>(out.Length()); |
| rtc::ByteBufferReader read_buf(out); |
| std::string bytes; |
| read_buf.ReadString(&bytes, len1); |
| ASSERT_EQ(0, memcmp(bytes.c_str(), kStunMessageWithIPv4MappedAddress, len1)); |
| } |
| |
| TEST_F(StunTest, WriteMessageWithIPv6XorAddressAttribute) { |
| StunMessage msg; |
| size_t size = sizeof(kStunMessageWithIPv6XorMappedAddress); |
| |
| rtc::IPAddress test_ip(kIPv6TestAddress1); |
| |
| msg.SetType(STUN_BINDING_RESPONSE); |
| msg.SetTransactionID( |
| std::string(reinterpret_cast<const char*>(kTestTransactionId2), |
| kStunTransactionIdLength)); |
| CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength); |
| |
| auto addr = StunAttribute::CreateXorAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); |
| rtc::SocketAddress test_addr(test_ip, kTestMessagePort1); |
| addr->SetAddress(test_addr); |
| msg.AddAttribute(std::move(addr)); |
| |
| CheckStunHeader(msg, STUN_BINDING_RESPONSE, (size - 20)); |
| |
| rtc::ByteBufferWriter out; |
| EXPECT_TRUE(msg.Write(&out)); |
| ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv6XorMappedAddress)); |
| int len1 = static_cast<int>(out.Length()); |
| rtc::ByteBufferReader read_buf(out); |
| std::string bytes; |
| read_buf.ReadString(&bytes, len1); |
| ASSERT_EQ(0, |
| memcmp(bytes.c_str(), kStunMessageWithIPv6XorMappedAddress, len1)); |
| } |
| |
| TEST_F(StunTest, WriteMessageWithIPv4XoreAddressAttribute) { |
| StunMessage msg; |
| size_t size = sizeof(kStunMessageWithIPv4XorMappedAddress); |
| |
| rtc::IPAddress test_ip(kIPv4TestAddress1); |
| |
| msg.SetType(STUN_BINDING_RESPONSE); |
| msg.SetTransactionID( |
| std::string(reinterpret_cast<const char*>(kTestTransactionId1), |
| kStunTransactionIdLength)); |
| CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); |
| |
| auto addr = StunAttribute::CreateXorAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); |
| rtc::SocketAddress test_addr(test_ip, kTestMessagePort3); |
| addr->SetAddress(test_addr); |
| msg.AddAttribute(std::move(addr)); |
| |
| CheckStunHeader(msg, STUN_BINDING_RESPONSE, (size - 20)); |
| |
| rtc::ByteBufferWriter out; |
| EXPECT_TRUE(msg.Write(&out)); |
| ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv4XorMappedAddress)); |
| int len1 = static_cast<int>(out.Length()); |
| rtc::ByteBufferReader read_buf(out); |
| std::string bytes; |
| read_buf.ReadString(&bytes, len1); |
| ASSERT_EQ(0, |
| memcmp(bytes.c_str(), kStunMessageWithIPv4XorMappedAddress, len1)); |
| } |
| |
| TEST_F(StunTest, ReadByteStringAttribute) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, kStunMessageWithByteStringAttribute); |
| |
| CheckStunHeader(msg, STUN_BINDING_REQUEST, size); |
| CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength); |
| const StunByteStringAttribute* username = |
| msg.GetByteString(STUN_ATTR_USERNAME); |
| ASSERT_TRUE(username != NULL); |
| EXPECT_EQ(kTestUserName1, username->GetString()); |
| } |
| |
| TEST_F(StunTest, ReadPaddedByteStringAttribute) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, |
| kStunMessageWithPaddedByteStringAttribute); |
| ASSERT_NE(0U, size); |
| CheckStunHeader(msg, STUN_BINDING_REQUEST, size); |
| CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength); |
| const StunByteStringAttribute* username = |
| msg.GetByteString(STUN_ATTR_USERNAME); |
| ASSERT_TRUE(username != NULL); |
| EXPECT_EQ(kTestUserName2, username->GetString()); |
| } |
| |
| TEST_F(StunTest, ReadErrorCodeAttribute) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, kStunMessageWithErrorAttribute); |
| |
| CheckStunHeader(msg, STUN_BINDING_ERROR_RESPONSE, size); |
| CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); |
| const StunErrorCodeAttribute* errorcode = msg.GetErrorCode(); |
| ASSERT_TRUE(errorcode != NULL); |
| EXPECT_EQ(kTestErrorClass, errorcode->eclass()); |
| EXPECT_EQ(kTestErrorNumber, errorcode->number()); |
| EXPECT_EQ(kTestErrorReason, errorcode->reason()); |
| EXPECT_EQ(kTestErrorCode, errorcode->code()); |
| EXPECT_EQ(kTestErrorCode, msg.GetErrorCodeValue()); |
| } |
| |
| // Test that GetErrorCodeValue returns STUN_ERROR_GLOBAL_FAILURE if the message |
| // in question doesn't have an error code attribute, rather than crashing. |
| TEST_F(StunTest, GetErrorCodeValueWithNoErrorAttribute) { |
| StunMessage msg; |
| ReadStunMessage(&msg, kStunMessageWithIPv6MappedAddress); |
| EXPECT_EQ(STUN_ERROR_GLOBAL_FAILURE, msg.GetErrorCodeValue()); |
| } |
| |
| TEST_F(StunTest, ReadMessageWithAUInt16ListAttribute) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, kStunMessageWithUInt16ListAttribute); |
| CheckStunHeader(msg, STUN_BINDING_REQUEST, size); |
| const StunUInt16ListAttribute* types = msg.GetUnknownAttributes(); |
| ASSERT_TRUE(types != NULL); |
| EXPECT_EQ(3U, types->Size()); |
| EXPECT_EQ(0x1U, types->GetType(0)); |
| EXPECT_EQ(0x1000U, types->GetType(1)); |
| EXPECT_EQ(0xAB0CU, types->GetType(2)); |
| } |
| |
| TEST_F(StunTest, ReadMessageWithAnUnknownAttribute) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, kStunMessageWithUnknownAttribute); |
| CheckStunHeader(msg, STUN_BINDING_REQUEST, size); |
| |
| // Parsing should have succeeded and there should be a USERNAME attribute |
| const StunByteStringAttribute* username = |
| msg.GetByteString(STUN_ATTR_USERNAME); |
| ASSERT_TRUE(username != NULL); |
| EXPECT_EQ(kTestUserName2, username->GetString()); |
| } |
| |
| TEST_F(StunTest, ReadMessageWithOriginAttribute) { |
| StunMessage msg; |
| size_t size = ReadStunMessage(&msg, kStunMessageWithOriginAttribute); |
| CheckStunHeader(msg, STUN_BINDING_REQUEST, size); |
| const StunByteStringAttribute* origin = |
| msg.GetByteString(STUN_ATTR_ORIGIN); |
| ASSERT_TRUE(origin != NULL); |
| EXPECT_EQ(kTestOrigin, origin->GetString()); |
| } |
| |
| TEST_F(StunTest, WriteMessageWithAnErrorCodeAttribute) { |
| StunMessage msg; |
| size_t size = sizeof(kStunMessageWithErrorAttribute); |
| |
| msg.SetType(STUN_BINDING_ERROR_RESPONSE); |
| msg.SetTransactionID( |
| std::string(reinterpret_cast<const char*>(kTestTransactionId1), |
| kStunTransactionIdLength)); |
| CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); |
| auto errorcode = StunAttribute::CreateErrorCode(); |
| errorcode->SetCode(kTestErrorCode); |
| errorcode->SetReason(kTestErrorReason); |
| msg.AddAttribute(std::move(errorcode)); |
| CheckStunHeader(msg, STUN_BINDING_ERROR_RESPONSE, (size - 20)); |
| |
| rtc::ByteBufferWriter out; |
| EXPECT_TRUE(msg.Write(&out)); |
| ASSERT_EQ(size, out.Length()); |
| // No padding. |
| ASSERT_EQ(0, memcmp(out.Data(), kStunMessageWithErrorAttribute, size)); |
| } |
| |
| TEST_F(StunTest, WriteMessageWithAUInt16ListAttribute) { |
| StunMessage msg; |
| size_t size = sizeof(kStunMessageWithUInt16ListAttribute); |
| |
| msg.SetType(STUN_BINDING_REQUEST); |
| msg.SetTransactionID( |
| std::string(reinterpret_cast<const char*>(kTestTransactionId2), |
| kStunTransactionIdLength)); |
| CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength); |
| auto list = StunAttribute::CreateUnknownAttributes(); |
| list->AddType(0x1U); |
| list->AddType(0x1000U); |
| list->AddType(0xAB0CU); |
| msg.AddAttribute(std::move(list)); |
| CheckStunHeader(msg, STUN_BINDING_REQUEST, (size - 20)); |
| |
| rtc::ByteBufferWriter out; |
| EXPECT_TRUE(msg.Write(&out)); |
| ASSERT_EQ(size, out.Length()); |
| // Check everything up to the padding. |
| ASSERT_EQ(0, |
| memcmp(out.Data(), kStunMessageWithUInt16ListAttribute, size - 2)); |
| } |
| |
| TEST_F(StunTest, WriteMessageWithOriginAttribute) { |
| StunMessage msg; |
| size_t size = sizeof(kStunMessageWithOriginAttribute); |
| |
| msg.SetType(STUN_BINDING_REQUEST); |
| msg.SetTransactionID( |
| std::string(reinterpret_cast<const char*>(kTestTransactionId1), |
| kStunTransactionIdLength)); |
| auto origin = |
| rtc::MakeUnique<StunByteStringAttribute>(STUN_ATTR_ORIGIN, kTestOrigin); |
| msg.AddAttribute(std::move(origin)); |
| |
| rtc::ByteBufferWriter out; |
| EXPECT_TRUE(msg.Write(&out)); |
| ASSERT_EQ(size, out.Length()); |
| // Check everything up to the padding |
| ASSERT_EQ(0, memcmp(out.Data(), kStunMessageWithOriginAttribute, size - 2)); |
| } |
| |
| // Test that we fail to read messages with invalid lengths. |
| void CheckFailureToRead(const unsigned char* testcase, size_t length) { |
| StunMessage msg; |
| const char* input = reinterpret_cast<const char*>(testcase); |
| rtc::ByteBufferReader buf(input, length); |
| ASSERT_FALSE(msg.Read(&buf)); |
| } |
| |
| TEST_F(StunTest, FailToReadInvalidMessages) { |
| CheckFailureToRead(kStunMessageWithZeroLength, |
| kRealLengthOfInvalidLengthTestCases); |
| CheckFailureToRead(kStunMessageWithSmallLength, |
| kRealLengthOfInvalidLengthTestCases); |
| CheckFailureToRead(kStunMessageWithExcessLength, |
| kRealLengthOfInvalidLengthTestCases); |
| } |
| |
| // Test that we properly fail to read a non-STUN message. |
| TEST_F(StunTest, FailToReadRtcpPacket) { |
| CheckFailureToRead(kRtcpPacket, sizeof(kRtcpPacket)); |
| } |
| |
| // Check our STUN message validation code against the RFC5769 test messages. |
| TEST_F(StunTest, ValidateMessageIntegrity) { |
| // Try the messages from RFC 5769. |
| EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kRfc5769SampleRequest), |
| sizeof(kRfc5769SampleRequest), |
| kRfc5769SampleMsgPassword)); |
| EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kRfc5769SampleRequest), |
| sizeof(kRfc5769SampleRequest), |
| "InvalidPassword")); |
| |
| EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kRfc5769SampleResponse), |
| sizeof(kRfc5769SampleResponse), |
| kRfc5769SampleMsgPassword)); |
| EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kRfc5769SampleResponse), |
| sizeof(kRfc5769SampleResponse), |
| "InvalidPassword")); |
| |
| EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kRfc5769SampleResponseIPv6), |
| sizeof(kRfc5769SampleResponseIPv6), |
| kRfc5769SampleMsgPassword)); |
| EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kRfc5769SampleResponseIPv6), |
| sizeof(kRfc5769SampleResponseIPv6), |
| "InvalidPassword")); |
| |
| // We first need to compute the key for the long-term authentication HMAC. |
| std::string key; |
| ComputeStunCredentialHash(kRfc5769SampleMsgWithAuthUsername, |
| kRfc5769SampleMsgWithAuthRealm, kRfc5769SampleMsgWithAuthPassword, &key); |
| EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kRfc5769SampleRequestLongTermAuth), |
| sizeof(kRfc5769SampleRequestLongTermAuth), key)); |
| EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kRfc5769SampleRequestLongTermAuth), |
| sizeof(kRfc5769SampleRequestLongTermAuth), |
| "InvalidPassword")); |
| |
| // Try some edge cases. |
| EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kStunMessageWithZeroLength), |
| sizeof(kStunMessageWithZeroLength), |
| kRfc5769SampleMsgPassword)); |
| EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kStunMessageWithExcessLength), |
| sizeof(kStunMessageWithExcessLength), |
| kRfc5769SampleMsgPassword)); |
| EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kStunMessageWithSmallLength), |
| sizeof(kStunMessageWithSmallLength), |
| kRfc5769SampleMsgPassword)); |
| |
| // Again, but with the lengths matching what is claimed in the headers. |
| EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kStunMessageWithZeroLength), |
| kStunHeaderSize + rtc::GetBE16(&kStunMessageWithZeroLength[2]), |
| kRfc5769SampleMsgPassword)); |
| EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kStunMessageWithExcessLength), |
| kStunHeaderSize + rtc::GetBE16(&kStunMessageWithExcessLength[2]), |
| kRfc5769SampleMsgPassword)); |
| EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kStunMessageWithSmallLength), |
| kStunHeaderSize + rtc::GetBE16(&kStunMessageWithSmallLength[2]), |
| kRfc5769SampleMsgPassword)); |
| |
| // Check that a too-short HMAC doesn't cause buffer overflow. |
| EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(kStunMessageWithBadHmacAtEnd), |
| sizeof(kStunMessageWithBadHmacAtEnd), |
| kRfc5769SampleMsgPassword)); |
| |
| // Test that munging a single bit anywhere in the message causes the |
| // message-integrity check to fail, unless it is after the M-I attribute. |
| char buf[sizeof(kRfc5769SampleRequest)]; |
| memcpy(buf, kRfc5769SampleRequest, sizeof(kRfc5769SampleRequest)); |
| for (size_t i = 0; i < sizeof(buf); ++i) { |
| buf[i] ^= 0x01; |
| if (i > 0) |
| buf[i - 1] ^= 0x01; |
| EXPECT_EQ(i >= sizeof(buf) - 8, StunMessage::ValidateMessageIntegrity( |
| buf, sizeof(buf), kRfc5769SampleMsgPassword)); |
| } |
| } |
| |
| // Validate that we generate correct MESSAGE-INTEGRITY attributes. |
| // Note the use of IceMessage instead of StunMessage; this is necessary because |
| // the RFC5769 test messages used include attributes not found in basic STUN. |
| TEST_F(StunTest, AddMessageIntegrity) { |
| IceMessage msg; |
| rtc::ByteBufferReader buf( |
| reinterpret_cast<const char*>(kRfc5769SampleRequestWithoutMI), |
| sizeof(kRfc5769SampleRequestWithoutMI)); |
| EXPECT_TRUE(msg.Read(&buf)); |
| EXPECT_TRUE(msg.AddMessageIntegrity(kRfc5769SampleMsgPassword)); |
| const StunByteStringAttribute* mi_attr = |
| msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY); |
| EXPECT_EQ(20U, mi_attr->length()); |
| EXPECT_EQ(0, memcmp( |
| mi_attr->bytes(), kCalculatedHmac1, sizeof(kCalculatedHmac1))); |
| |
| rtc::ByteBufferWriter buf1; |
| EXPECT_TRUE(msg.Write(&buf1)); |
| EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(buf1.Data()), buf1.Length(), |
| kRfc5769SampleMsgPassword)); |
| |
| IceMessage msg2; |
| rtc::ByteBufferReader buf2( |
| reinterpret_cast<const char*>(kRfc5769SampleResponseWithoutMI), |
| sizeof(kRfc5769SampleResponseWithoutMI)); |
| EXPECT_TRUE(msg2.Read(&buf2)); |
| EXPECT_TRUE(msg2.AddMessageIntegrity(kRfc5769SampleMsgPassword)); |
| const StunByteStringAttribute* mi_attr2 = |
| msg2.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY); |
| EXPECT_EQ(20U, mi_attr2->length()); |
| EXPECT_EQ( |
| 0, memcmp(mi_attr2->bytes(), kCalculatedHmac2, sizeof(kCalculatedHmac2))); |
| |
| rtc::ByteBufferWriter buf3; |
| EXPECT_TRUE(msg2.Write(&buf3)); |
| EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( |
| reinterpret_cast<const char*>(buf3.Data()), buf3.Length(), |
| kRfc5769SampleMsgPassword)); |
| } |
| |
| // Check our STUN message validation code against the RFC5769 test messages. |
| TEST_F(StunTest, ValidateFingerprint) { |
| EXPECT_TRUE(StunMessage::ValidateFingerprint( |
| reinterpret_cast<const char*>(kRfc5769SampleRequest), |
| sizeof(kRfc5769SampleRequest))); |
| EXPECT_TRUE(StunMessage::ValidateFingerprint( |
| reinterpret_cast<const char*>(kRfc5769SampleResponse), |
| sizeof(kRfc5769SampleResponse))); |
| EXPECT_TRUE(StunMessage::ValidateFingerprint( |
| reinterpret_cast<const char*>(kRfc5769SampleResponseIPv6), |
| sizeof(kRfc5769SampleResponseIPv6))); |
| |
| EXPECT_FALSE(StunMessage::ValidateFingerprint( |
| reinterpret_cast<const char*>(kStunMessageWithZeroLength), |
| sizeof(kStunMessageWithZeroLength))); |
| EXPECT_FALSE(StunMessage::ValidateFingerprint( |
| reinterpret_cast<const char*>(kStunMessageWithExcessLength), |
| sizeof(kStunMessageWithExcessLength))); |
| EXPECT_FALSE(StunMessage::ValidateFingerprint( |
| reinterpret_cast<const char*>(kStunMessageWithSmallLength), |
| sizeof(kStunMessageWithSmallLength))); |
| |
| // Test that munging a single bit anywhere in the message causes the |
| // fingerprint check to fail. |
| char buf[sizeof(kRfc5769SampleRequest)]; |
| memcpy(buf, kRfc5769SampleRequest, sizeof(kRfc5769SampleRequest)); |
| for (size_t i = 0; i < sizeof(buf); ++i) { |
| buf[i] ^= 0x01; |
| if (i > 0) |
| buf[i - 1] ^= 0x01; |
| EXPECT_FALSE(StunMessage::ValidateFingerprint(buf, sizeof(buf))); |
| } |
| // Put them all back to normal and the check should pass again. |
| buf[sizeof(buf) - 1] ^= 0x01; |
| EXPECT_TRUE(StunMessage::ValidateFingerprint(buf, sizeof(buf))); |
| } |
| |
| TEST_F(StunTest, AddFingerprint) { |
| IceMessage msg; |
| rtc::ByteBufferReader buf( |
| reinterpret_cast<const char*>(kRfc5769SampleRequestWithoutMI), |
| sizeof(kRfc5769SampleRequestWithoutMI)); |
| EXPECT_TRUE(msg.Read(&buf)); |
| EXPECT_TRUE(msg.AddFingerprint()); |
| |
| rtc::ByteBufferWriter buf1; |
| EXPECT_TRUE(msg.Write(&buf1)); |
| EXPECT_TRUE(StunMessage::ValidateFingerprint( |
| reinterpret_cast<const char*>(buf1.Data()), buf1.Length())); |
| } |
| |
| // Sample "GTURN" relay message. |
| static const unsigned char kRelayMessage[] = { |
| 0x00, 0x01, 0x00, 88, // message header |
| 0x21, 0x12, 0xA4, 0x42, // magic cookie |
| '0', '1', '2', '3', // transaction id |
| '4', '5', '6', '7', |
| '8', '9', 'a', 'b', |
| 0x00, 0x01, 0x00, 8, // mapped address |
| 0x00, 0x01, 0x00, 13, |
| 0x00, 0x00, 0x00, 17, |
| 0x00, 0x06, 0x00, 12, // username |
| 'a', 'b', 'c', 'd', |
| 'e', 'f', 'g', 'h', |
| 'i', 'j', 'k', 'l', |
| 0x00, 0x0d, 0x00, 4, // lifetime |
| 0x00, 0x00, 0x00, 11, |
| 0x00, 0x0f, 0x00, 4, // magic cookie |
| 0x72, 0xc6, 0x4b, 0xc6, |
| 0x00, 0x10, 0x00, 4, // bandwidth |
| 0x00, 0x00, 0x00, 6, |
| 0x00, 0x11, 0x00, 8, // destination address |
| 0x00, 0x01, 0x00, 13, |
| 0x00, 0x00, 0x00, 17, |
| 0x00, 0x12, 0x00, 8, // source address 2 |
| 0x00, 0x01, 0x00, 13, |
| 0x00, 0x00, 0x00, 17, |
| 0x00, 0x13, 0x00, 7, // data |
| 'a', 'b', 'c', 'd', |
| 'e', 'f', 'g', 0 // DATA must be padded per rfc5766. |
| }; |
| |
| // Test that we can read the GTURN-specific fields. |
| TEST_F(StunTest, ReadRelayMessage) { |
| RelayMessage msg, msg2; |
| |
| const char* input = reinterpret_cast<const char*>(kRelayMessage); |
| size_t size = sizeof(kRelayMessage); |
| rtc::ByteBufferReader buf(input, size); |
| EXPECT_TRUE(msg.Read(&buf)); |
| |
| EXPECT_EQ(STUN_BINDING_REQUEST, msg.type()); |
| EXPECT_EQ(size - 20, msg.length()); |
| EXPECT_EQ("0123456789ab", msg.transaction_id()); |
| |
| msg2.SetType(STUN_BINDING_REQUEST); |
| msg2.SetTransactionID("0123456789ab"); |
| |
| in_addr legacy_in_addr; |
| legacy_in_addr.s_addr = htonl(17U); |
| rtc::IPAddress legacy_ip(legacy_in_addr); |
| |
| const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS); |
| ASSERT_TRUE(addr != NULL); |
| EXPECT_EQ(1, addr->family()); |
| EXPECT_EQ(13, addr->port()); |
| EXPECT_EQ(legacy_ip, addr->ipaddr()); |
| |
| auto addr2 = StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS); |
| addr2->SetPort(13); |
| addr2->SetIP(legacy_ip); |
| msg2.AddAttribute(std::move(addr2)); |
| |
| const StunByteStringAttribute* bytes = msg.GetByteString(STUN_ATTR_USERNAME); |
| ASSERT_TRUE(bytes != NULL); |
| EXPECT_EQ(12U, bytes->length()); |
| EXPECT_EQ("abcdefghijkl", bytes->GetString()); |
| |
| auto bytes2 = StunAttribute::CreateByteString(STUN_ATTR_USERNAME); |
| bytes2->CopyBytes("abcdefghijkl"); |
| msg2.AddAttribute(std::move(bytes2)); |
| |
| const StunUInt32Attribute* uval = msg.GetUInt32(STUN_ATTR_LIFETIME); |
| ASSERT_TRUE(uval != NULL); |
| EXPECT_EQ(11U, uval->value()); |
| |
| auto uval2 = StunAttribute::CreateUInt32(STUN_ATTR_LIFETIME); |
| uval2->SetValue(11); |
| msg2.AddAttribute(std::move(uval2)); |
| |
| bytes = msg.GetByteString(STUN_ATTR_MAGIC_COOKIE); |
| ASSERT_TRUE(bytes != NULL); |
| EXPECT_EQ(4U, bytes->length()); |
| EXPECT_EQ(0, |
| memcmp(bytes->bytes(), |
| TURN_MAGIC_COOKIE_VALUE, |
| sizeof(TURN_MAGIC_COOKIE_VALUE))); |
| |
| bytes2 = StunAttribute::CreateByteString(STUN_ATTR_MAGIC_COOKIE); |
| bytes2->CopyBytes(reinterpret_cast<const char*>(TURN_MAGIC_COOKIE_VALUE), |
| sizeof(TURN_MAGIC_COOKIE_VALUE)); |
| msg2.AddAttribute(std::move(bytes2)); |
| |
| uval = msg.GetUInt32(STUN_ATTR_BANDWIDTH); |
| ASSERT_TRUE(uval != NULL); |
| EXPECT_EQ(6U, uval->value()); |
| |
| uval2 = StunAttribute::CreateUInt32(STUN_ATTR_BANDWIDTH); |
| uval2->SetValue(6); |
| msg2.AddAttribute(std::move(uval2)); |
| |
| addr = msg.GetAddress(STUN_ATTR_DESTINATION_ADDRESS); |
| ASSERT_TRUE(addr != NULL); |
| EXPECT_EQ(1, addr->family()); |
| EXPECT_EQ(13, addr->port()); |
| EXPECT_EQ(legacy_ip, addr->ipaddr()); |
| |
| addr2 = StunAttribute::CreateAddress(STUN_ATTR_DESTINATION_ADDRESS); |
| addr2->SetPort(13); |
| addr2->SetIP(legacy_ip); |
| msg2.AddAttribute(std::move(addr2)); |
| |
| addr = msg.GetAddress(STUN_ATTR_SOURCE_ADDRESS2); |
| ASSERT_TRUE(addr != NULL); |
| EXPECT_EQ(1, addr->family()); |
| EXPECT_EQ(13, addr->port()); |
| EXPECT_EQ(legacy_ip, addr->ipaddr()); |
| |
| addr2 = StunAttribute::CreateAddress(STUN_ATTR_SOURCE_ADDRESS2); |
| addr2->SetPort(13); |
| addr2->SetIP(legacy_ip); |
| msg2.AddAttribute(std::move(addr2)); |
| |
| bytes = msg.GetByteString(STUN_ATTR_DATA); |
| ASSERT_TRUE(bytes != NULL); |
| EXPECT_EQ(7U, bytes->length()); |
| EXPECT_EQ("abcdefg", bytes->GetString()); |
| |
| bytes2 = StunAttribute::CreateByteString(STUN_ATTR_DATA); |
| bytes2->CopyBytes("abcdefg"); |
| msg2.AddAttribute(std::move(bytes2)); |
| |
| rtc::ByteBufferWriter out; |
| EXPECT_TRUE(msg.Write(&out)); |
| EXPECT_EQ(size, out.Length()); |
| size_t len1 = out.Length(); |
| rtc::ByteBufferReader read_buf(out); |
| std::string outstring; |
| read_buf.ReadString(&outstring, len1); |
| EXPECT_EQ(0, memcmp(outstring.c_str(), input, len1)); |
| |
| rtc::ByteBufferWriter out2; |
| EXPECT_TRUE(msg2.Write(&out2)); |
| EXPECT_EQ(size, out2.Length()); |
| size_t len2 = out2.Length(); |
| rtc::ByteBufferReader read_buf2(out2); |
| std::string outstring2; |
| read_buf2.ReadString(&outstring2, len2); |
| EXPECT_EQ(0, memcmp(outstring2.c_str(), input, len2)); |
| } |
| |
| } // namespace cricket |