| /* | 
 |  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "webrtc/modules/audio_coding/neteq4/payload_splitter.h" | 
 |  | 
 | #include <assert.h> | 
 |  | 
 | #include "webrtc/modules/audio_coding/neteq4/decoder_database.h" | 
 |  | 
 | namespace webrtc { | 
 |  | 
 | // The method loops through a list of packets {A, B, C, ...}. Each packet is | 
 | // split into its corresponding RED payloads, {A1, A2, ...}, which is | 
 | // temporarily held in the list |new_packets|. | 
 | // When the first packet in |packet_list| has been processed, the orignal packet | 
 | // is replaced by the new ones in |new_packets|, so that |packet_list| becomes: | 
 | // {A1, A2, ..., B, C, ...}. The method then continues with B, and C, until all | 
 | // the original packets have been replaced by their split payloads. | 
 | int PayloadSplitter::SplitRed(PacketList* packet_list) { | 
 |   int ret = kOK; | 
 |   PacketList::iterator it = packet_list->begin(); | 
 |   while (it != packet_list->end()) { | 
 |     PacketList new_packets;  // An empty list to store the split packets in. | 
 |     Packet* red_packet = (*it); | 
 |     assert(red_packet->payload); | 
 |     uint8_t* payload_ptr = red_packet->payload; | 
 |  | 
 |     // Read RED headers (according to RFC 2198): | 
 |     // | 
 |     //    0                   1                   2                   3 | 
 |     //    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 | 
 |     //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
 |     //   |F|   block PT  |  timestamp offset         |   block length    | | 
 |     //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
 |     // Last RED header: | 
 |     //    0 1 2 3 4 5 6 7 | 
 |     //   +-+-+-+-+-+-+-+-+ | 
 |     //   |0|   Block PT  | | 
 |     //   +-+-+-+-+-+-+-+-+ | 
 |  | 
 |     bool last_block = false; | 
 |     int sum_length = 0; | 
 |     while (!last_block) { | 
 |       Packet* new_packet = new Packet; | 
 |       new_packet->header = red_packet->header; | 
 |       // Check the F bit. If F == 0, this was the last block. | 
 |       last_block = ((*payload_ptr & 0x80) == 0); | 
 |       // Bits 1 through 7 are payload type. | 
 |       new_packet->header.payloadType = payload_ptr[0] & 0x7F; | 
 |       if (last_block) { | 
 |         // No more header data to read. | 
 |         ++sum_length;  // Account for RED header size of 1 byte. | 
 |         new_packet->payload_length = red_packet->payload_length - sum_length; | 
 |         new_packet->primary = true;  // Last block is always primary. | 
 |         payload_ptr += 1;  // Advance to first payload byte. | 
 |       } else { | 
 |         // Bits 8 through 21 are timestamp offset. | 
 |         int timestamp_offset = (payload_ptr[1] << 6) + | 
 |             ((payload_ptr[2] & 0xFC) >> 2); | 
 |         new_packet->header.timestamp = red_packet->header.timestamp - | 
 |             timestamp_offset; | 
 |         // Bits 22 through 31 are payload length. | 
 |         new_packet->payload_length = ((payload_ptr[2] & 0x03) << 8) + | 
 |             payload_ptr[3]; | 
 |         new_packet->primary = false; | 
 |         payload_ptr += 4;  // Advance to next RED header. | 
 |       } | 
 |       sum_length += new_packet->payload_length; | 
 |       sum_length += 4;  // Account for RED header size of 4 bytes. | 
 |       // Store in new list of packets. | 
 |       new_packets.push_back(new_packet); | 
 |     } | 
 |  | 
 |     // Populate the new packets with payload data. | 
 |     // |payload_ptr| now points at the first payload byte. | 
 |     PacketList::iterator new_it; | 
 |     for (new_it = new_packets.begin(); new_it != new_packets.end(); ++new_it) { | 
 |       int payload_length = (*new_it)->payload_length; | 
 |       if (payload_ptr + payload_length > | 
 |           red_packet->payload + red_packet->payload_length) { | 
 |         // The block lengths in the RED headers do not match the overall packet | 
 |         // length. Something is corrupt. Discard this and the remaining | 
 |         // payloads from this packet. | 
 |         while (new_it != new_packets.end()) { | 
 |           // Payload should not have been allocated yet. | 
 |           assert(!(*new_it)->payload); | 
 |           delete (*new_it); | 
 |           new_it = new_packets.erase(new_it); | 
 |         } | 
 |         ret = kRedLengthMismatch; | 
 |         break; | 
 |       } | 
 |       (*new_it)->payload = new uint8_t[payload_length]; | 
 |       memcpy((*new_it)->payload, payload_ptr, payload_length); | 
 |       payload_ptr += payload_length; | 
 |     } | 
 |     // Reverse the order of the new packets, so that the primary payload is | 
 |     // always first. | 
 |     new_packets.reverse(); | 
 |     // Insert new packets into original list, before the element pointed to by | 
 |     // iterator |it|. | 
 |     packet_list->splice(it, new_packets, new_packets.begin(), | 
 |                         new_packets.end()); | 
 |     // Delete old packet payload. | 
 |     delete [] (*it)->payload; | 
 |     delete (*it); | 
 |     // Remove |it| from the packet list. This operation effectively moves the | 
 |     // iterator |it| to the next packet in the list. Thus, we do not have to | 
 |     // increment it manually. | 
 |     it = packet_list->erase(it); | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | int PayloadSplitter::SplitFec(PacketList* packet_list, | 
 |                               DecoderDatabase* decoder_database) { | 
 |   PacketList::iterator it = packet_list->begin(); | 
 |   // Iterate through all packets in |packet_list|. | 
 |   while (it != packet_list->end()) { | 
 |     Packet* packet = (*it);  // Just to make the notation more intuitive. | 
 |     // Get codec type for this payload. | 
 |     uint8_t payload_type = packet->header.payloadType; | 
 |     const DecoderDatabase::DecoderInfo* info = | 
 |         decoder_database->GetDecoderInfo(payload_type); | 
 |     if (!info) { | 
 |       return kUnknownPayloadType; | 
 |     } | 
 |     // No splitting for a sync-packet. | 
 |     if (packet->sync_packet) { | 
 |       ++it; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Not an FEC packet. | 
 |     AudioDecoder* decoder = decoder_database->GetDecoder(payload_type); | 
 |     // decoder should not return NULL. | 
 |     assert(decoder != NULL); | 
 |     if (!decoder || | 
 |         !decoder->PacketHasFec(packet->payload, packet->payload_length)) { | 
 |       ++it; | 
 |       continue; | 
 |     } | 
 |  | 
 |     switch (info->codec_type) { | 
 |       case kDecoderOpus: | 
 |       case kDecoderOpus_2ch: { | 
 |         Packet* new_packet = new Packet; | 
 |  | 
 |         new_packet->header = packet->header; | 
 |         int duration = decoder-> | 
 |             PacketDurationRedundant(packet->payload, packet->payload_length); | 
 |         new_packet->header.timestamp -= duration; | 
 |         new_packet->payload = new uint8_t[packet->payload_length]; | 
 |         memcpy(new_packet->payload, packet->payload, packet->payload_length); | 
 |         new_packet->payload_length = packet->payload_length; | 
 |         new_packet->primary = false; | 
 |         new_packet->waiting_time = packet->waiting_time; | 
 |         new_packet->sync_packet = packet->sync_packet; | 
 |  | 
 |         packet_list->insert(it, new_packet); | 
 |         break; | 
 |       } | 
 |       default: { | 
 |         return kFecSplitError; | 
 |       } | 
 |     } | 
 |  | 
 |     ++it; | 
 |   } | 
 |   return kOK; | 
 | } | 
 |  | 
 | int PayloadSplitter::CheckRedPayloads(PacketList* packet_list, | 
 |                                       const DecoderDatabase& decoder_database) { | 
 |   PacketList::iterator it = packet_list->begin(); | 
 |   int main_payload_type = -1; | 
 |   int num_deleted_packets = 0; | 
 |   while (it != packet_list->end()) { | 
 |     uint8_t this_payload_type = (*it)->header.payloadType; | 
 |     if (!decoder_database.IsDtmf(this_payload_type) && | 
 |         !decoder_database.IsComfortNoise(this_payload_type)) { | 
 |       if (main_payload_type == -1) { | 
 |         // This is the first packet in the list which is non-DTMF non-CNG. | 
 |         main_payload_type = this_payload_type; | 
 |       } else { | 
 |         if (this_payload_type != main_payload_type) { | 
 |           // We do not allow redundant payloads of a different type. | 
 |           // Discard this payload. | 
 |           delete [] (*it)->payload; | 
 |           delete (*it); | 
 |           // Remove |it| from the packet list. This operation effectively | 
 |           // moves the iterator |it| to the next packet in the list. Thus, we | 
 |           // do not have to increment it manually. | 
 |           it = packet_list->erase(it); | 
 |           ++num_deleted_packets; | 
 |           continue; | 
 |         } | 
 |       } | 
 |     } | 
 |     ++it; | 
 |   } | 
 |   return num_deleted_packets; | 
 | } | 
 |  | 
 | int PayloadSplitter::SplitAudio(PacketList* packet_list, | 
 |                                 const DecoderDatabase& decoder_database) { | 
 |   PacketList::iterator it = packet_list->begin(); | 
 |   // Iterate through all packets in |packet_list|. | 
 |   while (it != packet_list->end()) { | 
 |     Packet* packet = (*it);  // Just to make the notation more intuitive. | 
 |     // Get codec type for this payload. | 
 |     const DecoderDatabase::DecoderInfo* info = | 
 |         decoder_database.GetDecoderInfo(packet->header.payloadType); | 
 |     if (!info) { | 
 |       return kUnknownPayloadType; | 
 |     } | 
 |     // No splitting for a sync-packet. | 
 |     if (packet->sync_packet) { | 
 |       ++it; | 
 |       continue; | 
 |     } | 
 |     PacketList new_packets; | 
 |     switch (info->codec_type) { | 
 |       case kDecoderPCMu: | 
 |       case kDecoderPCMa: { | 
 |         // 8 bytes per ms; 8 timestamps per ms. | 
 |         SplitBySamples(packet, 8, 8, &new_packets); | 
 |         break; | 
 |       } | 
 |       case kDecoderPCMu_2ch: | 
 |       case kDecoderPCMa_2ch: { | 
 |         // 2 * 8 bytes per ms; 8 timestamps per ms. | 
 |         SplitBySamples(packet, 2 * 8, 8, &new_packets); | 
 |         break; | 
 |       } | 
 |       case kDecoderG722: { | 
 |         // 8 bytes per ms; 16 timestamps per ms. | 
 |         SplitBySamples(packet, 8, 16, &new_packets); | 
 |         break; | 
 |       } | 
 |       case kDecoderPCM16B: { | 
 |         // 16 bytes per ms; 8 timestamps per ms. | 
 |         SplitBySamples(packet, 16, 8, &new_packets); | 
 |         break; | 
 |       } | 
 |       case kDecoderPCM16Bwb: { | 
 |         // 32 bytes per ms; 16 timestamps per ms. | 
 |         SplitBySamples(packet, 32, 16, &new_packets); | 
 |         break; | 
 |       } | 
 |       case kDecoderPCM16Bswb32kHz: { | 
 |         // 64 bytes per ms; 32 timestamps per ms. | 
 |         SplitBySamples(packet, 64, 32, &new_packets); | 
 |         break; | 
 |       } | 
 |       case kDecoderPCM16Bswb48kHz: { | 
 |         // 96 bytes per ms; 48 timestamps per ms. | 
 |         SplitBySamples(packet, 96, 48, &new_packets); | 
 |         break; | 
 |       } | 
 |       case kDecoderPCM16B_2ch: { | 
 |         // 2 * 16 bytes per ms; 8 timestamps per ms. | 
 |         SplitBySamples(packet, 2 * 16, 8, &new_packets); | 
 |         break; | 
 |       } | 
 |       case kDecoderPCM16Bwb_2ch: { | 
 |         // 2 * 32 bytes per ms; 16 timestamps per ms. | 
 |         SplitBySamples(packet, 2 * 32, 16, &new_packets); | 
 |         break; | 
 |       } | 
 |       case kDecoderPCM16Bswb32kHz_2ch: { | 
 |         // 2 * 64 bytes per ms; 32 timestamps per ms. | 
 |         SplitBySamples(packet, 2 * 64, 32, &new_packets); | 
 |         break; | 
 |       } | 
 |       case kDecoderPCM16Bswb48kHz_2ch: { | 
 |         // 2 * 96 bytes per ms; 48 timestamps per ms. | 
 |         SplitBySamples(packet, 2 * 96, 48, &new_packets); | 
 |         break; | 
 |       } | 
 |       case kDecoderPCM16B_5ch: { | 
 |         // 5 * 16 bytes per ms; 8 timestamps per ms. | 
 |         SplitBySamples(packet, 5 * 16, 8, &new_packets); | 
 |         break; | 
 |       } | 
 |       case kDecoderILBC: { | 
 |         int bytes_per_frame; | 
 |         int timestamps_per_frame; | 
 |         if (packet->payload_length >= 950) { | 
 |           return kTooLargePayload; | 
 |         } else if (packet->payload_length % 38 == 0) { | 
 |           // 20 ms frames. | 
 |           bytes_per_frame = 38; | 
 |           timestamps_per_frame = 160; | 
 |         } else if (packet->payload_length % 50 == 0) { | 
 |           // 30 ms frames. | 
 |           bytes_per_frame = 50; | 
 |           timestamps_per_frame = 240; | 
 |         } else { | 
 |           return kFrameSplitError; | 
 |         } | 
 |         int ret = SplitByFrames(packet, bytes_per_frame, timestamps_per_frame, | 
 |                                 &new_packets); | 
 |         if (ret < 0) { | 
 |           return ret; | 
 |         } else if (ret == kNoSplit) { | 
 |           // Do not split at all. Simply advance to the next packet in the list. | 
 |           ++it; | 
 |           // We do not have any new packets to insert, and should not delete the | 
 |           // old one. Skip the code after the switch case, and jump straight to | 
 |           // the next packet in the while loop. | 
 |           continue; | 
 |         } | 
 |         break; | 
 |       } | 
 |       default: { | 
 |         // Do not split at all. Simply advance to the next packet in the list. | 
 |         ++it; | 
 |         // We do not have any new packets to insert, and should not delete the | 
 |         // old one. Skip the code after the switch case, and jump straight to | 
 |         // the next packet in the while loop. | 
 |         continue; | 
 |       } | 
 |     } | 
 |     // Insert new packets into original list, before the element pointed to by | 
 |     // iterator |it|. | 
 |     packet_list->splice(it, new_packets, new_packets.begin(), | 
 |                         new_packets.end()); | 
 |     // Delete old packet payload. | 
 |     delete [] (*it)->payload; | 
 |     delete (*it); | 
 |     // Remove |it| from the packet list. This operation effectively moves the | 
 |     // iterator |it| to the next packet in the list. Thus, we do not have to | 
 |     // increment it manually. | 
 |     it = packet_list->erase(it); | 
 |   } | 
 |   return kOK; | 
 | } | 
 |  | 
 | void PayloadSplitter::SplitBySamples(const Packet* packet, | 
 |                                      int bytes_per_ms, | 
 |                                      int timestamps_per_ms, | 
 |                                      PacketList* new_packets) { | 
 |   assert(packet); | 
 |   assert(new_packets); | 
 |  | 
 |   int split_size_bytes = packet->payload_length; | 
 |  | 
 |   // Find a "chunk size" >= 20 ms and < 40 ms. | 
 |   int min_chunk_size = bytes_per_ms * 20; | 
 |   // Reduce the split size by half as long as |split_size_bytes| is at least | 
 |   // twice the minimum chunk size (so that the resulting size is at least as | 
 |   // large as the minimum chunk size). | 
 |   while (split_size_bytes >= 2 * min_chunk_size) { | 
 |     split_size_bytes >>= 1; | 
 |   } | 
 |   int timestamps_per_chunk = | 
 |       split_size_bytes * timestamps_per_ms / bytes_per_ms; | 
 |   uint32_t timestamp = packet->header.timestamp; | 
 |  | 
 |   uint8_t* payload_ptr = packet->payload; | 
 |   int len = packet->payload_length; | 
 |   while (len >= (2 * split_size_bytes)) { | 
 |     Packet* new_packet = new Packet; | 
 |     new_packet->payload_length = split_size_bytes; | 
 |     new_packet->header = packet->header; | 
 |     new_packet->header.timestamp = timestamp; | 
 |     timestamp += timestamps_per_chunk; | 
 |     new_packet->primary = packet->primary; | 
 |     new_packet->payload = new uint8_t[split_size_bytes]; | 
 |     memcpy(new_packet->payload, payload_ptr, split_size_bytes); | 
 |     payload_ptr += split_size_bytes; | 
 |     new_packets->push_back(new_packet); | 
 |     len -= split_size_bytes; | 
 |   } | 
 |  | 
 |   if (len > 0) { | 
 |     Packet* new_packet = new Packet; | 
 |     new_packet->payload_length = len; | 
 |     new_packet->header = packet->header; | 
 |     new_packet->header.timestamp = timestamp; | 
 |     new_packet->primary = packet->primary; | 
 |     new_packet->payload = new uint8_t[len]; | 
 |     memcpy(new_packet->payload, payload_ptr, len); | 
 |     new_packets->push_back(new_packet); | 
 |   } | 
 | } | 
 |  | 
 | int PayloadSplitter::SplitByFrames(const Packet* packet, | 
 |                                    int bytes_per_frame, | 
 |                                    int timestamps_per_frame, | 
 |                                    PacketList* new_packets) { | 
 |   if (packet->payload_length % bytes_per_frame != 0) { | 
 |     return kFrameSplitError; | 
 |   } | 
 |  | 
 |   int num_frames = packet->payload_length / bytes_per_frame; | 
 |   if (num_frames == 1) { | 
 |     // Special case. Do not split the payload. | 
 |     return kNoSplit; | 
 |   } | 
 |  | 
 |   uint32_t timestamp = packet->header.timestamp; | 
 |   uint8_t* payload_ptr = packet->payload; | 
 |   int len = packet->payload_length; | 
 |   while (len > 0) { | 
 |     assert(len >= bytes_per_frame); | 
 |     Packet* new_packet = new Packet; | 
 |     new_packet->payload_length = bytes_per_frame; | 
 |     new_packet->header = packet->header; | 
 |     new_packet->header.timestamp = timestamp; | 
 |     timestamp += timestamps_per_frame; | 
 |     new_packet->primary = packet->primary; | 
 |     new_packet->payload = new uint8_t[bytes_per_frame]; | 
 |     memcpy(new_packet->payload, payload_ptr, bytes_per_frame); | 
 |     payload_ptr += bytes_per_frame; | 
 |     new_packets->push_back(new_packet); | 
 |     len -= bytes_per_frame; | 
 |   } | 
 |   return kOK; | 
 | } | 
 |  | 
 | }  // namespace webrtc |