| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/audio_processing/level_controller/signal_classifier.h" |
| |
| #include <algorithm> |
| #include <numeric> |
| #include <vector> |
| |
| #include "webrtc/api/array_view.h" |
| #include "webrtc/modules/audio_processing/audio_buffer.h" |
| #include "webrtc/modules/audio_processing/level_controller/down_sampler.h" |
| #include "webrtc/modules/audio_processing/level_controller/noise_spectrum_estimator.h" |
| #include "webrtc/modules/audio_processing/logging/apm_data_dumper.h" |
| #include "webrtc/rtc_base/constructormagic.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| void RemoveDcLevel(rtc::ArrayView<float> x) { |
| RTC_DCHECK_LT(0, x.size()); |
| float mean = std::accumulate(x.data(), x.data() + x.size(), 0.f); |
| mean /= x.size(); |
| |
| for (float& v : x) { |
| v -= mean; |
| } |
| } |
| |
| void PowerSpectrum(const OouraFft* ooura_fft, |
| rtc::ArrayView<const float> x, |
| rtc::ArrayView<float> spectrum) { |
| RTC_DCHECK_EQ(65, spectrum.size()); |
| RTC_DCHECK_EQ(128, x.size()); |
| float X[128]; |
| std::copy(x.data(), x.data() + x.size(), X); |
| ooura_fft->Fft(X); |
| |
| float* X_p = X; |
| RTC_DCHECK_EQ(X_p, &X[0]); |
| spectrum[0] = (*X_p) * (*X_p); |
| ++X_p; |
| RTC_DCHECK_EQ(X_p, &X[1]); |
| spectrum[64] = (*X_p) * (*X_p); |
| for (int k = 1; k < 64; ++k) { |
| ++X_p; |
| RTC_DCHECK_EQ(X_p, &X[2 * k]); |
| spectrum[k] = (*X_p) * (*X_p); |
| ++X_p; |
| RTC_DCHECK_EQ(X_p, &X[2 * k + 1]); |
| spectrum[k] += (*X_p) * (*X_p); |
| } |
| } |
| |
| webrtc::SignalClassifier::SignalType ClassifySignal( |
| rtc::ArrayView<const float> signal_spectrum, |
| rtc::ArrayView<const float> noise_spectrum, |
| ApmDataDumper* data_dumper) { |
| int num_stationary_bands = 0; |
| int num_highly_nonstationary_bands = 0; |
| |
| // Detect stationary and highly nonstationary bands. |
| for (size_t k = 1; k < 40; k++) { |
| if (signal_spectrum[k] < 3 * noise_spectrum[k] && |
| signal_spectrum[k] * 3 > noise_spectrum[k]) { |
| ++num_stationary_bands; |
| } else if (signal_spectrum[k] > 9 * noise_spectrum[k]) { |
| ++num_highly_nonstationary_bands; |
| } |
| } |
| |
| data_dumper->DumpRaw("lc_num_stationary_bands", 1, &num_stationary_bands); |
| data_dumper->DumpRaw("lc_num_highly_nonstationary_bands", 1, |
| &num_highly_nonstationary_bands); |
| |
| // Use the detected number of bands to classify the overall signal |
| // stationarity. |
| if (num_stationary_bands > 15) { |
| return SignalClassifier::SignalType::kStationary; |
| } else if (num_highly_nonstationary_bands > 15) { |
| return SignalClassifier::SignalType::kHighlyNonStationary; |
| } else { |
| return SignalClassifier::SignalType::kNonStationary; |
| } |
| } |
| |
| } // namespace |
| |
| SignalClassifier::FrameExtender::FrameExtender(size_t frame_size, |
| size_t extended_frame_size) |
| : x_old_(extended_frame_size - frame_size, 0.f) {} |
| |
| SignalClassifier::FrameExtender::~FrameExtender() = default; |
| |
| void SignalClassifier::FrameExtender::ExtendFrame( |
| rtc::ArrayView<const float> x, |
| rtc::ArrayView<float> x_extended) { |
| RTC_DCHECK_EQ(x_old_.size() + x.size(), x_extended.size()); |
| std::copy(x_old_.data(), x_old_.data() + x_old_.size(), x_extended.data()); |
| std::copy(x.data(), x.data() + x.size(), x_extended.data() + x_old_.size()); |
| std::copy(x_extended.data() + x_extended.size() - x_old_.size(), |
| x_extended.data() + x_extended.size(), x_old_.data()); |
| } |
| |
| SignalClassifier::SignalClassifier(ApmDataDumper* data_dumper) |
| : data_dumper_(data_dumper), |
| down_sampler_(data_dumper_), |
| noise_spectrum_estimator_(data_dumper_) { |
| Initialize(AudioProcessing::kSampleRate48kHz); |
| } |
| SignalClassifier::~SignalClassifier() {} |
| |
| void SignalClassifier::Initialize(int sample_rate_hz) { |
| down_sampler_.Initialize(sample_rate_hz); |
| noise_spectrum_estimator_.Initialize(); |
| frame_extender_.reset(new FrameExtender(80, 128)); |
| sample_rate_hz_ = sample_rate_hz; |
| initialization_frames_left_ = 2; |
| consistent_classification_counter_ = 3; |
| last_signal_type_ = SignalClassifier::SignalType::kNonStationary; |
| } |
| |
| void SignalClassifier::Analyze(const AudioBuffer& audio, |
| SignalType* signal_type) { |
| RTC_DCHECK_EQ(audio.num_frames(), sample_rate_hz_ / 100); |
| |
| // Compute the signal power spectrum. |
| float downsampled_frame[80]; |
| down_sampler_.DownSample(rtc::ArrayView<const float>( |
| audio.channels_const_f()[0], audio.num_frames()), |
| downsampled_frame); |
| float extended_frame[128]; |
| frame_extender_->ExtendFrame(downsampled_frame, extended_frame); |
| RemoveDcLevel(extended_frame); |
| float signal_spectrum[65]; |
| PowerSpectrum(&ooura_fft_, extended_frame, signal_spectrum); |
| |
| // Classify the signal based on the estimate of the noise spectrum and the |
| // signal spectrum estimate. |
| *signal_type = ClassifySignal(signal_spectrum, |
| noise_spectrum_estimator_.GetNoiseSpectrum(), |
| data_dumper_); |
| |
| // Update the noise spectrum based on the signal spectrum. |
| noise_spectrum_estimator_.Update(signal_spectrum, |
| initialization_frames_left_ > 0); |
| |
| // Update the number of frames until a reliable signal spectrum is achieved. |
| initialization_frames_left_ = std::max(0, initialization_frames_left_ - 1); |
| |
| if (last_signal_type_ == *signal_type) { |
| consistent_classification_counter_ = |
| std::max(0, consistent_classification_counter_ - 1); |
| } else { |
| last_signal_type_ = *signal_type; |
| consistent_classification_counter_ = 3; |
| } |
| |
| if (consistent_classification_counter_ > 0) { |
| *signal_type = SignalClassifier::SignalType::kNonStationary; |
| } |
| } |
| |
| } // namespace webrtc |