| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "webrtc/base/scoped_ptr.h" |
| #include "webrtc/common_types.h" |
| #include "webrtc/modules/audio_coding/codecs/pcm16b/include/pcm16b.h" |
| #include "webrtc/modules/audio_coding/main/interface/audio_coding_module.h" |
| #include "webrtc/modules/audio_coding/main/test/utility.h" |
| #include "webrtc/modules/interface/module_common_types.h" |
| #include "webrtc/system_wrappers/include/sleep.h" |
| #include "webrtc/test/testsupport/fileutils.h" |
| #include "webrtc/test/testsupport/gtest_disable.h" |
| |
| namespace webrtc { |
| |
| class TargetDelayTest : public ::testing::Test { |
| protected: |
| TargetDelayTest() : acm_(AudioCodingModule::Create(0)) {} |
| |
| ~TargetDelayTest() {} |
| |
| void SetUp() { |
| EXPECT_TRUE(acm_.get() != NULL); |
| |
| CodecInst codec; |
| ASSERT_EQ(0, AudioCodingModule::Codec("L16", &codec, kSampleRateHz, 1)); |
| ASSERT_EQ(0, acm_->InitializeReceiver()); |
| ASSERT_EQ(0, acm_->RegisterReceiveCodec(codec)); |
| |
| rtp_info_.header.payloadType = codec.pltype; |
| rtp_info_.header.timestamp = 0; |
| rtp_info_.header.ssrc = 0x12345678; |
| rtp_info_.header.markerBit = false; |
| rtp_info_.header.sequenceNumber = 0; |
| rtp_info_.type.Audio.channel = 1; |
| rtp_info_.type.Audio.isCNG = false; |
| rtp_info_.frameType = kAudioFrameSpeech; |
| |
| int16_t audio[kFrameSizeSamples]; |
| const int kRange = 0x7FF; // 2047, easy for masking. |
| for (size_t n = 0; n < kFrameSizeSamples; ++n) |
| audio[n] = (rand() & kRange) - kRange / 2; |
| WebRtcPcm16b_Encode(audio, kFrameSizeSamples, payload_); |
| } |
| |
| void OutOfRangeInput() { |
| EXPECT_EQ(-1, SetMinimumDelay(-1)); |
| EXPECT_EQ(-1, SetMinimumDelay(10001)); |
| } |
| |
| void NoTargetDelayBufferSizeChanges() { |
| for (int n = 0; n < 30; ++n) // Run enough iterations. |
| Run(true); |
| int clean_optimal_delay = GetCurrentOptimalDelayMs(); |
| Run(false); // Run with jitter. |
| int jittery_optimal_delay = GetCurrentOptimalDelayMs(); |
| EXPECT_GT(jittery_optimal_delay, clean_optimal_delay); |
| int required_delay = RequiredDelay(); |
| EXPECT_GT(required_delay, 0); |
| EXPECT_NEAR(required_delay, jittery_optimal_delay, 1); |
| } |
| |
| void WithTargetDelayBufferNotChanging() { |
| // A target delay that is one packet larger than jitter. |
| const int kTargetDelayMs = (kInterarrivalJitterPacket + 1) * |
| kNum10msPerFrame * 10; |
| ASSERT_EQ(0, SetMinimumDelay(kTargetDelayMs)); |
| for (int n = 0; n < 30; ++n) // Run enough iterations to fill the buffer. |
| Run(true); |
| int clean_optimal_delay = GetCurrentOptimalDelayMs(); |
| EXPECT_EQ(kTargetDelayMs, clean_optimal_delay); |
| Run(false); // Run with jitter. |
| int jittery_optimal_delay = GetCurrentOptimalDelayMs(); |
| EXPECT_EQ(jittery_optimal_delay, clean_optimal_delay); |
| } |
| |
| void RequiredDelayAtCorrectRange() { |
| for (int n = 0; n < 30; ++n) // Run clean and store delay. |
| Run(true); |
| int clean_optimal_delay = GetCurrentOptimalDelayMs(); |
| |
| // A relatively large delay. |
| const int kTargetDelayMs = (kInterarrivalJitterPacket + 10) * |
| kNum10msPerFrame * 10; |
| ASSERT_EQ(0, SetMinimumDelay(kTargetDelayMs)); |
| for (int n = 0; n < 300; ++n) // Run enough iterations to fill the buffer. |
| Run(true); |
| Run(false); // Run with jitter. |
| |
| int jittery_optimal_delay = GetCurrentOptimalDelayMs(); |
| EXPECT_EQ(kTargetDelayMs, jittery_optimal_delay); |
| |
| int required_delay = RequiredDelay(); |
| |
| // Checking |required_delay| is in correct range. |
| EXPECT_GT(required_delay, 0); |
| EXPECT_GT(jittery_optimal_delay, required_delay); |
| EXPECT_GT(required_delay, clean_optimal_delay); |
| |
| // A tighter check for the value of |required_delay|. |
| // The jitter forces a delay of |
| // |kInterarrivalJitterPacket * kNum10msPerFrame * 10| milliseconds. So we |
| // expect |required_delay| be close to that. |
| EXPECT_NEAR(kInterarrivalJitterPacket * kNum10msPerFrame * 10, |
| required_delay, 1); |
| } |
| |
| void TargetDelayBufferMinMax() { |
| const int kTargetMinDelayMs = kNum10msPerFrame * 10; |
| ASSERT_EQ(0, SetMinimumDelay(kTargetMinDelayMs)); |
| for (int m = 0; m < 30; ++m) // Run enough iterations to fill the buffer. |
| Run(true); |
| int clean_optimal_delay = GetCurrentOptimalDelayMs(); |
| EXPECT_EQ(kTargetMinDelayMs, clean_optimal_delay); |
| |
| const int kTargetMaxDelayMs = 2 * (kNum10msPerFrame * 10); |
| ASSERT_EQ(0, SetMaximumDelay(kTargetMaxDelayMs)); |
| for (int n = 0; n < 30; ++n) // Run enough iterations to fill the buffer. |
| Run(false); |
| |
| int capped_optimal_delay = GetCurrentOptimalDelayMs(); |
| EXPECT_EQ(kTargetMaxDelayMs, capped_optimal_delay); |
| } |
| |
| private: |
| static const int kSampleRateHz = 16000; |
| static const int kNum10msPerFrame = 2; |
| static const size_t kFrameSizeSamples = 320; // 20 ms @ 16 kHz. |
| // payload-len = frame-samples * 2 bytes/sample. |
| static const int kPayloadLenBytes = 320 * 2; |
| // Inter-arrival time in number of packets in a jittery channel. One is no |
| // jitter. |
| static const int kInterarrivalJitterPacket = 2; |
| |
| void Push() { |
| rtp_info_.header.timestamp += kFrameSizeSamples; |
| rtp_info_.header.sequenceNumber++; |
| ASSERT_EQ(0, acm_->IncomingPacket(payload_, kFrameSizeSamples * 2, |
| rtp_info_)); |
| } |
| |
| // Pull audio equivalent to the amount of audio in one RTP packet. |
| void Pull() { |
| AudioFrame frame; |
| for (int k = 0; k < kNum10msPerFrame; ++k) { // Pull one frame. |
| ASSERT_EQ(0, acm_->PlayoutData10Ms(-1, &frame)); |
| // Had to use ASSERT_TRUE, ASSERT_EQ generated error. |
| ASSERT_TRUE(kSampleRateHz == frame.sample_rate_hz_); |
| ASSERT_EQ(1, frame.num_channels_); |
| ASSERT_TRUE(kSampleRateHz / 100 == frame.samples_per_channel_); |
| } |
| } |
| |
| void Run(bool clean) { |
| for (int n = 0; n < 10; ++n) { |
| for (int m = 0; m < 5; ++m) { |
| Push(); |
| Pull(); |
| } |
| |
| if (!clean) { |
| for (int m = 0; m < 10; ++m) { // Long enough to trigger delay change. |
| Push(); |
| for (int n = 0; n < kInterarrivalJitterPacket; ++n) |
| Pull(); |
| } |
| } |
| } |
| } |
| |
| int SetMinimumDelay(int delay_ms) { |
| return acm_->SetMinimumPlayoutDelay(delay_ms); |
| } |
| |
| int SetMaximumDelay(int delay_ms) { |
| return acm_->SetMaximumPlayoutDelay(delay_ms); |
| } |
| |
| int GetCurrentOptimalDelayMs() { |
| NetworkStatistics stats; |
| acm_->GetNetworkStatistics(&stats); |
| return stats.preferredBufferSize; |
| } |
| |
| int RequiredDelay() { |
| return acm_->LeastRequiredDelayMs(); |
| } |
| |
| rtc::scoped_ptr<AudioCodingModule> acm_; |
| WebRtcRTPHeader rtp_info_; |
| uint8_t payload_[kPayloadLenBytes]; |
| }; |
| |
| TEST_F(TargetDelayTest, DISABLED_ON_ANDROID(OutOfRangeInput)) { |
| OutOfRangeInput(); |
| } |
| |
| TEST_F(TargetDelayTest, DISABLED_ON_ANDROID(NoTargetDelayBufferSizeChanges)) { |
| NoTargetDelayBufferSizeChanges(); |
| } |
| |
| TEST_F(TargetDelayTest, DISABLED_ON_ANDROID(WithTargetDelayBufferNotChanging)) { |
| WithTargetDelayBufferNotChanging(); |
| } |
| |
| TEST_F(TargetDelayTest, DISABLED_ON_ANDROID(RequiredDelayAtCorrectRange)) { |
| RequiredDelayAtCorrectRange(); |
| } |
| |
| TEST_F(TargetDelayTest, DISABLED_ON_ANDROID(TargetDelayBufferMinMax)) { |
| TargetDelayBufferMinMax(); |
| } |
| |
| } // namespace webrtc |
| |