| /* |
| * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <math.h> |
| #include <algorithm> |
| #include <vector> |
| |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "webrtc/common_audio/audio_converter.h" |
| #include "webrtc/common_audio/resampler/push_sinc_resampler.h" |
| #include "webrtc/modules/audio_processing/channel_buffer.h" |
| #include "webrtc/system_wrappers/interface/scoped_ptr.h" |
| |
| namespace webrtc { |
| |
| typedef scoped_ptr<ChannelBuffer<float>> ScopedBuffer; |
| |
| // Sets the signal value to increase by |data| with every sample. |
| ScopedBuffer CreateBuffer(const std::vector<float>& data, int frames) { |
| const int num_channels = static_cast<int>(data.size()); |
| ScopedBuffer sb(new ChannelBuffer<float>(frames, num_channels)); |
| for (int i = 0; i < num_channels; ++i) |
| for (int j = 0; j < frames; ++j) |
| sb->channel(i)[j] = data[i] * j; |
| return sb; |
| } |
| |
| void VerifyParams(const ChannelBuffer<float>& ref, |
| const ChannelBuffer<float>& test) { |
| EXPECT_EQ(ref.num_channels(), test.num_channels()); |
| EXPECT_EQ(ref.samples_per_channel(), test.samples_per_channel()); |
| } |
| |
| // Computes the best SNR based on the error between |ref_frame| and |
| // |test_frame|. It searches around |expected_delay| in samples between the |
| // signals to compensate for the resampling delay. |
| float ComputeSNR(const ChannelBuffer<float>& ref, |
| const ChannelBuffer<float>& test, |
| int expected_delay) { |
| VerifyParams(ref, test); |
| float best_snr = 0; |
| int best_delay = 0; |
| |
| // Search within one sample of the expected delay. |
| for (int delay = std::max(expected_delay - 1, 0); |
| delay <= std::min(expected_delay + 1, ref.samples_per_channel()); |
| ++delay) { |
| float mse = 0; |
| float variance = 0; |
| float mean = 0; |
| for (int i = 0; i < ref.num_channels(); ++i) { |
| for (int j = 0; j < ref.samples_per_channel() - delay; ++j) { |
| float error = ref.channel(i)[j] - test.channel(i)[j + delay]; |
| mse += error * error; |
| variance += ref.channel(i)[j] * ref.channel(i)[j]; |
| mean += ref.channel(i)[j]; |
| } |
| } |
| const int length = ref.num_channels() * (ref.samples_per_channel() - delay); |
| mse /= length; |
| variance /= length; |
| mean /= length; |
| variance -= mean * mean; |
| float snr = 100; // We assign 100 dB to the zero-error case. |
| if (mse > 0) |
| snr = 10 * log10(variance / mse); |
| if (snr > best_snr) { |
| best_snr = snr; |
| best_delay = delay; |
| } |
| } |
| printf("SNR=%.1f dB at delay=%d\n", best_snr, best_delay); |
| return best_snr; |
| } |
| |
| // Sets the source to a linearly increasing signal for which we can easily |
| // generate a reference. Runs the AudioConverter and ensures the output has |
| // sufficiently high SNR relative to the reference. |
| void RunAudioConverterTest(int src_channels, |
| int src_sample_rate_hz, |
| int dst_channels, |
| int dst_sample_rate_hz) { |
| const float kSrcLeft = 0.0002f; |
| const float kSrcRight = 0.0001f; |
| const float resampling_factor = (1.f * src_sample_rate_hz) / |
| dst_sample_rate_hz; |
| const float dst_left = resampling_factor * kSrcLeft; |
| const float dst_right = resampling_factor * kSrcRight; |
| const float dst_mono = (dst_left + dst_right) / 2; |
| const int src_frames = src_sample_rate_hz / 100; |
| const int dst_frames = dst_sample_rate_hz / 100; |
| |
| std::vector<float> src_data(1, kSrcLeft); |
| if (src_channels == 2) |
| src_data.push_back(kSrcRight); |
| ScopedBuffer src_buffer = CreateBuffer(src_data, src_frames); |
| |
| std::vector<float> dst_data(1, 0); |
| std::vector<float> ref_data; |
| if (dst_channels == 1) { |
| if (src_channels == 1) |
| ref_data.push_back(dst_left); |
| else |
| ref_data.push_back(dst_mono); |
| } else { |
| dst_data.push_back(0); |
| ref_data.push_back(dst_left); |
| if (src_channels == 1) |
| ref_data.push_back(dst_left); |
| else |
| ref_data.push_back(dst_right); |
| } |
| ScopedBuffer dst_buffer = CreateBuffer(dst_data, dst_frames); |
| ScopedBuffer ref_buffer = CreateBuffer(ref_data, dst_frames); |
| |
| // The sinc resampler has a known delay, which we compute here. |
| const int delay_frames = src_sample_rate_hz == dst_sample_rate_hz ? 0 : |
| PushSincResampler::AlgorithmicDelaySeconds(src_sample_rate_hz) * |
| dst_sample_rate_hz; |
| printf("(%d, %d Hz) -> (%d, %d Hz) ", // SNR reported on the same line later. |
| src_channels, src_sample_rate_hz, dst_channels, dst_sample_rate_hz); |
| |
| AudioConverter converter(src_channels, src_frames, dst_channels, dst_frames); |
| converter.Convert(src_buffer->channels(), src_channels, src_frames, |
| dst_channels, dst_frames, dst_buffer->channels()); |
| |
| EXPECT_LT(43.f, |
| ComputeSNR(*ref_buffer.get(), *dst_buffer.get(), delay_frames)); |
| } |
| |
| TEST(AudioConverterTest, ConversionsPassSNRThreshold) { |
| const int kSampleRates[] = {8000, 16000, 32000, 44100, 48000}; |
| const int kSampleRatesSize = sizeof(kSampleRates) / sizeof(*kSampleRates); |
| const int kChannels[] = {1, 2}; |
| const int kChannelsSize = sizeof(kChannels) / sizeof(*kChannels); |
| for (int src_rate = 0; src_rate < kSampleRatesSize; ++src_rate) { |
| for (int dst_rate = 0; dst_rate < kSampleRatesSize; ++dst_rate) { |
| for (int src_channel = 0; src_channel < kChannelsSize; ++src_channel) { |
| for (int dst_channel = 0; dst_channel < kChannelsSize; ++dst_channel) { |
| RunAudioConverterTest(kChannels[src_channel], kSampleRates[src_rate], |
| kChannels[dst_channel], kSampleRates[dst_rate]); |
| } |
| } |
| } |
| } |
| } |
| |
| } // namespace webrtc |