|  | /* | 
|  | *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | /* analog_agc.c | 
|  | * | 
|  | * Using a feedback system, determines an appropriate analog volume level | 
|  | * given an input signal and current volume level. Targets a conservative | 
|  | * signal level and is intended for use with a digital AGC to apply | 
|  | * additional gain. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "webrtc/modules/audio_processing/agc/legacy/analog_agc.h" | 
|  |  | 
|  | #include <stdlib.h> | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | #include <stdio.h> | 
|  | #endif | 
|  |  | 
|  | #include "webrtc/base/checks.h" | 
|  |  | 
|  | /* The slope of in Q13*/ | 
|  | static const int16_t kSlope1[8] = {21793, 12517, 7189, 4129, | 
|  | 2372,  1362,  472,  78}; | 
|  |  | 
|  | /* The offset in Q14 */ | 
|  | static const int16_t kOffset1[8] = {25395, 23911, 22206, 20737, | 
|  | 19612, 18805, 17951, 17367}; | 
|  |  | 
|  | /* The slope of in Q13*/ | 
|  | static const int16_t kSlope2[8] = {2063, 1731, 1452, 1218, 1021, 857, 597, 337}; | 
|  |  | 
|  | /* The offset in Q14 */ | 
|  | static const int16_t kOffset2[8] = {18432, 18379, 18290, 18177, | 
|  | 18052, 17920, 17670, 17286}; | 
|  |  | 
|  | static const int16_t kMuteGuardTimeMs = 8000; | 
|  | static const int16_t kInitCheck = 42; | 
|  | static const size_t kNumSubframes = 10; | 
|  |  | 
|  | /* Default settings if config is not used */ | 
|  | #define AGC_DEFAULT_TARGET_LEVEL 3 | 
|  | #define AGC_DEFAULT_COMP_GAIN 9 | 
|  | /* This is the target level for the analog part in ENV scale. To convert to RMS | 
|  | * scale you | 
|  | * have to add OFFSET_ENV_TO_RMS. | 
|  | */ | 
|  | #define ANALOG_TARGET_LEVEL 11 | 
|  | #define ANALOG_TARGET_LEVEL_2 5  // ANALOG_TARGET_LEVEL / 2 | 
|  | /* Offset between RMS scale (analog part) and ENV scale (digital part). This | 
|  | * value actually | 
|  | * varies with the FIXED_ANALOG_TARGET_LEVEL, hence we should in the future | 
|  | * replace it with | 
|  | * a table. | 
|  | */ | 
|  | #define OFFSET_ENV_TO_RMS 9 | 
|  | /* The reference input level at which the digital part gives an output of | 
|  | * targetLevelDbfs | 
|  | * (desired level) if we have no compression gain. This level should be set high | 
|  | * enough not | 
|  | * to compress the peaks due to the dynamics. | 
|  | */ | 
|  | #define DIGITAL_REF_AT_0_COMP_GAIN 4 | 
|  | /* Speed of reference level decrease. | 
|  | */ | 
|  | #define DIFF_REF_TO_ANALOG 5 | 
|  |  | 
|  | #ifdef MIC_LEVEL_FEEDBACK | 
|  | #define NUM_BLOCKS_IN_SAT_BEFORE_CHANGE_TARGET 7 | 
|  | #endif | 
|  | /* Size of analog gain table */ | 
|  | #define GAIN_TBL_LEN 32 | 
|  | /* Matlab code: | 
|  | * fprintf(1, '\t%i, %i, %i, %i,\n', round(10.^(linspace(0,10,32)/20) * 2^12)); | 
|  | */ | 
|  | /* Q12 */ | 
|  | static const uint16_t kGainTableAnalog[GAIN_TBL_LEN] = { | 
|  | 4096, 4251, 4412, 4579,  4752,  4932,  5118,  5312,  5513,  5722, 5938, | 
|  | 6163, 6396, 6638, 6889,  7150,  7420,  7701,  7992,  8295,  8609, 8934, | 
|  | 9273, 9623, 9987, 10365, 10758, 11165, 11587, 12025, 12480, 12953}; | 
|  |  | 
|  | /* Gain/Suppression tables for virtual Mic (in Q10) */ | 
|  | static const uint16_t kGainTableVirtualMic[128] = { | 
|  | 1052,  1081,  1110,  1141,  1172,  1204,  1237,  1271,  1305,  1341,  1378, | 
|  | 1416,  1454,  1494,  1535,  1577,  1620,  1664,  1710,  1757,  1805,  1854, | 
|  | 1905,  1957,  2010,  2065,  2122,  2180,  2239,  2301,  2364,  2428,  2495, | 
|  | 2563,  2633,  2705,  2779,  2855,  2933,  3013,  3096,  3180,  3267,  3357, | 
|  | 3449,  3543,  3640,  3739,  3842,  3947,  4055,  4166,  4280,  4397,  4517, | 
|  | 4640,  4767,  4898,  5032,  5169,  5311,  5456,  5605,  5758,  5916,  6078, | 
|  | 6244,  6415,  6590,  6770,  6956,  7146,  7341,  7542,  7748,  7960,  8178, | 
|  | 8402,  8631,  8867,  9110,  9359,  9615,  9878,  10148, 10426, 10711, 11004, | 
|  | 11305, 11614, 11932, 12258, 12593, 12938, 13292, 13655, 14029, 14412, 14807, | 
|  | 15212, 15628, 16055, 16494, 16945, 17409, 17885, 18374, 18877, 19393, 19923, | 
|  | 20468, 21028, 21603, 22194, 22801, 23425, 24065, 24724, 25400, 26095, 26808, | 
|  | 27541, 28295, 29069, 29864, 30681, 31520, 32382}; | 
|  | static const uint16_t kSuppressionTableVirtualMic[128] = { | 
|  | 1024, 1006, 988, 970, 952, 935, 918, 902, 886, 870, 854, 839, 824, 809, 794, | 
|  | 780,  766,  752, 739, 726, 713, 700, 687, 675, 663, 651, 639, 628, 616, 605, | 
|  | 594,  584,  573, 563, 553, 543, 533, 524, 514, 505, 496, 487, 478, 470, 461, | 
|  | 453,  445,  437, 429, 421, 414, 406, 399, 392, 385, 378, 371, 364, 358, 351, | 
|  | 345,  339,  333, 327, 321, 315, 309, 304, 298, 293, 288, 283, 278, 273, 268, | 
|  | 263,  258,  254, 249, 244, 240, 236, 232, 227, 223, 219, 215, 211, 208, 204, | 
|  | 200,  197,  193, 190, 186, 183, 180, 176, 173, 170, 167, 164, 161, 158, 155, | 
|  | 153,  150,  147, 145, 142, 139, 137, 134, 132, 130, 127, 125, 123, 121, 118, | 
|  | 116,  114,  112, 110, 108, 106, 104, 102}; | 
|  |  | 
|  | /* Table for target energy levels. Values in Q(-7) | 
|  | * Matlab code | 
|  | * targetLevelTable = fprintf('%d,\t%d,\t%d,\t%d,\n', | 
|  | * round((32767*10.^(-(0:63)'/20)).^2*16/2^7) */ | 
|  |  | 
|  | static const int32_t kTargetLevelTable[64] = { | 
|  | 134209536, 106606424, 84680493, 67264106, 53429779, 42440782, 33711911, | 
|  | 26778323,  21270778,  16895980, 13420954, 10660642, 8468049,  6726411, | 
|  | 5342978,   4244078,   3371191,  2677832,  2127078,  1689598,  1342095, | 
|  | 1066064,   846805,    672641,   534298,   424408,   337119,   267783, | 
|  | 212708,    168960,    134210,   106606,   84680,    67264,    53430, | 
|  | 42441,     33712,     26778,    21271,    16896,    13421,    10661, | 
|  | 8468,      6726,      5343,     4244,     3371,     2678,     2127, | 
|  | 1690,      1342,      1066,     847,      673,      534,      424, | 
|  | 337,       268,       213,      169,      134,      107,      85, | 
|  | 67}; | 
|  |  | 
|  | int WebRtcAgc_AddMic(void* state, | 
|  | int16_t* const* in_mic, | 
|  | size_t num_bands, | 
|  | size_t samples) { | 
|  | int32_t nrg, max_nrg, sample, tmp32; | 
|  | int32_t* ptr; | 
|  | uint16_t targetGainIdx, gain; | 
|  | size_t i; | 
|  | int16_t n, L, tmp16, tmp_speech[16]; | 
|  | LegacyAgc* stt; | 
|  | stt = (LegacyAgc*)state; | 
|  |  | 
|  | if (stt->fs == 8000) { | 
|  | L = 8; | 
|  | if (samples != 80) { | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | L = 16; | 
|  | if (samples != 160) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* apply slowly varying digital gain */ | 
|  | if (stt->micVol > stt->maxAnalog) { | 
|  | /* |maxLevel| is strictly >= |micVol|, so this condition should be | 
|  | * satisfied here, ensuring there is no divide-by-zero. */ | 
|  | RTC_DCHECK_GT(stt->maxLevel, stt->maxAnalog); | 
|  |  | 
|  | /* Q1 */ | 
|  | tmp16 = (int16_t)(stt->micVol - stt->maxAnalog); | 
|  | tmp32 = (GAIN_TBL_LEN - 1) * tmp16; | 
|  | tmp16 = (int16_t)(stt->maxLevel - stt->maxAnalog); | 
|  | targetGainIdx = tmp32 / tmp16; | 
|  | RTC_DCHECK_LT(targetGainIdx, GAIN_TBL_LEN); | 
|  |  | 
|  | /* Increment through the table towards the target gain. | 
|  | * If micVol drops below maxAnalog, we allow the gain | 
|  | * to be dropped immediately. */ | 
|  | if (stt->gainTableIdx < targetGainIdx) { | 
|  | stt->gainTableIdx++; | 
|  | } else if (stt->gainTableIdx > targetGainIdx) { | 
|  | stt->gainTableIdx--; | 
|  | } | 
|  |  | 
|  | /* Q12 */ | 
|  | gain = kGainTableAnalog[stt->gainTableIdx]; | 
|  |  | 
|  | for (i = 0; i < samples; i++) { | 
|  | size_t j; | 
|  | for (j = 0; j < num_bands; ++j) { | 
|  | sample = (in_mic[j][i] * gain) >> 12; | 
|  | if (sample > 32767) { | 
|  | in_mic[j][i] = 32767; | 
|  | } else if (sample < -32768) { | 
|  | in_mic[j][i] = -32768; | 
|  | } else { | 
|  | in_mic[j][i] = (int16_t)sample; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | stt->gainTableIdx = 0; | 
|  | } | 
|  |  | 
|  | /* compute envelope */ | 
|  | if (stt->inQueue > 0) { | 
|  | ptr = stt->env[1]; | 
|  | } else { | 
|  | ptr = stt->env[0]; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < kNumSubframes; i++) { | 
|  | /* iterate over samples */ | 
|  | max_nrg = 0; | 
|  | for (n = 0; n < L; n++) { | 
|  | nrg = in_mic[0][i * L + n] * in_mic[0][i * L + n]; | 
|  | if (nrg > max_nrg) { | 
|  | max_nrg = nrg; | 
|  | } | 
|  | } | 
|  | ptr[i] = max_nrg; | 
|  | } | 
|  |  | 
|  | /* compute energy */ | 
|  | if (stt->inQueue > 0) { | 
|  | ptr = stt->Rxx16w32_array[1]; | 
|  | } else { | 
|  | ptr = stt->Rxx16w32_array[0]; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < kNumSubframes / 2; i++) { | 
|  | if (stt->fs == 16000) { | 
|  | WebRtcSpl_DownsampleBy2(&in_mic[0][i * 32], 32, tmp_speech, | 
|  | stt->filterState); | 
|  | } else { | 
|  | memcpy(tmp_speech, &in_mic[0][i * 16], 16 * sizeof(short)); | 
|  | } | 
|  | /* Compute energy in blocks of 16 samples */ | 
|  | ptr[i] = WebRtcSpl_DotProductWithScale(tmp_speech, tmp_speech, 16, 4); | 
|  | } | 
|  |  | 
|  | /* update queue information */ | 
|  | if (stt->inQueue == 0) { | 
|  | stt->inQueue = 1; | 
|  | } else { | 
|  | stt->inQueue = 2; | 
|  | } | 
|  |  | 
|  | /* call VAD (use low band only) */ | 
|  | WebRtcAgc_ProcessVad(&stt->vadMic, in_mic[0], samples); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int WebRtcAgc_AddFarend(void* state, const int16_t* in_far, size_t samples) { | 
|  | LegacyAgc* stt = (LegacyAgc*)state; | 
|  |  | 
|  | int err = WebRtcAgc_GetAddFarendError(state, samples); | 
|  |  | 
|  | if (err != 0) | 
|  | return err; | 
|  |  | 
|  | return WebRtcAgc_AddFarendToDigital(&stt->digitalAgc, in_far, samples); | 
|  | } | 
|  |  | 
|  | int WebRtcAgc_GetAddFarendError(void* state, size_t samples) { | 
|  | LegacyAgc* stt; | 
|  | stt = (LegacyAgc*)state; | 
|  |  | 
|  | if (stt == NULL) | 
|  | return -1; | 
|  |  | 
|  | if (stt->fs == 8000) { | 
|  | if (samples != 80) | 
|  | return -1; | 
|  | } else if (stt->fs == 16000 || stt->fs == 32000 || stt->fs == 48000) { | 
|  | if (samples != 160) | 
|  | return -1; | 
|  | } else { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int WebRtcAgc_VirtualMic(void* agcInst, | 
|  | int16_t* const* in_near, | 
|  | size_t num_bands, | 
|  | size_t samples, | 
|  | int32_t micLevelIn, | 
|  | int32_t* micLevelOut) { | 
|  | int32_t tmpFlt, micLevelTmp, gainIdx; | 
|  | uint16_t gain; | 
|  | size_t ii, j; | 
|  | LegacyAgc* stt; | 
|  |  | 
|  | uint32_t nrg; | 
|  | size_t sampleCntr; | 
|  | uint32_t frameNrg = 0; | 
|  | uint32_t frameNrgLimit = 5500; | 
|  | int16_t numZeroCrossing = 0; | 
|  | const int16_t kZeroCrossingLowLim = 15; | 
|  | const int16_t kZeroCrossingHighLim = 20; | 
|  |  | 
|  | stt = (LegacyAgc*)agcInst; | 
|  |  | 
|  | /* | 
|  | *  Before applying gain decide if this is a low-level signal. | 
|  | *  The idea is that digital AGC will not adapt to low-level | 
|  | *  signals. | 
|  | */ | 
|  | if (stt->fs != 8000) { | 
|  | frameNrgLimit = frameNrgLimit << 1; | 
|  | } | 
|  |  | 
|  | frameNrg = (uint32_t)(in_near[0][0] * in_near[0][0]); | 
|  | for (sampleCntr = 1; sampleCntr < samples; sampleCntr++) { | 
|  | // increment frame energy if it is less than the limit | 
|  | // the correct value of the energy is not important | 
|  | if (frameNrg < frameNrgLimit) { | 
|  | nrg = (uint32_t)(in_near[0][sampleCntr] * in_near[0][sampleCntr]); | 
|  | frameNrg += nrg; | 
|  | } | 
|  |  | 
|  | // Count the zero crossings | 
|  | numZeroCrossing += | 
|  | ((in_near[0][sampleCntr] ^ in_near[0][sampleCntr - 1]) < 0); | 
|  | } | 
|  |  | 
|  | if ((frameNrg < 500) || (numZeroCrossing <= 5)) { | 
|  | stt->lowLevelSignal = 1; | 
|  | } else if (numZeroCrossing <= kZeroCrossingLowLim) { | 
|  | stt->lowLevelSignal = 0; | 
|  | } else if (frameNrg <= frameNrgLimit) { | 
|  | stt->lowLevelSignal = 1; | 
|  | } else if (numZeroCrossing >= kZeroCrossingHighLim) { | 
|  | stt->lowLevelSignal = 1; | 
|  | } else { | 
|  | stt->lowLevelSignal = 0; | 
|  | } | 
|  |  | 
|  | micLevelTmp = micLevelIn << stt->scale; | 
|  | /* Set desired level */ | 
|  | gainIdx = stt->micVol; | 
|  | if (stt->micVol > stt->maxAnalog) { | 
|  | gainIdx = stt->maxAnalog; | 
|  | } | 
|  | if (micLevelTmp != stt->micRef) { | 
|  | /* Something has happened with the physical level, restart. */ | 
|  | stt->micRef = micLevelTmp; | 
|  | stt->micVol = 127; | 
|  | *micLevelOut = 127; | 
|  | stt->micGainIdx = 127; | 
|  | gainIdx = 127; | 
|  | } | 
|  | /* Pre-process the signal to emulate the microphone level. */ | 
|  | /* Take one step at a time in the gain table. */ | 
|  | if (gainIdx > 127) { | 
|  | gain = kGainTableVirtualMic[gainIdx - 128]; | 
|  | } else { | 
|  | gain = kSuppressionTableVirtualMic[127 - gainIdx]; | 
|  | } | 
|  | for (ii = 0; ii < samples; ii++) { | 
|  | tmpFlt = (in_near[0][ii] * gain) >> 10; | 
|  | if (tmpFlt > 32767) { | 
|  | tmpFlt = 32767; | 
|  | gainIdx--; | 
|  | if (gainIdx >= 127) { | 
|  | gain = kGainTableVirtualMic[gainIdx - 127]; | 
|  | } else { | 
|  | gain = kSuppressionTableVirtualMic[127 - gainIdx]; | 
|  | } | 
|  | } | 
|  | if (tmpFlt < -32768) { | 
|  | tmpFlt = -32768; | 
|  | gainIdx--; | 
|  | if (gainIdx >= 127) { | 
|  | gain = kGainTableVirtualMic[gainIdx - 127]; | 
|  | } else { | 
|  | gain = kSuppressionTableVirtualMic[127 - gainIdx]; | 
|  | } | 
|  | } | 
|  | in_near[0][ii] = (int16_t)tmpFlt; | 
|  | for (j = 1; j < num_bands; ++j) { | 
|  | tmpFlt = (in_near[j][ii] * gain) >> 10; | 
|  | if (tmpFlt > 32767) { | 
|  | tmpFlt = 32767; | 
|  | } | 
|  | if (tmpFlt < -32768) { | 
|  | tmpFlt = -32768; | 
|  | } | 
|  | in_near[j][ii] = (int16_t)tmpFlt; | 
|  | } | 
|  | } | 
|  | /* Set the level we (finally) used */ | 
|  | stt->micGainIdx = gainIdx; | 
|  | //    *micLevelOut = stt->micGainIdx; | 
|  | *micLevelOut = stt->micGainIdx >> stt->scale; | 
|  | /* Add to Mic as if it was the output from a true microphone */ | 
|  | if (WebRtcAgc_AddMic(agcInst, in_near, num_bands, samples) != 0) { | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void WebRtcAgc_UpdateAgcThresholds(LegacyAgc* stt) { | 
|  | int16_t tmp16; | 
|  | #ifdef MIC_LEVEL_FEEDBACK | 
|  | int zeros; | 
|  |  | 
|  | if (stt->micLvlSat) { | 
|  | /* Lower the analog target level since we have reached its maximum */ | 
|  | zeros = WebRtcSpl_NormW32(stt->Rxx160_LPw32); | 
|  | stt->targetIdxOffset = (3 * zeros - stt->targetIdx - 2) / 4; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Set analog target level in envelope dBOv scale */ | 
|  | tmp16 = (DIFF_REF_TO_ANALOG * stt->compressionGaindB) + ANALOG_TARGET_LEVEL_2; | 
|  | tmp16 = WebRtcSpl_DivW32W16ResW16((int32_t)tmp16, ANALOG_TARGET_LEVEL); | 
|  | stt->analogTarget = DIGITAL_REF_AT_0_COMP_GAIN + tmp16; | 
|  | if (stt->analogTarget < DIGITAL_REF_AT_0_COMP_GAIN) { | 
|  | stt->analogTarget = DIGITAL_REF_AT_0_COMP_GAIN; | 
|  | } | 
|  | if (stt->agcMode == kAgcModeFixedDigital) { | 
|  | /* Adjust for different parameter interpretation in FixedDigital mode */ | 
|  | stt->analogTarget = stt->compressionGaindB; | 
|  | } | 
|  | #ifdef MIC_LEVEL_FEEDBACK | 
|  | stt->analogTarget += stt->targetIdxOffset; | 
|  | #endif | 
|  | /* Since the offset between RMS and ENV is not constant, we should make this | 
|  | * into a | 
|  | * table, but for now, we'll stick with a constant, tuned for the chosen | 
|  | * analog | 
|  | * target level. | 
|  | */ | 
|  | stt->targetIdx = ANALOG_TARGET_LEVEL + OFFSET_ENV_TO_RMS; | 
|  | #ifdef MIC_LEVEL_FEEDBACK | 
|  | stt->targetIdx += stt->targetIdxOffset; | 
|  | #endif | 
|  | /* Analog adaptation limits */ | 
|  | /* analogTargetLevel = round((32767*10^(-targetIdx/20))^2*16/2^7) */ | 
|  | stt->analogTargetLevel = | 
|  | RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx]; /* ex. -20 dBov */ | 
|  | stt->startUpperLimit = | 
|  | RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx - 1]; /* -19 dBov */ | 
|  | stt->startLowerLimit = | 
|  | RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx + 1]; /* -21 dBov */ | 
|  | stt->upperPrimaryLimit = | 
|  | RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx - 2]; /* -18 dBov */ | 
|  | stt->lowerPrimaryLimit = | 
|  | RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx + 2]; /* -22 dBov */ | 
|  | stt->upperSecondaryLimit = | 
|  | RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx - 5]; /* -15 dBov */ | 
|  | stt->lowerSecondaryLimit = | 
|  | RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx + 5]; /* -25 dBov */ | 
|  | stt->upperLimit = stt->startUpperLimit; | 
|  | stt->lowerLimit = stt->startLowerLimit; | 
|  | } | 
|  |  | 
|  | void WebRtcAgc_SaturationCtrl(LegacyAgc* stt, | 
|  | uint8_t* saturated, | 
|  | int32_t* env) { | 
|  | int16_t i, tmpW16; | 
|  |  | 
|  | /* Check if the signal is saturated */ | 
|  | for (i = 0; i < 10; i++) { | 
|  | tmpW16 = (int16_t)(env[i] >> 20); | 
|  | if (tmpW16 > 875) { | 
|  | stt->envSum += tmpW16; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (stt->envSum > 25000) { | 
|  | *saturated = 1; | 
|  | stt->envSum = 0; | 
|  | } | 
|  |  | 
|  | /* stt->envSum *= 0.99; */ | 
|  | stt->envSum = (int16_t)((stt->envSum * 32440) >> 15); | 
|  | } | 
|  |  | 
|  | void WebRtcAgc_ZeroCtrl(LegacyAgc* stt, int32_t* inMicLevel, int32_t* env) { | 
|  | int16_t i; | 
|  | int64_t tmp = 0; | 
|  | int32_t midVal; | 
|  |  | 
|  | /* Is the input signal zero? */ | 
|  | for (i = 0; i < 10; i++) { | 
|  | tmp += env[i]; | 
|  | } | 
|  |  | 
|  | /* Each block is allowed to have a few non-zero | 
|  | * samples. | 
|  | */ | 
|  | if (tmp < 500) { | 
|  | stt->msZero += 10; | 
|  | } else { | 
|  | stt->msZero = 0; | 
|  | } | 
|  |  | 
|  | if (stt->muteGuardMs > 0) { | 
|  | stt->muteGuardMs -= 10; | 
|  | } | 
|  |  | 
|  | if (stt->msZero > 500) { | 
|  | stt->msZero = 0; | 
|  |  | 
|  | /* Increase microphone level only if it's less than 50% */ | 
|  | midVal = (stt->maxAnalog + stt->minLevel + 1) / 2; | 
|  | if (*inMicLevel < midVal) { | 
|  | /* *inMicLevel *= 1.1; */ | 
|  | *inMicLevel = (1126 * *inMicLevel) >> 10; | 
|  | /* Reduces risk of a muted mic repeatedly triggering excessive levels due | 
|  | * to zero signal detection. */ | 
|  | *inMicLevel = WEBRTC_SPL_MIN(*inMicLevel, stt->zeroCtrlMax); | 
|  | stt->micVol = *inMicLevel; | 
|  | } | 
|  |  | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, | 
|  | "\t\tAGC->zeroCntrl, frame %d: 500 ms under threshold," | 
|  | " micVol: %d\n", | 
|  | stt->fcount, stt->micVol); | 
|  | #endif | 
|  |  | 
|  | stt->activeSpeech = 0; | 
|  | stt->Rxx16_LPw32Max = 0; | 
|  |  | 
|  | /* The AGC has a tendency (due to problems with the VAD parameters), to | 
|  | * vastly increase the volume after a muting event. This timer prevents | 
|  | * upwards adaptation for a short period. */ | 
|  | stt->muteGuardMs = kMuteGuardTimeMs; | 
|  | } | 
|  | } | 
|  |  | 
|  | void WebRtcAgc_SpeakerInactiveCtrl(LegacyAgc* stt) { | 
|  | /* Check if the near end speaker is inactive. | 
|  | * If that is the case the VAD threshold is | 
|  | * increased since the VAD speech model gets | 
|  | * more sensitive to any sound after a long | 
|  | * silence. | 
|  | */ | 
|  |  | 
|  | int32_t tmp32; | 
|  | int16_t vadThresh; | 
|  |  | 
|  | if (stt->vadMic.stdLongTerm < 2500) { | 
|  | stt->vadThreshold = 1500; | 
|  | } else { | 
|  | vadThresh = kNormalVadThreshold; | 
|  | if (stt->vadMic.stdLongTerm < 4500) { | 
|  | /* Scale between min and max threshold */ | 
|  | vadThresh += (4500 - stt->vadMic.stdLongTerm) / 2; | 
|  | } | 
|  |  | 
|  | /* stt->vadThreshold = (31 * stt->vadThreshold + vadThresh) / 32; */ | 
|  | tmp32 = vadThresh + 31 * stt->vadThreshold; | 
|  | stt->vadThreshold = (int16_t)(tmp32 >> 5); | 
|  | } | 
|  | } | 
|  |  | 
|  | void WebRtcAgc_ExpCurve(int16_t volume, int16_t* index) { | 
|  | // volume in Q14 | 
|  | // index in [0-7] | 
|  | /* 8 different curves */ | 
|  | if (volume > 5243) { | 
|  | if (volume > 7864) { | 
|  | if (volume > 12124) { | 
|  | *index = 7; | 
|  | } else { | 
|  | *index = 6; | 
|  | } | 
|  | } else { | 
|  | if (volume > 6554) { | 
|  | *index = 5; | 
|  | } else { | 
|  | *index = 4; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (volume > 2621) { | 
|  | if (volume > 3932) { | 
|  | *index = 3; | 
|  | } else { | 
|  | *index = 2; | 
|  | } | 
|  | } else { | 
|  | if (volume > 1311) { | 
|  | *index = 1; | 
|  | } else { | 
|  | *index = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int32_t WebRtcAgc_ProcessAnalog(void* state, | 
|  | int32_t inMicLevel, | 
|  | int32_t* outMicLevel, | 
|  | int16_t vadLogRatio, | 
|  | int16_t echo, | 
|  | uint8_t* saturationWarning) { | 
|  | uint32_t tmpU32; | 
|  | int32_t Rxx16w32, tmp32; | 
|  | int32_t inMicLevelTmp, lastMicVol; | 
|  | int16_t i; | 
|  | uint8_t saturated = 0; | 
|  | LegacyAgc* stt; | 
|  |  | 
|  | stt = (LegacyAgc*)state; | 
|  | inMicLevelTmp = inMicLevel << stt->scale; | 
|  |  | 
|  | if (inMicLevelTmp > stt->maxAnalog) { | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, "\tAGC->ProcessAnalog, frame %d: micLvl > maxAnalog\n", | 
|  | stt->fcount); | 
|  | #endif | 
|  | return -1; | 
|  | } else if (inMicLevelTmp < stt->minLevel) { | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, "\tAGC->ProcessAnalog, frame %d: micLvl < minLevel\n", | 
|  | stt->fcount); | 
|  | #endif | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (stt->firstCall == 0) { | 
|  | int32_t tmpVol; | 
|  | stt->firstCall = 1; | 
|  | tmp32 = ((stt->maxLevel - stt->minLevel) * 51) >> 9; | 
|  | tmpVol = (stt->minLevel + tmp32); | 
|  |  | 
|  | /* If the mic level is very low at start, increase it! */ | 
|  | if ((inMicLevelTmp < tmpVol) && (stt->agcMode == kAgcModeAdaptiveAnalog)) { | 
|  | inMicLevelTmp = tmpVol; | 
|  | } | 
|  | stt->micVol = inMicLevelTmp; | 
|  | } | 
|  |  | 
|  | /* Set the mic level to the previous output value if there is digital input | 
|  | * gain */ | 
|  | if ((inMicLevelTmp == stt->maxAnalog) && (stt->micVol > stt->maxAnalog)) { | 
|  | inMicLevelTmp = stt->micVol; | 
|  | } | 
|  |  | 
|  | /* If the mic level was manually changed to a very low value raise it! */ | 
|  | if ((inMicLevelTmp != stt->micVol) && (inMicLevelTmp < stt->minOutput)) { | 
|  | tmp32 = ((stt->maxLevel - stt->minLevel) * 51) >> 9; | 
|  | inMicLevelTmp = (stt->minLevel + tmp32); | 
|  | stt->micVol = inMicLevelTmp; | 
|  | #ifdef MIC_LEVEL_FEEDBACK | 
|  | // stt->numBlocksMicLvlSat = 0; | 
|  | #endif | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, | 
|  | "\tAGC->ProcessAnalog, frame %d: micLvl < minLevel by manual" | 
|  | " decrease, raise vol\n", | 
|  | stt->fcount); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (inMicLevelTmp != stt->micVol) { | 
|  | if (inMicLevel == stt->lastInMicLevel) { | 
|  | // We requested a volume adjustment, but it didn't occur. This is | 
|  | // probably due to a coarse quantization of the volume slider. | 
|  | // Restore the requested value to prevent getting stuck. | 
|  | inMicLevelTmp = stt->micVol; | 
|  | } else { | 
|  | // As long as the value changed, update to match. | 
|  | stt->micVol = inMicLevelTmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (inMicLevelTmp > stt->maxLevel) { | 
|  | // Always allow the user to raise the volume above the maxLevel. | 
|  | stt->maxLevel = inMicLevelTmp; | 
|  | } | 
|  |  | 
|  | // Store last value here, after we've taken care of manual updates etc. | 
|  | stt->lastInMicLevel = inMicLevel; | 
|  | lastMicVol = stt->micVol; | 
|  |  | 
|  | /* Checks if the signal is saturated. Also a check if individual samples | 
|  | * are larger than 12000 is done. If they are the counter for increasing | 
|  | * the volume level is set to -100ms | 
|  | */ | 
|  | WebRtcAgc_SaturationCtrl(stt, &saturated, stt->env[0]); | 
|  |  | 
|  | /* The AGC is always allowed to lower the level if the signal is saturated */ | 
|  | if (saturated == 1) { | 
|  | /* Lower the recording level | 
|  | * Rxx160_LP is adjusted down because it is so slow it could | 
|  | * cause the AGC to make wrong decisions. */ | 
|  | /* stt->Rxx160_LPw32 *= 0.875; */ | 
|  | stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 8) * 7; | 
|  |  | 
|  | stt->zeroCtrlMax = stt->micVol; | 
|  |  | 
|  | /* stt->micVol *= 0.903; */ | 
|  | tmp32 = inMicLevelTmp - stt->minLevel; | 
|  | tmpU32 = WEBRTC_SPL_UMUL(29591, (uint32_t)(tmp32)); | 
|  | stt->micVol = (tmpU32 >> 15) + stt->minLevel; | 
|  | if (stt->micVol > lastMicVol - 2) { | 
|  | stt->micVol = lastMicVol - 2; | 
|  | } | 
|  | inMicLevelTmp = stt->micVol; | 
|  |  | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, | 
|  | "\tAGC->ProcessAnalog, frame %d: saturated, micVol = %d\n", | 
|  | stt->fcount, stt->micVol); | 
|  | #endif | 
|  |  | 
|  | if (stt->micVol < stt->minOutput) { | 
|  | *saturationWarning = 1; | 
|  | } | 
|  |  | 
|  | /* Reset counter for decrease of volume level to avoid | 
|  | * decreasing too much. The saturation control can still | 
|  | * lower the level if needed. */ | 
|  | stt->msTooHigh = -100; | 
|  |  | 
|  | /* Enable the control mechanism to ensure that our measure, | 
|  | * Rxx160_LP, is in the correct range. This must be done since | 
|  | * the measure is very slow. */ | 
|  | stt->activeSpeech = 0; | 
|  | stt->Rxx16_LPw32Max = 0; | 
|  |  | 
|  | /* Reset to initial values */ | 
|  | stt->msecSpeechInnerChange = kMsecSpeechInner; | 
|  | stt->msecSpeechOuterChange = kMsecSpeechOuter; | 
|  | stt->changeToSlowMode = 0; | 
|  |  | 
|  | stt->muteGuardMs = 0; | 
|  |  | 
|  | stt->upperLimit = stt->startUpperLimit; | 
|  | stt->lowerLimit = stt->startLowerLimit; | 
|  | #ifdef MIC_LEVEL_FEEDBACK | 
|  | // stt->numBlocksMicLvlSat = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Check if the input speech is zero. If so the mic volume | 
|  | * is increased. On some computers the input is zero up as high | 
|  | * level as 17% */ | 
|  | WebRtcAgc_ZeroCtrl(stt, &inMicLevelTmp, stt->env[0]); | 
|  |  | 
|  | /* Check if the near end speaker is inactive. | 
|  | * If that is the case the VAD threshold is | 
|  | * increased since the VAD speech model gets | 
|  | * more sensitive to any sound after a long | 
|  | * silence. | 
|  | */ | 
|  | WebRtcAgc_SpeakerInactiveCtrl(stt); | 
|  |  | 
|  | for (i = 0; i < 5; i++) { | 
|  | /* Computed on blocks of 16 samples */ | 
|  |  | 
|  | Rxx16w32 = stt->Rxx16w32_array[0][i]; | 
|  |  | 
|  | /* Rxx160w32 in Q(-7) */ | 
|  | tmp32 = (Rxx16w32 - stt->Rxx16_vectorw32[stt->Rxx16pos]) >> 3; | 
|  | stt->Rxx160w32 = stt->Rxx160w32 + tmp32; | 
|  | stt->Rxx16_vectorw32[stt->Rxx16pos] = Rxx16w32; | 
|  |  | 
|  | /* Circular buffer */ | 
|  | stt->Rxx16pos++; | 
|  | if (stt->Rxx16pos == RXX_BUFFER_LEN) { | 
|  | stt->Rxx16pos = 0; | 
|  | } | 
|  |  | 
|  | /* Rxx16_LPw32 in Q(-4) */ | 
|  | tmp32 = (Rxx16w32 - stt->Rxx16_LPw32) >> kAlphaShortTerm; | 
|  | stt->Rxx16_LPw32 = (stt->Rxx16_LPw32) + tmp32; | 
|  |  | 
|  | if (vadLogRatio > stt->vadThreshold) { | 
|  | /* Speech detected! */ | 
|  |  | 
|  | /* Check if Rxx160_LP is in the correct range. If | 
|  | * it is too high/low then we set it to the maximum of | 
|  | * Rxx16_LPw32 during the first 200ms of speech. | 
|  | */ | 
|  | if (stt->activeSpeech < 250) { | 
|  | stt->activeSpeech += 2; | 
|  |  | 
|  | if (stt->Rxx16_LPw32 > stt->Rxx16_LPw32Max) { | 
|  | stt->Rxx16_LPw32Max = stt->Rxx16_LPw32; | 
|  | } | 
|  | } else if (stt->activeSpeech == 250) { | 
|  | stt->activeSpeech += 2; | 
|  | tmp32 = stt->Rxx16_LPw32Max >> 3; | 
|  | stt->Rxx160_LPw32 = tmp32 * RXX_BUFFER_LEN; | 
|  | } | 
|  |  | 
|  | tmp32 = (stt->Rxx160w32 - stt->Rxx160_LPw32) >> kAlphaLongTerm; | 
|  | stt->Rxx160_LPw32 = stt->Rxx160_LPw32 + tmp32; | 
|  |  | 
|  | if (stt->Rxx160_LPw32 > stt->upperSecondaryLimit) { | 
|  | stt->msTooHigh += 2; | 
|  | stt->msTooLow = 0; | 
|  | stt->changeToSlowMode = 0; | 
|  |  | 
|  | if (stt->msTooHigh > stt->msecSpeechOuterChange) { | 
|  | stt->msTooHigh = 0; | 
|  |  | 
|  | /* Lower the recording level */ | 
|  | /* Multiply by 0.828125 which corresponds to decreasing ~0.8dB */ | 
|  | tmp32 = stt->Rxx160_LPw32 >> 6; | 
|  | stt->Rxx160_LPw32 = tmp32 * 53; | 
|  |  | 
|  | /* Reduce the max gain to avoid excessive oscillation | 
|  | * (but never drop below the maximum analog level). | 
|  | */ | 
|  | stt->maxLevel = (15 * stt->maxLevel + stt->micVol) / 16; | 
|  | stt->maxLevel = WEBRTC_SPL_MAX(stt->maxLevel, stt->maxAnalog); | 
|  |  | 
|  | stt->zeroCtrlMax = stt->micVol; | 
|  |  | 
|  | /* 0.95 in Q15 */ | 
|  | tmp32 = inMicLevelTmp - stt->minLevel; | 
|  | tmpU32 = WEBRTC_SPL_UMUL(31130, (uint32_t)(tmp32)); | 
|  | stt->micVol = (tmpU32 >> 15) + stt->minLevel; | 
|  | if (stt->micVol > lastMicVol - 1) { | 
|  | stt->micVol = lastMicVol - 1; | 
|  | } | 
|  | inMicLevelTmp = stt->micVol; | 
|  |  | 
|  | /* Enable the control mechanism to ensure that our measure, | 
|  | * Rxx160_LP, is in the correct range. | 
|  | */ | 
|  | stt->activeSpeech = 0; | 
|  | stt->Rxx16_LPw32Max = 0; | 
|  | #ifdef MIC_LEVEL_FEEDBACK | 
|  | // stt->numBlocksMicLvlSat = 0; | 
|  | #endif | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, | 
|  | "\tAGC->ProcessAnalog, frame %d: measure >" | 
|  | " 2ndUpperLim, micVol = %d, maxLevel = %d\n", | 
|  | stt->fcount, stt->micVol, stt->maxLevel); | 
|  | #endif | 
|  | } | 
|  | } else if (stt->Rxx160_LPw32 > stt->upperLimit) { | 
|  | stt->msTooHigh += 2; | 
|  | stt->msTooLow = 0; | 
|  | stt->changeToSlowMode = 0; | 
|  |  | 
|  | if (stt->msTooHigh > stt->msecSpeechInnerChange) { | 
|  | /* Lower the recording level */ | 
|  | stt->msTooHigh = 0; | 
|  | /* Multiply by 0.828125 which corresponds to decreasing ~0.8dB */ | 
|  | stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 53; | 
|  |  | 
|  | /* Reduce the max gain to avoid excessive oscillation | 
|  | * (but never drop below the maximum analog level). | 
|  | */ | 
|  | stt->maxLevel = (15 * stt->maxLevel + stt->micVol) / 16; | 
|  | stt->maxLevel = WEBRTC_SPL_MAX(stt->maxLevel, stt->maxAnalog); | 
|  |  | 
|  | stt->zeroCtrlMax = stt->micVol; | 
|  |  | 
|  | /* 0.965 in Q15 */ | 
|  | tmp32 = inMicLevelTmp - stt->minLevel; | 
|  | tmpU32 = | 
|  | WEBRTC_SPL_UMUL(31621, (uint32_t)(inMicLevelTmp - stt->minLevel)); | 
|  | stt->micVol = (tmpU32 >> 15) + stt->minLevel; | 
|  | if (stt->micVol > lastMicVol - 1) { | 
|  | stt->micVol = lastMicVol - 1; | 
|  | } | 
|  | inMicLevelTmp = stt->micVol; | 
|  |  | 
|  | #ifdef MIC_LEVEL_FEEDBACK | 
|  | // stt->numBlocksMicLvlSat = 0; | 
|  | #endif | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, | 
|  | "\tAGC->ProcessAnalog, frame %d: measure >" | 
|  | " UpperLim, micVol = %d, maxLevel = %d\n", | 
|  | stt->fcount, stt->micVol, stt->maxLevel); | 
|  | #endif | 
|  | } | 
|  | } else if (stt->Rxx160_LPw32 < stt->lowerSecondaryLimit) { | 
|  | stt->msTooHigh = 0; | 
|  | stt->changeToSlowMode = 0; | 
|  | stt->msTooLow += 2; | 
|  |  | 
|  | if (stt->msTooLow > stt->msecSpeechOuterChange) { | 
|  | /* Raise the recording level */ | 
|  | int16_t index, weightFIX; | 
|  | int16_t volNormFIX = 16384;  // =1 in Q14. | 
|  |  | 
|  | stt->msTooLow = 0; | 
|  |  | 
|  | /* Normalize the volume level */ | 
|  | tmp32 = (inMicLevelTmp - stt->minLevel) << 14; | 
|  | if (stt->maxInit != stt->minLevel) { | 
|  | volNormFIX = tmp32 / (stt->maxInit - stt->minLevel); | 
|  | } | 
|  |  | 
|  | /* Find correct curve */ | 
|  | WebRtcAgc_ExpCurve(volNormFIX, &index); | 
|  |  | 
|  | /* Compute weighting factor for the volume increase, 32^(-2*X)/2+1.05 | 
|  | */ | 
|  | weightFIX = | 
|  | kOffset1[index] - (int16_t)((kSlope1[index] * volNormFIX) >> 13); | 
|  |  | 
|  | /* stt->Rxx160_LPw32 *= 1.047 [~0.2 dB]; */ | 
|  | stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 67; | 
|  |  | 
|  | tmp32 = inMicLevelTmp - stt->minLevel; | 
|  | tmpU32 = | 
|  | ((uint32_t)weightFIX * (uint32_t)(inMicLevelTmp - stt->minLevel)); | 
|  | stt->micVol = (tmpU32 >> 14) + stt->minLevel; | 
|  | if (stt->micVol < lastMicVol + 2) { | 
|  | stt->micVol = lastMicVol + 2; | 
|  | } | 
|  |  | 
|  | inMicLevelTmp = stt->micVol; | 
|  |  | 
|  | #ifdef MIC_LEVEL_FEEDBACK | 
|  | /* Count ms in level saturation */ | 
|  | // if (stt->micVol > stt->maxAnalog) { | 
|  | if (stt->micVol > 150) { | 
|  | /* mic level is saturated */ | 
|  | stt->numBlocksMicLvlSat++; | 
|  | fprintf(stderr, "Sat mic Level: %d\n", stt->numBlocksMicLvlSat); | 
|  | } | 
|  | #endif | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, | 
|  | "\tAGC->ProcessAnalog, frame %d: measure <" | 
|  | " 2ndLowerLim, micVol = %d\n", | 
|  | stt->fcount, stt->micVol); | 
|  | #endif | 
|  | } | 
|  | } else if (stt->Rxx160_LPw32 < stt->lowerLimit) { | 
|  | stt->msTooHigh = 0; | 
|  | stt->changeToSlowMode = 0; | 
|  | stt->msTooLow += 2; | 
|  |  | 
|  | if (stt->msTooLow > stt->msecSpeechInnerChange) { | 
|  | /* Raise the recording level */ | 
|  | int16_t index, weightFIX; | 
|  | int16_t volNormFIX = 16384;  // =1 in Q14. | 
|  |  | 
|  | stt->msTooLow = 0; | 
|  |  | 
|  | /* Normalize the volume level */ | 
|  | tmp32 = (inMicLevelTmp - stt->minLevel) << 14; | 
|  | if (stt->maxInit != stt->minLevel) { | 
|  | volNormFIX = tmp32 / (stt->maxInit - stt->minLevel); | 
|  | } | 
|  |  | 
|  | /* Find correct curve */ | 
|  | WebRtcAgc_ExpCurve(volNormFIX, &index); | 
|  |  | 
|  | /* Compute weighting factor for the volume increase, (3.^(-2.*X))/8+1 | 
|  | */ | 
|  | weightFIX = | 
|  | kOffset2[index] - (int16_t)((kSlope2[index] * volNormFIX) >> 13); | 
|  |  | 
|  | /* stt->Rxx160_LPw32 *= 1.047 [~0.2 dB]; */ | 
|  | stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 67; | 
|  |  | 
|  | tmp32 = inMicLevelTmp - stt->minLevel; | 
|  | tmpU32 = | 
|  | ((uint32_t)weightFIX * (uint32_t)(inMicLevelTmp - stt->minLevel)); | 
|  | stt->micVol = (tmpU32 >> 14) + stt->minLevel; | 
|  | if (stt->micVol < lastMicVol + 1) { | 
|  | stt->micVol = lastMicVol + 1; | 
|  | } | 
|  |  | 
|  | inMicLevelTmp = stt->micVol; | 
|  |  | 
|  | #ifdef MIC_LEVEL_FEEDBACK | 
|  | /* Count ms in level saturation */ | 
|  | // if (stt->micVol > stt->maxAnalog) { | 
|  | if (stt->micVol > 150) { | 
|  | /* mic level is saturated */ | 
|  | stt->numBlocksMicLvlSat++; | 
|  | fprintf(stderr, "Sat mic Level: %d\n", stt->numBlocksMicLvlSat); | 
|  | } | 
|  | #endif | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, | 
|  | "\tAGC->ProcessAnalog, frame %d: measure < LowerLim, micVol " | 
|  | "= %d\n", | 
|  | stt->fcount, stt->micVol); | 
|  | #endif | 
|  | } | 
|  | } else { | 
|  | /* The signal is inside the desired range which is: | 
|  | * lowerLimit < Rxx160_LP/640 < upperLimit | 
|  | */ | 
|  | if (stt->changeToSlowMode > 4000) { | 
|  | stt->msecSpeechInnerChange = 1000; | 
|  | stt->msecSpeechOuterChange = 500; | 
|  | stt->upperLimit = stt->upperPrimaryLimit; | 
|  | stt->lowerLimit = stt->lowerPrimaryLimit; | 
|  | } else { | 
|  | stt->changeToSlowMode += 2;  // in milliseconds | 
|  | } | 
|  | stt->msTooLow = 0; | 
|  | stt->msTooHigh = 0; | 
|  |  | 
|  | stt->micVol = inMicLevelTmp; | 
|  | } | 
|  | #ifdef MIC_LEVEL_FEEDBACK | 
|  | if (stt->numBlocksMicLvlSat > NUM_BLOCKS_IN_SAT_BEFORE_CHANGE_TARGET) { | 
|  | stt->micLvlSat = 1; | 
|  | fprintf(stderr, "target before = %d (%d)\n", stt->analogTargetLevel, | 
|  | stt->targetIdx); | 
|  | WebRtcAgc_UpdateAgcThresholds(stt); | 
|  | WebRtcAgc_CalculateGainTable( | 
|  | &(stt->digitalAgc.gainTable[0]), stt->compressionGaindB, | 
|  | stt->targetLevelDbfs, stt->limiterEnable, stt->analogTarget); | 
|  | stt->numBlocksMicLvlSat = 0; | 
|  | stt->micLvlSat = 0; | 
|  | fprintf(stderr, "target offset = %d\n", stt->targetIdxOffset); | 
|  | fprintf(stderr, "target after  = %d (%d)\n", stt->analogTargetLevel, | 
|  | stt->targetIdx); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ensure gain is not increased in presence of echo or after a mute event | 
|  | * (but allow the zeroCtrl() increase on the frame of a mute detection). | 
|  | */ | 
|  | if (echo == 1 || | 
|  | (stt->muteGuardMs > 0 && stt->muteGuardMs < kMuteGuardTimeMs)) { | 
|  | if (stt->micVol > lastMicVol) { | 
|  | stt->micVol = lastMicVol; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* limit the gain */ | 
|  | if (stt->micVol > stt->maxLevel) { | 
|  | stt->micVol = stt->maxLevel; | 
|  | } else if (stt->micVol < stt->minOutput) { | 
|  | stt->micVol = stt->minOutput; | 
|  | } | 
|  |  | 
|  | *outMicLevel = WEBRTC_SPL_MIN(stt->micVol, stt->maxAnalog) >> stt->scale; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int WebRtcAgc_Process(void* agcInst, | 
|  | const int16_t* const* in_near, | 
|  | size_t num_bands, | 
|  | size_t samples, | 
|  | int16_t* const* out, | 
|  | int32_t inMicLevel, | 
|  | int32_t* outMicLevel, | 
|  | int16_t echo, | 
|  | uint8_t* saturationWarning) { | 
|  | LegacyAgc* stt; | 
|  |  | 
|  | stt = (LegacyAgc*)agcInst; | 
|  |  | 
|  | // | 
|  | if (stt == NULL) { | 
|  | return -1; | 
|  | } | 
|  | // | 
|  |  | 
|  | if (stt->fs == 8000) { | 
|  | if (samples != 80) { | 
|  | return -1; | 
|  | } | 
|  | } else if (stt->fs == 16000 || stt->fs == 32000 || stt->fs == 48000) { | 
|  | if (samples != 160) { | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | *saturationWarning = 0; | 
|  | // TODO(minyue): PUT IN RANGE CHECKING FOR INPUT LEVELS | 
|  | *outMicLevel = inMicLevel; | 
|  |  | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | stt->fcount++; | 
|  | #endif | 
|  |  | 
|  | if (WebRtcAgc_ProcessDigital(&stt->digitalAgc, in_near, num_bands, out, | 
|  | stt->fs, stt->lowLevelSignal) == -1) { | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, "AGC->Process, frame %d: Error from DigAGC\n\n", | 
|  | stt->fcount); | 
|  | #endif | 
|  | return -1; | 
|  | } | 
|  | if (stt->agcMode < kAgcModeFixedDigital && | 
|  | (stt->lowLevelSignal == 0 || stt->agcMode != kAgcModeAdaptiveDigital)) { | 
|  | if (WebRtcAgc_ProcessAnalog(agcInst, inMicLevel, outMicLevel, | 
|  | stt->vadMic.logRatio, echo, | 
|  | saturationWarning) == -1) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->agcLog, "%5d\t%d\t%d\t%d\t%d\n", stt->fcount, inMicLevel, | 
|  | *outMicLevel, stt->maxLevel, stt->micVol); | 
|  | #endif | 
|  |  | 
|  | /* update queue */ | 
|  | if (stt->inQueue > 1) { | 
|  | memcpy(stt->env[0], stt->env[1], 10 * sizeof(int32_t)); | 
|  | memcpy(stt->Rxx16w32_array[0], stt->Rxx16w32_array[1], 5 * sizeof(int32_t)); | 
|  | } | 
|  |  | 
|  | if (stt->inQueue > 0) { | 
|  | stt->inQueue--; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int WebRtcAgc_set_config(void* agcInst, WebRtcAgcConfig agcConfig) { | 
|  | LegacyAgc* stt; | 
|  | stt = (LegacyAgc*)agcInst; | 
|  |  | 
|  | if (stt == NULL) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (stt->initFlag != kInitCheck) { | 
|  | stt->lastError = AGC_UNINITIALIZED_ERROR; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (agcConfig.limiterEnable != kAgcFalse && | 
|  | agcConfig.limiterEnable != kAgcTrue) { | 
|  | stt->lastError = AGC_BAD_PARAMETER_ERROR; | 
|  | return -1; | 
|  | } | 
|  | stt->limiterEnable = agcConfig.limiterEnable; | 
|  | stt->compressionGaindB = agcConfig.compressionGaindB; | 
|  | if ((agcConfig.targetLevelDbfs < 0) || (agcConfig.targetLevelDbfs > 31)) { | 
|  | stt->lastError = AGC_BAD_PARAMETER_ERROR; | 
|  | return -1; | 
|  | } | 
|  | stt->targetLevelDbfs = agcConfig.targetLevelDbfs; | 
|  |  | 
|  | if (stt->agcMode == kAgcModeFixedDigital) { | 
|  | /* Adjust for different parameter interpretation in FixedDigital mode */ | 
|  | stt->compressionGaindB += agcConfig.targetLevelDbfs; | 
|  | } | 
|  |  | 
|  | /* Update threshold levels for analog adaptation */ | 
|  | WebRtcAgc_UpdateAgcThresholds(stt); | 
|  |  | 
|  | /* Recalculate gain table */ | 
|  | if (WebRtcAgc_CalculateGainTable( | 
|  | &(stt->digitalAgc.gainTable[0]), stt->compressionGaindB, | 
|  | stt->targetLevelDbfs, stt->limiterEnable, stt->analogTarget) == -1) { | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, "AGC->set_config, frame %d: Error from calcGainTable\n\n", | 
|  | stt->fcount); | 
|  | #endif | 
|  | return -1; | 
|  | } | 
|  | /* Store the config in a WebRtcAgcConfig */ | 
|  | stt->usedConfig.compressionGaindB = agcConfig.compressionGaindB; | 
|  | stt->usedConfig.limiterEnable = agcConfig.limiterEnable; | 
|  | stt->usedConfig.targetLevelDbfs = agcConfig.targetLevelDbfs; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int WebRtcAgc_get_config(void* agcInst, WebRtcAgcConfig* config) { | 
|  | LegacyAgc* stt; | 
|  | stt = (LegacyAgc*)agcInst; | 
|  |  | 
|  | if (stt == NULL) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (config == NULL) { | 
|  | stt->lastError = AGC_NULL_POINTER_ERROR; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (stt->initFlag != kInitCheck) { | 
|  | stt->lastError = AGC_UNINITIALIZED_ERROR; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | config->limiterEnable = stt->usedConfig.limiterEnable; | 
|  | config->targetLevelDbfs = stt->usedConfig.targetLevelDbfs; | 
|  | config->compressionGaindB = stt->usedConfig.compressionGaindB; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void* WebRtcAgc_Create() { | 
|  | LegacyAgc* stt = malloc(sizeof(LegacyAgc)); | 
|  |  | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | stt->fpt = fopen("./agc_test_log.txt", "wt"); | 
|  | stt->agcLog = fopen("./agc_debug_log.txt", "wt"); | 
|  | stt->digitalAgc.logFile = fopen("./agc_log.txt", "wt"); | 
|  | #endif | 
|  |  | 
|  | stt->initFlag = 0; | 
|  | stt->lastError = 0; | 
|  |  | 
|  | return stt; | 
|  | } | 
|  |  | 
|  | void WebRtcAgc_Free(void* state) { | 
|  | LegacyAgc* stt; | 
|  |  | 
|  | stt = (LegacyAgc*)state; | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fclose(stt->fpt); | 
|  | fclose(stt->agcLog); | 
|  | fclose(stt->digitalAgc.logFile); | 
|  | #endif | 
|  | free(stt); | 
|  | } | 
|  |  | 
|  | /* minLevel     - Minimum volume level | 
|  | * maxLevel     - Maximum volume level | 
|  | */ | 
|  | int WebRtcAgc_Init(void* agcInst, | 
|  | int32_t minLevel, | 
|  | int32_t maxLevel, | 
|  | int16_t agcMode, | 
|  | uint32_t fs) { | 
|  | int32_t max_add, tmp32; | 
|  | int16_t i; | 
|  | int tmpNorm; | 
|  | LegacyAgc* stt; | 
|  |  | 
|  | /* typecast state pointer */ | 
|  | stt = (LegacyAgc*)agcInst; | 
|  |  | 
|  | if (WebRtcAgc_InitDigital(&stt->digitalAgc, agcMode) != 0) { | 
|  | stt->lastError = AGC_UNINITIALIZED_ERROR; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Analog AGC variables */ | 
|  | stt->envSum = 0; | 
|  |  | 
|  | /* mode     = 0 - Only saturation protection | 
|  | *            1 - Analog Automatic Gain Control [-targetLevelDbfs (default -3 | 
|  | * dBOv)] | 
|  | *            2 - Digital Automatic Gain Control [-targetLevelDbfs (default -3 | 
|  | * dBOv)] | 
|  | *            3 - Fixed Digital Gain [compressionGaindB (default 8 dB)] | 
|  | */ | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | stt->fcount = 0; | 
|  | fprintf(stt->fpt, "AGC->Init\n"); | 
|  | #endif | 
|  | if (agcMode < kAgcModeUnchanged || agcMode > kAgcModeFixedDigital) { | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, "AGC->Init: error, incorrect mode\n\n"); | 
|  | #endif | 
|  | return -1; | 
|  | } | 
|  | stt->agcMode = agcMode; | 
|  | stt->fs = fs; | 
|  |  | 
|  | /* initialize input VAD */ | 
|  | WebRtcAgc_InitVad(&stt->vadMic); | 
|  |  | 
|  | /* If the volume range is smaller than 0-256 then | 
|  | * the levels are shifted up to Q8-domain */ | 
|  | tmpNorm = WebRtcSpl_NormU32((uint32_t)maxLevel); | 
|  | stt->scale = tmpNorm - 23; | 
|  | if (stt->scale < 0) { | 
|  | stt->scale = 0; | 
|  | } | 
|  | // TODO(bjornv): Investigate if we really need to scale up a small range now | 
|  | // when we have | 
|  | // a guard against zero-increments. For now, we do not support scale up (scale | 
|  | // = 0). | 
|  | stt->scale = 0; | 
|  | maxLevel <<= stt->scale; | 
|  | minLevel <<= stt->scale; | 
|  |  | 
|  | /* Make minLevel and maxLevel static in AdaptiveDigital */ | 
|  | if (stt->agcMode == kAgcModeAdaptiveDigital) { | 
|  | minLevel = 0; | 
|  | maxLevel = 255; | 
|  | stt->scale = 0; | 
|  | } | 
|  | /* The maximum supplemental volume range is based on a vague idea | 
|  | * of how much lower the gain will be than the real analog gain. */ | 
|  | max_add = (maxLevel - minLevel) / 4; | 
|  |  | 
|  | /* Minimum/maximum volume level that can be set */ | 
|  | stt->minLevel = minLevel; | 
|  | stt->maxAnalog = maxLevel; | 
|  | stt->maxLevel = maxLevel + max_add; | 
|  | stt->maxInit = stt->maxLevel; | 
|  |  | 
|  | stt->zeroCtrlMax = stt->maxAnalog; | 
|  | stt->lastInMicLevel = 0; | 
|  |  | 
|  | /* Initialize micVol parameter */ | 
|  | stt->micVol = stt->maxAnalog; | 
|  | if (stt->agcMode == kAgcModeAdaptiveDigital) { | 
|  | stt->micVol = 127; /* Mid-point of mic level */ | 
|  | } | 
|  | stt->micRef = stt->micVol; | 
|  | stt->micGainIdx = 127; | 
|  | #ifdef MIC_LEVEL_FEEDBACK | 
|  | stt->numBlocksMicLvlSat = 0; | 
|  | stt->micLvlSat = 0; | 
|  | #endif | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, "AGC->Init: minLevel = %d, maxAnalog = %d, maxLevel = %d\n", | 
|  | stt->minLevel, stt->maxAnalog, stt->maxLevel); | 
|  | #endif | 
|  |  | 
|  | /* Minimum output volume is 4% higher than the available lowest volume level | 
|  | */ | 
|  | tmp32 = ((stt->maxLevel - stt->minLevel) * 10) >> 8; | 
|  | stt->minOutput = (stt->minLevel + tmp32); | 
|  |  | 
|  | stt->msTooLow = 0; | 
|  | stt->msTooHigh = 0; | 
|  | stt->changeToSlowMode = 0; | 
|  | stt->firstCall = 0; | 
|  | stt->msZero = 0; | 
|  | stt->muteGuardMs = 0; | 
|  | stt->gainTableIdx = 0; | 
|  |  | 
|  | stt->msecSpeechInnerChange = kMsecSpeechInner; | 
|  | stt->msecSpeechOuterChange = kMsecSpeechOuter; | 
|  |  | 
|  | stt->activeSpeech = 0; | 
|  | stt->Rxx16_LPw32Max = 0; | 
|  |  | 
|  | stt->vadThreshold = kNormalVadThreshold; | 
|  | stt->inActive = 0; | 
|  |  | 
|  | for (i = 0; i < RXX_BUFFER_LEN; i++) { | 
|  | stt->Rxx16_vectorw32[i] = (int32_t)1000; /* -54dBm0 */ | 
|  | } | 
|  | stt->Rxx160w32 = | 
|  | 125 * RXX_BUFFER_LEN; /* (stt->Rxx16_vectorw32[0]>>3) = 125 */ | 
|  |  | 
|  | stt->Rxx16pos = 0; | 
|  | stt->Rxx16_LPw32 = (int32_t)16284; /* Q(-4) */ | 
|  |  | 
|  | for (i = 0; i < 5; i++) { | 
|  | stt->Rxx16w32_array[0][i] = 0; | 
|  | } | 
|  | for (i = 0; i < 10; i++) { | 
|  | stt->env[0][i] = 0; | 
|  | stt->env[1][i] = 0; | 
|  | } | 
|  | stt->inQueue = 0; | 
|  |  | 
|  | #ifdef MIC_LEVEL_FEEDBACK | 
|  | stt->targetIdxOffset = 0; | 
|  | #endif | 
|  |  | 
|  | WebRtcSpl_MemSetW32(stt->filterState, 0, 8); | 
|  |  | 
|  | stt->initFlag = kInitCheck; | 
|  | // Default config settings. | 
|  | stt->defaultConfig.limiterEnable = kAgcTrue; | 
|  | stt->defaultConfig.targetLevelDbfs = AGC_DEFAULT_TARGET_LEVEL; | 
|  | stt->defaultConfig.compressionGaindB = AGC_DEFAULT_COMP_GAIN; | 
|  |  | 
|  | if (WebRtcAgc_set_config(stt, stt->defaultConfig) == -1) { | 
|  | stt->lastError = AGC_UNSPECIFIED_ERROR; | 
|  | return -1; | 
|  | } | 
|  | stt->Rxx160_LPw32 = stt->analogTargetLevel;  // Initialize rms value | 
|  |  | 
|  | stt->lowLevelSignal = 0; | 
|  |  | 
|  | /* Only positive values are allowed that are not too large */ | 
|  | if ((minLevel >= maxLevel) || (maxLevel & 0xFC000000)) { | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, "minLevel, maxLevel value(s) are invalid\n\n"); | 
|  | #endif | 
|  | return -1; | 
|  | } else { | 
|  | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
|  | fprintf(stt->fpt, "\n"); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  | } |