| /* | 
 |  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 |  | 
 | /* | 
 |  * This file contains the function WebRtcSpl_LevinsonDurbin(). | 
 |  * The description header can be found in signal_processing_library.h | 
 |  * | 
 |  */ | 
 |  | 
 | #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" | 
 |  | 
 | #define SPL_LEVINSON_MAXORDER 20 | 
 |  | 
 | int16_t WebRtcSpl_LevinsonDurbin(const int32_t* R, int16_t* A, int16_t* K, | 
 |                                  int16_t order) | 
 | { | 
 |     int16_t i, j; | 
 |     // Auto-correlation coefficients in high precision | 
 |     int16_t R_hi[SPL_LEVINSON_MAXORDER + 1], R_low[SPL_LEVINSON_MAXORDER + 1]; | 
 |     // LPC coefficients in high precision | 
 |     int16_t A_hi[SPL_LEVINSON_MAXORDER + 1], A_low[SPL_LEVINSON_MAXORDER + 1]; | 
 |     // LPC coefficients for next iteration | 
 |     int16_t A_upd_hi[SPL_LEVINSON_MAXORDER + 1], A_upd_low[SPL_LEVINSON_MAXORDER + 1]; | 
 |     // Reflection coefficient in high precision | 
 |     int16_t K_hi, K_low; | 
 |     // Prediction gain Alpha in high precision and with scale factor | 
 |     int16_t Alpha_hi, Alpha_low, Alpha_exp; | 
 |     int16_t tmp_hi, tmp_low; | 
 |     int32_t temp1W32, temp2W32, temp3W32; | 
 |     int16_t norm; | 
 |  | 
 |     // Normalize the autocorrelation R[0]...R[order+1] | 
 |  | 
 |     norm = WebRtcSpl_NormW32(R[0]); | 
 |  | 
 |     for (i = 0; i <= order; ++i) | 
 |     { | 
 |         temp1W32 = WEBRTC_SPL_LSHIFT_W32(R[i], norm); | 
 |         // Put R in hi and low format | 
 |         R_hi[i] = (int16_t)(temp1W32 >> 16); | 
 |         R_low[i] = (int16_t)((temp1W32 - ((int32_t)R_hi[i] << 16)) >> 1); | 
 |     } | 
 |  | 
 |     // K = A[1] = -R[1] / R[0] | 
 |  | 
 |     temp2W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[1],16) | 
 |             + WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[1],1); // R[1] in Q31 | 
 |     temp3W32 = WEBRTC_SPL_ABS_W32(temp2W32); // abs R[1] | 
 |     temp1W32 = WebRtcSpl_DivW32HiLow(temp3W32, R_hi[0], R_low[0]); // abs(R[1])/R[0] in Q31 | 
 |     // Put back the sign on R[1] | 
 |     if (temp2W32 > 0) | 
 |     { | 
 |         temp1W32 = -temp1W32; | 
 |     } | 
 |  | 
 |     // Put K in hi and low format | 
 |     K_hi = (int16_t)(temp1W32 >> 16); | 
 |     K_low = (int16_t)((temp1W32 - ((int32_t)K_hi << 16)) >> 1); | 
 |  | 
 |     // Store first reflection coefficient | 
 |     K[0] = K_hi; | 
 |  | 
 |     temp1W32 >>= 4;  // A[1] in Q27. | 
 |  | 
 |     // Put A[1] in hi and low format | 
 |     A_hi[1] = (int16_t)(temp1W32 >> 16); | 
 |     A_low[1] = (int16_t)((temp1W32 - ((int32_t)A_hi[1] << 16)) >> 1); | 
 |  | 
 |     // Alpha = R[0] * (1-K^2) | 
 |  | 
 |     temp1W32 = ((K_hi * K_low >> 14) + K_hi * K_hi) << 1;  // = k^2 in Q31 | 
 |  | 
 |     temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0 | 
 |     temp1W32 = (int32_t)0x7fffffffL - temp1W32; // temp1W32 = (1 - K[0]*K[0]) in Q31 | 
 |  | 
 |     // Store temp1W32 = 1 - K[0]*K[0] on hi and low format | 
 |     tmp_hi = (int16_t)(temp1W32 >> 16); | 
 |     tmp_low = (int16_t)((temp1W32 - ((int32_t)tmp_hi << 16)) >> 1); | 
 |  | 
 |     // Calculate Alpha in Q31 | 
 |     temp1W32 = (R_hi[0] * tmp_hi + (R_hi[0] * tmp_low >> 15) + | 
 |         (R_low[0] * tmp_hi >> 15)) << 1; | 
 |  | 
 |     // Normalize Alpha and put it in hi and low format | 
 |  | 
 |     Alpha_exp = WebRtcSpl_NormW32(temp1W32); | 
 |     temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, Alpha_exp); | 
 |     Alpha_hi = (int16_t)(temp1W32 >> 16); | 
 |     Alpha_low = (int16_t)((temp1W32 - ((int32_t)Alpha_hi << 16)) >> 1); | 
 |  | 
 |     // Perform the iterative calculations in the Levinson-Durbin algorithm | 
 |  | 
 |     for (i = 2; i <= order; i++) | 
 |     { | 
 |         /*                    ---- | 
 |          temp1W32 =  R[i] + > R[j]*A[i-j] | 
 |          / | 
 |          ---- | 
 |          j=1..i-1 | 
 |          */ | 
 |  | 
 |         temp1W32 = 0; | 
 |  | 
 |         for (j = 1; j < i; j++) | 
 |         { | 
 |           // temp1W32 is in Q31 | 
 |           temp1W32 += (R_hi[j] * A_hi[i - j] << 1) + | 
 |               (((R_hi[j] * A_low[i - j] >> 15) + | 
 |               (R_low[j] * A_hi[i - j] >> 15)) << 1); | 
 |         } | 
 |  | 
 |         temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, 4); | 
 |         temp1W32 += (WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[i], 16) | 
 |                 + WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[i], 1)); | 
 |  | 
 |         // K = -temp1W32 / Alpha | 
 |         temp2W32 = WEBRTC_SPL_ABS_W32(temp1W32); // abs(temp1W32) | 
 |         temp3W32 = WebRtcSpl_DivW32HiLow(temp2W32, Alpha_hi, Alpha_low); // abs(temp1W32)/Alpha | 
 |  | 
 |         // Put the sign of temp1W32 back again | 
 |         if (temp1W32 > 0) | 
 |         { | 
 |             temp3W32 = -temp3W32; | 
 |         } | 
 |  | 
 |         // Use the Alpha shifts from earlier to de-normalize | 
 |         norm = WebRtcSpl_NormW32(temp3W32); | 
 |         if ((Alpha_exp <= norm) || (temp3W32 == 0)) | 
 |         { | 
 |             temp3W32 = WEBRTC_SPL_LSHIFT_W32(temp3W32, Alpha_exp); | 
 |         } else | 
 |         { | 
 |             if (temp3W32 > 0) | 
 |             { | 
 |                 temp3W32 = (int32_t)0x7fffffffL; | 
 |             } else | 
 |             { | 
 |                 temp3W32 = (int32_t)0x80000000L; | 
 |             } | 
 |         } | 
 |  | 
 |         // Put K on hi and low format | 
 |         K_hi = (int16_t)(temp3W32 >> 16); | 
 |         K_low = (int16_t)((temp3W32 - ((int32_t)K_hi << 16)) >> 1); | 
 |  | 
 |         // Store Reflection coefficient in Q15 | 
 |         K[i - 1] = K_hi; | 
 |  | 
 |         // Test for unstable filter. | 
 |         // If unstable return 0 and let the user decide what to do in that case | 
 |  | 
 |         if ((int32_t)WEBRTC_SPL_ABS_W16(K_hi) > (int32_t)32750) | 
 |         { | 
 |             return 0; // Unstable filter | 
 |         } | 
 |  | 
 |         /* | 
 |          Compute updated LPC coefficient: Anew[i] | 
 |          Anew[j]= A[j] + K*A[i-j]   for j=1..i-1 | 
 |          Anew[i]= K | 
 |          */ | 
 |  | 
 |         for (j = 1; j < i; j++) | 
 |         { | 
 |             // temp1W32 = A[j] in Q27 | 
 |             temp1W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[j],16) | 
 |                     + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[j],1); | 
 |  | 
 |             // temp1W32 += K*A[i-j] in Q27 | 
 |             temp1W32 += (K_hi * A_hi[i - j] + (K_hi * A_low[i - j] >> 15) + | 
 |                 (K_low * A_hi[i - j] >> 15)) << 1; | 
 |  | 
 |             // Put Anew in hi and low format | 
 |             A_upd_hi[j] = (int16_t)(temp1W32 >> 16); | 
 |             A_upd_low[j] = (int16_t)( | 
 |                 (temp1W32 - ((int32_t)A_upd_hi[j] << 16)) >> 1); | 
 |         } | 
 |  | 
 |         // temp3W32 = K in Q27 (Convert from Q31 to Q27) | 
 |         temp3W32 >>= 4; | 
 |  | 
 |         // Store Anew in hi and low format | 
 |         A_upd_hi[i] = (int16_t)(temp3W32 >> 16); | 
 |         A_upd_low[i] = (int16_t)( | 
 |             (temp3W32 - ((int32_t)A_upd_hi[i] << 16)) >> 1); | 
 |  | 
 |         // Alpha = Alpha * (1-K^2) | 
 |  | 
 |         temp1W32 = ((K_hi * K_low >> 14) + K_hi * K_hi) << 1;  // K*K in Q31 | 
 |  | 
 |         temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0 | 
 |         temp1W32 = (int32_t)0x7fffffffL - temp1W32; // 1 - K*K  in Q31 | 
 |  | 
 |         // Convert 1- K^2 in hi and low format | 
 |         tmp_hi = (int16_t)(temp1W32 >> 16); | 
 |         tmp_low = (int16_t)((temp1W32 - ((int32_t)tmp_hi << 16)) >> 1); | 
 |  | 
 |         // Calculate Alpha = Alpha * (1-K^2) in Q31 | 
 |         temp1W32 = (Alpha_hi * tmp_hi + (Alpha_hi * tmp_low >> 15) + | 
 |             (Alpha_low * tmp_hi >> 15)) << 1; | 
 |  | 
 |         // Normalize Alpha and store it on hi and low format | 
 |  | 
 |         norm = WebRtcSpl_NormW32(temp1W32); | 
 |         temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, norm); | 
 |  | 
 |         Alpha_hi = (int16_t)(temp1W32 >> 16); | 
 |         Alpha_low = (int16_t)((temp1W32 - ((int32_t)Alpha_hi << 16)) >> 1); | 
 |  | 
 |         // Update the total normalization of Alpha | 
 |         Alpha_exp = Alpha_exp + norm; | 
 |  | 
 |         // Update A[] | 
 |  | 
 |         for (j = 1; j <= i; j++) | 
 |         { | 
 |             A_hi[j] = A_upd_hi[j]; | 
 |             A_low[j] = A_upd_low[j]; | 
 |         } | 
 |     } | 
 |  | 
 |     /* | 
 |      Set A[0] to 1.0 and store the A[i] i=1...order in Q12 | 
 |      (Convert from Q27 and use rounding) | 
 |      */ | 
 |  | 
 |     A[0] = 4096; | 
 |  | 
 |     for (i = 1; i <= order; i++) | 
 |     { | 
 |         // temp1W32 in Q27 | 
 |         temp1W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[i], 16) | 
 |                 + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[i], 1); | 
 |         // Round and store upper word | 
 |         A[i] = (int16_t)(((temp1W32 << 1) + 32768) >> 16); | 
 |     } | 
 |     return 1; // Stable filters | 
 | } |