| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/audio_processing/aec3/aec_state.h" |
| |
| #include "webrtc/modules/audio_processing/logging/apm_data_dumper.h" |
| #include "webrtc/test/gtest.h" |
| |
| namespace webrtc { |
| |
| // Verify the general functionality of AecState |
| TEST(AecState, NormalUsage) { |
| ApmDataDumper data_dumper(42); |
| AecState state; |
| FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); |
| std::array<float, kFftLengthBy2Plus1> E2_main; |
| std::array<float, kFftLengthBy2Plus1> E2_shadow; |
| std::array<float, kFftLengthBy2Plus1> Y2; |
| std::array<float, kBlockSize> x; |
| EchoPathVariability echo_path_variability(false, false); |
| x.fill(0.f); |
| |
| std::vector<std::array<float, kFftLengthBy2Plus1>> |
| converged_filter_frequency_response(10); |
| for (auto& v : converged_filter_frequency_response) { |
| v.fill(0.01f); |
| } |
| std::vector<std::array<float, kFftLengthBy2Plus1>> |
| diverged_filter_frequency_response = converged_filter_frequency_response; |
| converged_filter_frequency_response[2].fill(100.f); |
| |
| // Verify that model based aec feasibility and linear AEC usability are false |
| // when the filter is diverged and there is no external delay reported. |
| state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| EXPECT_FALSE(state.ModelBasedAecFeasible()); |
| EXPECT_FALSE(state.UsableLinearEstimate()); |
| |
| // Verify that model based aec feasibility is true and that linear AEC |
| // usability is false when the filter is diverged and there is an external |
| // delay reported. |
| state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| EXPECT_FALSE(state.ModelBasedAecFeasible()); |
| for (int k = 0; k < 50; ++k) { |
| state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| } |
| EXPECT_TRUE(state.ModelBasedAecFeasible()); |
| EXPECT_FALSE(state.UsableLinearEstimate()); |
| |
| // Verify that linear AEC usability is true when the filter is converged |
| for (int k = 0; k < 50; ++k) { |
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| } |
| EXPECT_TRUE(state.UsableLinearEstimate()); |
| |
| // Verify that linear AEC usability becomes false after an echo path change is |
| // reported |
| echo_path_variability = EchoPathVariability(true, false); |
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| EXPECT_FALSE(state.UsableLinearEstimate()); |
| |
| // Verify that the active render detection works as intended. |
| x.fill(101.f); |
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| EXPECT_TRUE(state.ActiveRender()); |
| |
| x.fill(0.f); |
| for (int k = 0; k < 200; ++k) { |
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| } |
| EXPECT_FALSE(state.ActiveRender()); |
| |
| x.fill(101.f); |
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| EXPECT_TRUE(state.ActiveRender()); |
| |
| // Verify that echo leakage is properly reported. |
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| EXPECT_FALSE(state.EchoLeakageDetected()); |
| |
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| true); |
| EXPECT_TRUE(state.EchoLeakageDetected()); |
| |
| // Verify that the bands containing reliable filter estimates are properly |
| // reported. |
| echo_path_variability = EchoPathVariability(false, false); |
| for (int k = 0; k < 200; ++k) { |
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| } |
| |
| FftData X; |
| X.re.fill(10000.f); |
| X.im.fill(0.f); |
| for (size_t k = 0; k < X_buffer.Buffer().size(); ++k) { |
| X_buffer.Insert(X); |
| } |
| |
| Y2.fill(10.f * 1000.f * 1000.f); |
| E2_main.fill(100.f * Y2[0]); |
| E2_shadow.fill(100.f * Y2[0]); |
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| |
| E2_main.fill(0.1f * Y2[0]); |
| E2_shadow.fill(E2_main[0]); |
| for (size_t k = 0; k < Y2.size(); k += 2) { |
| E2_main[k] = Y2[k]; |
| E2_shadow[k] = Y2[k]; |
| } |
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| |
| const std::array<bool, kFftLengthBy2Plus1>& reliable_bands = |
| state.BandsWithReliableFilter(); |
| |
| EXPECT_EQ(reliable_bands[0], reliable_bands[1]); |
| for (size_t k = 1; k < kFftLengthBy2 - 5; ++k) { |
| EXPECT_TRUE(reliable_bands[k]); |
| } |
| for (size_t k = kFftLengthBy2 - 5; k < reliable_bands.size(); ++k) { |
| EXPECT_EQ(reliable_bands[kFftLengthBy2 - 6], reliable_bands[k]); |
| } |
| |
| // Verify that the ERL is properly estimated |
| Y2.fill(10.f * X.re[0] * X.re[0]); |
| for (size_t k = 0; k < 100000; ++k) { |
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| } |
| |
| ASSERT_TRUE(state.UsableLinearEstimate()); |
| const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl(); |
| std::for_each(erl.begin(), erl.end(), |
| [](float a) { EXPECT_NEAR(10.f, a, 0.1); }); |
| |
| // Verify that the ERLE is properly estimated |
| E2_main.fill(1.f * X.re[0] * X.re[0]); |
| Y2.fill(10.f * E2_main[0]); |
| for (size_t k = 0; k < 10000; ++k) { |
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| } |
| ASSERT_TRUE(state.UsableLinearEstimate()); |
| std::for_each(state.Erle().begin(), state.Erle().end(), |
| [](float a) { EXPECT_NEAR(8.f, a, 0.1); }); |
| |
| E2_main.fill(1.f * X.re[0] * X.re[0]); |
| Y2.fill(5.f * E2_main[0]); |
| for (size_t k = 0; k < 10000; ++k) { |
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
| false); |
| } |
| ASSERT_TRUE(state.UsableLinearEstimate()); |
| std::for_each(state.Erle().begin(), state.Erle().end(), |
| [](float a) { EXPECT_NEAR(5.f, a, 0.1); }); |
| } |
| |
| // Verifies the a non-significant delay is correctly identified. |
| TEST(AecState, NonSignificantDelay) { |
| AecState state; |
| FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); |
| std::array<float, kFftLengthBy2Plus1> E2_main; |
| std::array<float, kFftLengthBy2Plus1> E2_shadow; |
| std::array<float, kFftLengthBy2Plus1> Y2; |
| std::array<float, kBlockSize> x; |
| EchoPathVariability echo_path_variability(false, false); |
| x.fill(0.f); |
| |
| std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30); |
| for (auto& v : frequency_response) { |
| v.fill(0.01f); |
| } |
| |
| // Verify that a non-significant filter delay is identified correctly. |
| state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, |
| E2_shadow, Y2, x, echo_path_variability, false); |
| EXPECT_FALSE(state.FilterDelay()); |
| } |
| |
| // Verifies the delay for a converged filter is correctly identified. |
| TEST(AecState, ConvergedFilterDelay) { |
| constexpr int kFilterLength = 10; |
| AecState state; |
| FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); |
| std::array<float, kFftLengthBy2Plus1> E2_main; |
| std::array<float, kFftLengthBy2Plus1> E2_shadow; |
| std::array<float, kFftLengthBy2Plus1> Y2; |
| std::array<float, kBlockSize> x; |
| EchoPathVariability echo_path_variability(false, false); |
| x.fill(0.f); |
| |
| std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response( |
| kFilterLength); |
| |
| // Verify that the filter delay for a converged filter is properly identified. |
| for (int k = 0; k < kFilterLength; ++k) { |
| for (auto& v : frequency_response) { |
| v.fill(0.01f); |
| } |
| frequency_response[k].fill(100.f); |
| |
| state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, |
| E2_shadow, Y2, x, echo_path_variability, false); |
| EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay()); |
| if (k != (kFilterLength - 1)) { |
| EXPECT_EQ(k, state.FilterDelay()); |
| } |
| } |
| } |
| |
| // Verify that the externally reported delay is properly reported and converted. |
| TEST(AecState, ExternalDelay) { |
| AecState state; |
| std::array<float, kFftLengthBy2Plus1> E2_main; |
| std::array<float, kFftLengthBy2Plus1> E2_shadow; |
| std::array<float, kFftLengthBy2Plus1> Y2; |
| std::array<float, kBlockSize> x; |
| E2_main.fill(0.f); |
| E2_shadow.fill(0.f); |
| Y2.fill(0.f); |
| x.fill(0.f); |
| FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30); |
| for (auto& v : frequency_response) { |
| v.fill(0.01f); |
| } |
| |
| for (size_t k = 0; k < frequency_response.size() - 1; ++k) { |
| state.Update(frequency_response, rtc::Optional<size_t>(k * kBlockSize + 5), |
| X_buffer, E2_main, E2_shadow, Y2, x, |
| EchoPathVariability(false, false), false); |
| EXPECT_TRUE(state.ExternalDelay()); |
| EXPECT_EQ(k, state.ExternalDelay()); |
| } |
| |
| // Verify that the externally reported delay is properly unset when it is no |
| // longer present. |
| state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, |
| E2_shadow, Y2, x, EchoPathVariability(false, false), false); |
| EXPECT_FALSE(state.ExternalDelay()); |
| } |
| |
| } // namespace webrtc |