blob: 6b25f25e08309d5f14992cb695815f87b952f1bb [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aec3/aec_state.h"
#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
#include "webrtc/test/gtest.h"
namespace webrtc {
// Verify the general functionality of AecState
TEST(AecState, NormalUsage) {
ApmDataDumper data_dumper(42);
AecState state;
FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
std::array<float, kFftLengthBy2Plus1> E2_main;
std::array<float, kFftLengthBy2Plus1> E2_shadow;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kBlockSize> x;
EchoPathVariability echo_path_variability(false, false);
x.fill(0.f);
std::vector<std::array<float, kFftLengthBy2Plus1>>
converged_filter_frequency_response(10);
for (auto& v : converged_filter_frequency_response) {
v.fill(0.01f);
}
std::vector<std::array<float, kFftLengthBy2Plus1>>
diverged_filter_frequency_response = converged_filter_frequency_response;
converged_filter_frequency_response[2].fill(100.f);
// Verify that model based aec feasibility and linear AEC usability are false
// when the filter is diverged and there is no external delay reported.
state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
EXPECT_FALSE(state.ModelBasedAecFeasible());
EXPECT_FALSE(state.UsableLinearEstimate());
// Verify that model based aec feasibility is true and that linear AEC
// usability is false when the filter is diverged and there is an external
// delay reported.
state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
EXPECT_FALSE(state.ModelBasedAecFeasible());
for (int k = 0; k < 50; ++k) {
state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
}
EXPECT_TRUE(state.ModelBasedAecFeasible());
EXPECT_FALSE(state.UsableLinearEstimate());
// Verify that linear AEC usability is true when the filter is converged
for (int k = 0; k < 50; ++k) {
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
}
EXPECT_TRUE(state.UsableLinearEstimate());
// Verify that linear AEC usability becomes false after an echo path change is
// reported
echo_path_variability = EchoPathVariability(true, false);
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
EXPECT_FALSE(state.UsableLinearEstimate());
// Verify that the active render detection works as intended.
x.fill(101.f);
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
EXPECT_TRUE(state.ActiveRender());
x.fill(0.f);
for (int k = 0; k < 200; ++k) {
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
}
EXPECT_FALSE(state.ActiveRender());
x.fill(101.f);
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
EXPECT_TRUE(state.ActiveRender());
// Verify that echo leakage is properly reported.
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
EXPECT_FALSE(state.EchoLeakageDetected());
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
true);
EXPECT_TRUE(state.EchoLeakageDetected());
// Verify that the bands containing reliable filter estimates are properly
// reported.
echo_path_variability = EchoPathVariability(false, false);
for (int k = 0; k < 200; ++k) {
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
}
FftData X;
X.re.fill(10000.f);
X.im.fill(0.f);
for (size_t k = 0; k < X_buffer.Buffer().size(); ++k) {
X_buffer.Insert(X);
}
Y2.fill(10.f * 1000.f * 1000.f);
E2_main.fill(100.f * Y2[0]);
E2_shadow.fill(100.f * Y2[0]);
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
E2_main.fill(0.1f * Y2[0]);
E2_shadow.fill(E2_main[0]);
for (size_t k = 0; k < Y2.size(); k += 2) {
E2_main[k] = Y2[k];
E2_shadow[k] = Y2[k];
}
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
const std::array<bool, kFftLengthBy2Plus1>& reliable_bands =
state.BandsWithReliableFilter();
EXPECT_EQ(reliable_bands[0], reliable_bands[1]);
for (size_t k = 1; k < kFftLengthBy2 - 5; ++k) {
EXPECT_TRUE(reliable_bands[k]);
}
for (size_t k = kFftLengthBy2 - 5; k < reliable_bands.size(); ++k) {
EXPECT_EQ(reliable_bands[kFftLengthBy2 - 6], reliable_bands[k]);
}
// Verify that the ERL is properly estimated
Y2.fill(10.f * X.re[0] * X.re[0]);
for (size_t k = 0; k < 100000; ++k) {
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
}
ASSERT_TRUE(state.UsableLinearEstimate());
const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
std::for_each(erl.begin(), erl.end(),
[](float a) { EXPECT_NEAR(10.f, a, 0.1); });
// Verify that the ERLE is properly estimated
E2_main.fill(1.f * X.re[0] * X.re[0]);
Y2.fill(10.f * E2_main[0]);
for (size_t k = 0; k < 10000; ++k) {
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
}
ASSERT_TRUE(state.UsableLinearEstimate());
std::for_each(state.Erle().begin(), state.Erle().end(),
[](float a) { EXPECT_NEAR(8.f, a, 0.1); });
E2_main.fill(1.f * X.re[0] * X.re[0]);
Y2.fill(5.f * E2_main[0]);
for (size_t k = 0; k < 10000; ++k) {
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
false);
}
ASSERT_TRUE(state.UsableLinearEstimate());
std::for_each(state.Erle().begin(), state.Erle().end(),
[](float a) { EXPECT_NEAR(5.f, a, 0.1); });
}
// Verifies the a non-significant delay is correctly identified.
TEST(AecState, NonSignificantDelay) {
AecState state;
FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
std::array<float, kFftLengthBy2Plus1> E2_main;
std::array<float, kFftLengthBy2Plus1> E2_shadow;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kBlockSize> x;
EchoPathVariability echo_path_variability(false, false);
x.fill(0.f);
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30);
for (auto& v : frequency_response) {
v.fill(0.01f);
}
// Verify that a non-significant filter delay is identified correctly.
state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
E2_shadow, Y2, x, echo_path_variability, false);
EXPECT_FALSE(state.FilterDelay());
}
// Verifies the delay for a converged filter is correctly identified.
TEST(AecState, ConvergedFilterDelay) {
constexpr int kFilterLength = 10;
AecState state;
FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
std::array<float, kFftLengthBy2Plus1> E2_main;
std::array<float, kFftLengthBy2Plus1> E2_shadow;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kBlockSize> x;
EchoPathVariability echo_path_variability(false, false);
x.fill(0.f);
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(
kFilterLength);
// Verify that the filter delay for a converged filter is properly identified.
for (int k = 0; k < kFilterLength; ++k) {
for (auto& v : frequency_response) {
v.fill(0.01f);
}
frequency_response[k].fill(100.f);
state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
E2_shadow, Y2, x, echo_path_variability, false);
EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay());
if (k != (kFilterLength - 1)) {
EXPECT_EQ(k, state.FilterDelay());
}
}
}
// Verify that the externally reported delay is properly reported and converted.
TEST(AecState, ExternalDelay) {
AecState state;
std::array<float, kFftLengthBy2Plus1> E2_main;
std::array<float, kFftLengthBy2Plus1> E2_shadow;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kBlockSize> x;
E2_main.fill(0.f);
E2_shadow.fill(0.f);
Y2.fill(0.f);
x.fill(0.f);
FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30);
for (auto& v : frequency_response) {
v.fill(0.01f);
}
for (size_t k = 0; k < frequency_response.size() - 1; ++k) {
state.Update(frequency_response, rtc::Optional<size_t>(k * kBlockSize + 5),
X_buffer, E2_main, E2_shadow, Y2, x,
EchoPathVariability(false, false), false);
EXPECT_TRUE(state.ExternalDelay());
EXPECT_EQ(k, state.ExternalDelay());
}
// Verify that the externally reported delay is properly unset when it is no
// longer present.
state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
E2_shadow, Y2, x, EchoPathVariability(false, false), false);
EXPECT_FALSE(state.ExternalDelay());
}
} // namespace webrtc