| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| /* |
| * This file contains the function WebRtcSpl_LevinsonDurbin(). |
| * The description header can be found in signal_processing_library.h |
| * |
| */ |
| |
| #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" |
| |
| #define SPL_LEVINSON_MAXORDER 20 |
| |
| int16_t WebRtcSpl_LevinsonDurbin(const int32_t* R, int16_t* A, int16_t* K, |
| size_t order) |
| { |
| size_t i, j; |
| // Auto-correlation coefficients in high precision |
| int16_t R_hi[SPL_LEVINSON_MAXORDER + 1], R_low[SPL_LEVINSON_MAXORDER + 1]; |
| // LPC coefficients in high precision |
| int16_t A_hi[SPL_LEVINSON_MAXORDER + 1], A_low[SPL_LEVINSON_MAXORDER + 1]; |
| // LPC coefficients for next iteration |
| int16_t A_upd_hi[SPL_LEVINSON_MAXORDER + 1], A_upd_low[SPL_LEVINSON_MAXORDER + 1]; |
| // Reflection coefficient in high precision |
| int16_t K_hi, K_low; |
| // Prediction gain Alpha in high precision and with scale factor |
| int16_t Alpha_hi, Alpha_low, Alpha_exp; |
| int16_t tmp_hi, tmp_low; |
| int32_t temp1W32, temp2W32, temp3W32; |
| int16_t norm; |
| |
| // Normalize the autocorrelation R[0]...R[order+1] |
| |
| norm = WebRtcSpl_NormW32(R[0]); |
| |
| for (i = 0; i <= order; ++i) |
| { |
| temp1W32 = R[i] * (1 << norm); |
| // Put R in hi and low format |
| R_hi[i] = (int16_t)(temp1W32 >> 16); |
| R_low[i] = (int16_t)((temp1W32 - ((int32_t)R_hi[i] * 65536)) >> 1); |
| } |
| |
| // K = A[1] = -R[1] / R[0] |
| |
| temp2W32 = R[1] * (1 << norm); // R[1] in Q31 |
| temp3W32 = WEBRTC_SPL_ABS_W32(temp2W32); // abs R[1] |
| temp1W32 = WebRtcSpl_DivW32HiLow(temp3W32, R_hi[0], R_low[0]); // abs(R[1])/R[0] in Q31 |
| // Put back the sign on R[1] |
| if (temp2W32 > 0) |
| { |
| temp1W32 = -temp1W32; |
| } |
| |
| // Put K in hi and low format |
| K_hi = (int16_t)(temp1W32 >> 16); |
| K_low = (int16_t)((temp1W32 - ((int32_t)K_hi * 65536)) >> 1); |
| |
| // Store first reflection coefficient |
| K[0] = K_hi; |
| |
| temp1W32 >>= 4; // A[1] in Q27. |
| |
| // Put A[1] in hi and low format |
| A_hi[1] = (int16_t)(temp1W32 >> 16); |
| A_low[1] = (int16_t)((temp1W32 - ((int32_t)A_hi[1] * 65536)) >> 1); |
| |
| // Alpha = R[0] * (1-K^2) |
| |
| temp1W32 = ((K_hi * K_low >> 14) + K_hi * K_hi) * 2; // = k^2 in Q31 |
| |
| temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0 |
| temp1W32 = (int32_t)0x7fffffffL - temp1W32; // temp1W32 = (1 - K[0]*K[0]) in Q31 |
| |
| // Store temp1W32 = 1 - K[0]*K[0] on hi and low format |
| tmp_hi = (int16_t)(temp1W32 >> 16); |
| tmp_low = (int16_t)((temp1W32 - ((int32_t)tmp_hi << 16)) >> 1); |
| |
| // Calculate Alpha in Q31 |
| temp1W32 = (R_hi[0] * tmp_hi + (R_hi[0] * tmp_low >> 15) + |
| (R_low[0] * tmp_hi >> 15)) << 1; |
| |
| // Normalize Alpha and put it in hi and low format |
| |
| Alpha_exp = WebRtcSpl_NormW32(temp1W32); |
| temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, Alpha_exp); |
| Alpha_hi = (int16_t)(temp1W32 >> 16); |
| Alpha_low = (int16_t)((temp1W32 - ((int32_t)Alpha_hi << 16)) >> 1); |
| |
| // Perform the iterative calculations in the Levinson-Durbin algorithm |
| |
| for (i = 2; i <= order; i++) |
| { |
| /* ---- |
| temp1W32 = R[i] + > R[j]*A[i-j] |
| / |
| ---- |
| j=1..i-1 |
| */ |
| |
| temp1W32 = 0; |
| |
| for (j = 1; j < i; j++) |
| { |
| // temp1W32 is in Q31 |
| temp1W32 += (R_hi[j] * A_hi[i - j] * 2) + |
| (((R_hi[j] * A_low[i - j] >> 15) + |
| (R_low[j] * A_hi[i - j] >> 15)) * 2); |
| } |
| |
| temp1W32 = temp1W32 * 16; |
| temp1W32 += ((int32_t)R_hi[i] * 65536) |
| + WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[i], 1); |
| |
| // K = -temp1W32 / Alpha |
| temp2W32 = WEBRTC_SPL_ABS_W32(temp1W32); // abs(temp1W32) |
| temp3W32 = WebRtcSpl_DivW32HiLow(temp2W32, Alpha_hi, Alpha_low); // abs(temp1W32)/Alpha |
| |
| // Put the sign of temp1W32 back again |
| if (temp1W32 > 0) |
| { |
| temp3W32 = -temp3W32; |
| } |
| |
| // Use the Alpha shifts from earlier to de-normalize |
| norm = WebRtcSpl_NormW32(temp3W32); |
| if ((Alpha_exp <= norm) || (temp3W32 == 0)) |
| { |
| temp3W32 = temp3W32 * (1 << Alpha_exp); |
| } else |
| { |
| if (temp3W32 > 0) |
| { |
| temp3W32 = (int32_t)0x7fffffffL; |
| } else |
| { |
| temp3W32 = (int32_t)0x80000000L; |
| } |
| } |
| |
| // Put K on hi and low format |
| K_hi = (int16_t)(temp3W32 >> 16); |
| K_low = (int16_t)((temp3W32 - ((int32_t)K_hi * 65536)) >> 1); |
| |
| // Store Reflection coefficient in Q15 |
| K[i - 1] = K_hi; |
| |
| // Test for unstable filter. |
| // If unstable return 0 and let the user decide what to do in that case |
| |
| if ((int32_t)WEBRTC_SPL_ABS_W16(K_hi) > (int32_t)32750) |
| { |
| return 0; // Unstable filter |
| } |
| |
| /* |
| Compute updated LPC coefficient: Anew[i] |
| Anew[j]= A[j] + K*A[i-j] for j=1..i-1 |
| Anew[i]= K |
| */ |
| |
| for (j = 1; j < i; j++) |
| { |
| // temp1W32 = A[j] in Q27 |
| temp1W32 = (int32_t)A_hi[j] * 65536 |
| + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[j],1); |
| |
| // temp1W32 += K*A[i-j] in Q27 |
| temp1W32 += (K_hi * A_hi[i - j] + (K_hi * A_low[i - j] >> 15) + |
| (K_low * A_hi[i - j] >> 15)) * 2; |
| |
| // Put Anew in hi and low format |
| A_upd_hi[j] = (int16_t)(temp1W32 >> 16); |
| A_upd_low[j] = (int16_t)( |
| (temp1W32 - ((int32_t)A_upd_hi[j] * 65536)) >> 1); |
| } |
| |
| // temp3W32 = K in Q27 (Convert from Q31 to Q27) |
| temp3W32 >>= 4; |
| |
| // Store Anew in hi and low format |
| A_upd_hi[i] = (int16_t)(temp3W32 >> 16); |
| A_upd_low[i] = (int16_t)( |
| (temp3W32 - ((int32_t)A_upd_hi[i] * 65536)) >> 1); |
| |
| // Alpha = Alpha * (1-K^2) |
| |
| temp1W32 = ((K_hi * K_low >> 14) + K_hi * K_hi) * 2; // K*K in Q31 |
| |
| temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0 |
| temp1W32 = (int32_t)0x7fffffffL - temp1W32; // 1 - K*K in Q31 |
| |
| // Convert 1- K^2 in hi and low format |
| tmp_hi = (int16_t)(temp1W32 >> 16); |
| tmp_low = (int16_t)((temp1W32 - ((int32_t)tmp_hi << 16)) >> 1); |
| |
| // Calculate Alpha = Alpha * (1-K^2) in Q31 |
| temp1W32 = (Alpha_hi * tmp_hi + (Alpha_hi * tmp_low >> 15) + |
| (Alpha_low * tmp_hi >> 15)) << 1; |
| |
| // Normalize Alpha and store it on hi and low format |
| |
| norm = WebRtcSpl_NormW32(temp1W32); |
| temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, norm); |
| |
| Alpha_hi = (int16_t)(temp1W32 >> 16); |
| Alpha_low = (int16_t)((temp1W32 - ((int32_t)Alpha_hi << 16)) >> 1); |
| |
| // Update the total normalization of Alpha |
| Alpha_exp = Alpha_exp + norm; |
| |
| // Update A[] |
| |
| for (j = 1; j <= i; j++) |
| { |
| A_hi[j] = A_upd_hi[j]; |
| A_low[j] = A_upd_low[j]; |
| } |
| } |
| |
| /* |
| Set A[0] to 1.0 and store the A[i] i=1...order in Q12 |
| (Convert from Q27 and use rounding) |
| */ |
| |
| A[0] = 4096; |
| |
| for (i = 1; i <= order; i++) |
| { |
| // temp1W32 in Q27 |
| temp1W32 = (int32_t)A_hi[i] * 65536 |
| + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[i], 1); |
| // Round and store upper word |
| A[i] = (int16_t)(((temp1W32 * 2) + 32768) >> 16); |
| } |
| return 1; // Stable filters |
| } |