blob: 85c126751cdf9ccb531430c0d8e0eb7badf1f869 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#if defined(_MSC_VER) && _MSC_VER < 1300
#pragma warning(disable:4786)
#endif
#include <time.h>
#include <errno.h>
#if defined(WEBRTC_WIN)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#define SECURITY_WIN32
#include <security.h>
#endif
#include <algorithm>
#include "webrtc/base/bytebuffer.h"
#include "webrtc/base/common.h"
#include "webrtc/base/httpcommon.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/socketadapters.h"
#include "webrtc/base/stringencode.h"
#include "webrtc/base/stringutils.h"
#if defined(WEBRTC_WIN)
#include "webrtc/base/sec_buffer.h"
#endif // WEBRTC_WIN
namespace rtc {
BufferedReadAdapter::BufferedReadAdapter(AsyncSocket* socket, size_t size)
: AsyncSocketAdapter(socket), buffer_size_(size),
data_len_(0), buffering_(false) {
buffer_ = new char[buffer_size_];
}
BufferedReadAdapter::~BufferedReadAdapter() {
delete [] buffer_;
}
int BufferedReadAdapter::Send(const void *pv, size_t cb) {
if (buffering_) {
// TODO: Spoof error better; Signal Writeable
socket_->SetError(EWOULDBLOCK);
return -1;
}
return AsyncSocketAdapter::Send(pv, cb);
}
int BufferedReadAdapter::Recv(void *pv, size_t cb) {
if (buffering_) {
socket_->SetError(EWOULDBLOCK);
return -1;
}
size_t read = 0;
if (data_len_) {
read = std::min(cb, data_len_);
memcpy(pv, buffer_, read);
data_len_ -= read;
if (data_len_ > 0) {
memmove(buffer_, buffer_ + read, data_len_);
}
pv = static_cast<char *>(pv) + read;
cb -= read;
}
// FIX: If cb == 0, we won't generate another read event
int res = AsyncSocketAdapter::Recv(pv, cb);
if (res >= 0) {
// Read from socket and possibly buffer; return combined length
return res + static_cast<int>(read);
}
if (read > 0) {
// Failed to read from socket, but still read something from buffer
return static_cast<int>(read);
}
// Didn't read anything; return error from socket
return res;
}
void BufferedReadAdapter::BufferInput(bool on) {
buffering_ = on;
}
void BufferedReadAdapter::OnReadEvent(AsyncSocket * socket) {
ASSERT(socket == socket_);
if (!buffering_) {
AsyncSocketAdapter::OnReadEvent(socket);
return;
}
if (data_len_ >= buffer_size_) {
LOG(INFO) << "Input buffer overflow";
ASSERT(false);
data_len_ = 0;
}
int len = socket_->Recv(buffer_ + data_len_, buffer_size_ - data_len_);
if (len < 0) {
// TODO: Do something better like forwarding the error to the user.
LOG_ERR(INFO) << "Recv";
return;
}
data_len_ += len;
ProcessInput(buffer_, &data_len_);
}
AsyncProxyServerSocket::AsyncProxyServerSocket(AsyncSocket* socket,
size_t buffer_size)
: BufferedReadAdapter(socket, buffer_size) {
}
AsyncProxyServerSocket::~AsyncProxyServerSocket() = default;
///////////////////////////////////////////////////////////////////////////////
// This is a SSL v2 CLIENT_HELLO message.
// TODO: Should this have a session id? The response doesn't have a
// certificate, so the hello should have a session id.
static const uint8_t kSslClientHello[] = {
0x80, 0x46, // msg len
0x01, // CLIENT_HELLO
0x03, 0x01, // SSL 3.1
0x00, 0x2d, // ciphersuite len
0x00, 0x00, // session id len
0x00, 0x10, // challenge len
0x01, 0x00, 0x80, 0x03, 0x00, 0x80, 0x07, 0x00, 0xc0, // ciphersuites
0x06, 0x00, 0x40, 0x02, 0x00, 0x80, 0x04, 0x00, 0x80, //
0x00, 0x00, 0x04, 0x00, 0xfe, 0xff, 0x00, 0x00, 0x0a, //
0x00, 0xfe, 0xfe, 0x00, 0x00, 0x09, 0x00, 0x00, 0x64, //
0x00, 0x00, 0x62, 0x00, 0x00, 0x03, 0x00, 0x00, 0x06, //
0x1f, 0x17, 0x0c, 0xa6, 0x2f, 0x00, 0x78, 0xfc, // challenge
0x46, 0x55, 0x2e, 0xb1, 0x83, 0x39, 0xf1, 0xea //
};
// This is a TLSv1 SERVER_HELLO message.
static const uint8_t kSslServerHello[] = {
0x16, // handshake message
0x03, 0x01, // SSL 3.1
0x00, 0x4a, // message len
0x02, // SERVER_HELLO
0x00, 0x00, 0x46, // handshake len
0x03, 0x01, // SSL 3.1
0x42, 0x85, 0x45, 0xa7, 0x27, 0xa9, 0x5d, 0xa0, // server random
0xb3, 0xc5, 0xe7, 0x53, 0xda, 0x48, 0x2b, 0x3f, //
0xc6, 0x5a, 0xca, 0x89, 0xc1, 0x58, 0x52, 0xa1, //
0x78, 0x3c, 0x5b, 0x17, 0x46, 0x00, 0x85, 0x3f, //
0x20, // session id len
0x0e, 0xd3, 0x06, 0x72, 0x5b, 0x5b, 0x1b, 0x5f, // session id
0x15, 0xac, 0x13, 0xf9, 0x88, 0x53, 0x9d, 0x9b, //
0xe8, 0x3d, 0x7b, 0x0c, 0x30, 0x32, 0x6e, 0x38, //
0x4d, 0xa2, 0x75, 0x57, 0x41, 0x6c, 0x34, 0x5c, //
0x00, 0x04, // RSA/RC4-128/MD5
0x00 // null compression
};
AsyncSSLSocket::AsyncSSLSocket(AsyncSocket* socket)
: BufferedReadAdapter(socket, 1024) {
}
int AsyncSSLSocket::Connect(const SocketAddress& addr) {
// Begin buffering before we connect, so that there isn't a race condition
// between potential senders and receiving the OnConnectEvent signal
BufferInput(true);
return BufferedReadAdapter::Connect(addr);
}
void AsyncSSLSocket::OnConnectEvent(AsyncSocket * socket) {
ASSERT(socket == socket_);
// TODO: we could buffer output too...
VERIFY(sizeof(kSslClientHello) ==
DirectSend(kSslClientHello, sizeof(kSslClientHello)));
}
void AsyncSSLSocket::ProcessInput(char* data, size_t* len) {
if (*len < sizeof(kSslServerHello))
return;
if (memcmp(kSslServerHello, data, sizeof(kSslServerHello)) != 0) {
Close();
SignalCloseEvent(this, 0); // TODO: error code?
return;
}
*len -= sizeof(kSslServerHello);
if (*len > 0) {
memmove(data, data + sizeof(kSslServerHello), *len);
}
bool remainder = (*len > 0);
BufferInput(false);
SignalConnectEvent(this);
// FIX: if SignalConnect causes the socket to be destroyed, we are in trouble
if (remainder)
SignalReadEvent(this);
}
AsyncSSLServerSocket::AsyncSSLServerSocket(AsyncSocket* socket)
: BufferedReadAdapter(socket, 1024) {
BufferInput(true);
}
void AsyncSSLServerSocket::ProcessInput(char* data, size_t* len) {
// We only accept client hello messages.
if (*len < sizeof(kSslClientHello)) {
return;
}
if (memcmp(kSslClientHello, data, sizeof(kSslClientHello)) != 0) {
Close();
SignalCloseEvent(this, 0);
return;
}
*len -= sizeof(kSslClientHello);
// Clients should not send more data until the handshake is completed.
ASSERT(*len == 0);
// Send a server hello back to the client.
DirectSend(kSslServerHello, sizeof(kSslServerHello));
// Handshake completed for us, redirect input to our parent.
BufferInput(false);
}
///////////////////////////////////////////////////////////////////////////////
AsyncHttpsProxySocket::AsyncHttpsProxySocket(AsyncSocket* socket,
const std::string& user_agent,
const SocketAddress& proxy,
const std::string& username,
const CryptString& password)
: BufferedReadAdapter(socket, 1024), proxy_(proxy), agent_(user_agent),
user_(username), pass_(password), force_connect_(false), state_(PS_ERROR),
context_(0) {
}
AsyncHttpsProxySocket::~AsyncHttpsProxySocket() {
delete context_;
}
int AsyncHttpsProxySocket::Connect(const SocketAddress& addr) {
int ret;
LOG(LS_VERBOSE) << "AsyncHttpsProxySocket::Connect("
<< proxy_.ToSensitiveString() << ")";
dest_ = addr;
state_ = PS_INIT;
if (ShouldIssueConnect()) {
BufferInput(true);
}
ret = BufferedReadAdapter::Connect(proxy_);
// TODO: Set state_ appropriately if Connect fails.
return ret;
}
SocketAddress AsyncHttpsProxySocket::GetRemoteAddress() const {
return dest_;
}
int AsyncHttpsProxySocket::Close() {
headers_.clear();
state_ = PS_ERROR;
dest_.Clear();
delete context_;
context_ = NULL;
return BufferedReadAdapter::Close();
}
Socket::ConnState AsyncHttpsProxySocket::GetState() const {
if (state_ < PS_TUNNEL) {
return CS_CONNECTING;
} else if (state_ == PS_TUNNEL) {
return CS_CONNECTED;
} else {
return CS_CLOSED;
}
}
void AsyncHttpsProxySocket::OnConnectEvent(AsyncSocket * socket) {
LOG(LS_VERBOSE) << "AsyncHttpsProxySocket::OnConnectEvent";
if (!ShouldIssueConnect()) {
state_ = PS_TUNNEL;
BufferedReadAdapter::OnConnectEvent(socket);
return;
}
SendRequest();
}
void AsyncHttpsProxySocket::OnCloseEvent(AsyncSocket * socket, int err) {
LOG(LS_VERBOSE) << "AsyncHttpsProxySocket::OnCloseEvent(" << err << ")";
if ((state_ == PS_WAIT_CLOSE) && (err == 0)) {
state_ = PS_ERROR;
Connect(dest_);
} else {
BufferedReadAdapter::OnCloseEvent(socket, err);
}
}
void AsyncHttpsProxySocket::ProcessInput(char* data, size_t* len) {
size_t start = 0;
for (size_t pos = start; state_ < PS_TUNNEL && pos < *len;) {
if (state_ == PS_SKIP_BODY) {
size_t consume = std::min(*len - pos, content_length_);
pos += consume;
start = pos;
content_length_ -= consume;
if (content_length_ == 0) {
EndResponse();
}
continue;
}
if (data[pos++] != '\n')
continue;
size_t len = pos - start - 1;
if ((len > 0) && (data[start + len - 1] == '\r'))
--len;
data[start + len] = 0;
ProcessLine(data + start, len);
start = pos;
}
*len -= start;
if (*len > 0) {
memmove(data, data + start, *len);
}
if (state_ != PS_TUNNEL)
return;
bool remainder = (*len > 0);
BufferInput(false);
SignalConnectEvent(this);
// FIX: if SignalConnect causes the socket to be destroyed, we are in trouble
if (remainder)
SignalReadEvent(this); // TODO: signal this??
}
bool AsyncHttpsProxySocket::ShouldIssueConnect() const {
// TODO: Think about whether a more sophisticated test
// than dest port == 80 is needed.
return force_connect_ || (dest_.port() != 80);
}
void AsyncHttpsProxySocket::SendRequest() {
std::stringstream ss;
ss << "CONNECT " << dest_.ToString() << " HTTP/1.0\r\n";
ss << "User-Agent: " << agent_ << "\r\n";
ss << "Host: " << dest_.HostAsURIString() << "\r\n";
ss << "Content-Length: 0\r\n";
ss << "Proxy-Connection: Keep-Alive\r\n";
ss << headers_;
ss << "\r\n";
std::string str = ss.str();
DirectSend(str.c_str(), str.size());
state_ = PS_LEADER;
expect_close_ = true;
content_length_ = 0;
headers_.clear();
LOG(LS_VERBOSE) << "AsyncHttpsProxySocket >> " << str;
}
void AsyncHttpsProxySocket::ProcessLine(char * data, size_t len) {
LOG(LS_VERBOSE) << "AsyncHttpsProxySocket << " << data;
if (len == 0) {
if (state_ == PS_TUNNEL_HEADERS) {
state_ = PS_TUNNEL;
} else if (state_ == PS_ERROR_HEADERS) {
Error(defer_error_);
return;
} else if (state_ == PS_SKIP_HEADERS) {
if (content_length_) {
state_ = PS_SKIP_BODY;
} else {
EndResponse();
return;
}
} else {
static bool report = false;
if (!unknown_mechanisms_.empty() && !report) {
report = true;
std::string msg(
"Unable to connect to the Google Talk service due to an incompatibility "
"with your proxy.\r\nPlease help us resolve this issue by submitting the "
"following information to us using our technical issue submission form "
"at:\r\n\r\n"
"http://www.google.com/support/talk/bin/request.py\r\n\r\n"
"We apologize for the inconvenience.\r\n\r\n"
"Information to submit to Google: "
);
//std::string msg("Please report the following information to foo@bar.com:\r\nUnknown methods: ");
msg.append(unknown_mechanisms_);
#if defined(WEBRTC_WIN)
MessageBoxA(0, msg.c_str(), "Oops!", MB_OK);
#endif
#if defined(WEBRTC_POSIX)
// TODO: Raise a signal so the UI can be separated.
LOG(LS_ERROR) << "Oops!\n\n" << msg;
#endif
}
// Unexpected end of headers
Error(0);
return;
}
} else if (state_ == PS_LEADER) {
unsigned int code;
if (sscanf(data, "HTTP/%*u.%*u %u", &code) != 1) {
Error(0);
return;
}
switch (code) {
case 200:
// connection good!
state_ = PS_TUNNEL_HEADERS;
return;
#if defined(HTTP_STATUS_PROXY_AUTH_REQ) && (HTTP_STATUS_PROXY_AUTH_REQ != 407)
#error Wrong code for HTTP_STATUS_PROXY_AUTH_REQ
#endif
case 407: // HTTP_STATUS_PROXY_AUTH_REQ
state_ = PS_AUTHENTICATE;
return;
default:
defer_error_ = 0;
state_ = PS_ERROR_HEADERS;
return;
}
} else if ((state_ == PS_AUTHENTICATE)
&& (_strnicmp(data, "Proxy-Authenticate:", 19) == 0)) {
std::string response, auth_method;
switch (HttpAuthenticate(data + 19, len - 19,
proxy_, "CONNECT", "/",
user_, pass_, context_, response, auth_method)) {
case HAR_IGNORE:
LOG(LS_VERBOSE) << "Ignoring Proxy-Authenticate: " << auth_method;
if (!unknown_mechanisms_.empty())
unknown_mechanisms_.append(", ");
unknown_mechanisms_.append(auth_method);
break;
case HAR_RESPONSE:
headers_ = "Proxy-Authorization: ";
headers_.append(response);
headers_.append("\r\n");
state_ = PS_SKIP_HEADERS;
unknown_mechanisms_.clear();
break;
case HAR_CREDENTIALS:
defer_error_ = SOCKET_EACCES;
state_ = PS_ERROR_HEADERS;
unknown_mechanisms_.clear();
break;
case HAR_ERROR:
defer_error_ = 0;
state_ = PS_ERROR_HEADERS;
unknown_mechanisms_.clear();
break;
}
} else if (_strnicmp(data, "Content-Length:", 15) == 0) {
content_length_ = strtoul(data + 15, 0, 0);
} else if (_strnicmp(data, "Proxy-Connection: Keep-Alive", 28) == 0) {
expect_close_ = false;
/*
} else if (_strnicmp(data, "Connection: close", 17) == 0) {
expect_close_ = true;
*/
}
}
void AsyncHttpsProxySocket::EndResponse() {
if (!expect_close_) {
SendRequest();
return;
}
// No point in waiting for the server to close... let's close now
// TODO: Refactor out PS_WAIT_CLOSE
state_ = PS_WAIT_CLOSE;
BufferedReadAdapter::Close();
OnCloseEvent(this, 0);
}
void AsyncHttpsProxySocket::Error(int error) {
BufferInput(false);
Close();
SetError(error);
SignalCloseEvent(this, error);
}
///////////////////////////////////////////////////////////////////////////////
AsyncSocksProxySocket::AsyncSocksProxySocket(AsyncSocket* socket,
const SocketAddress& proxy,
const std::string& username,
const CryptString& password)
: BufferedReadAdapter(socket, 1024), state_(SS_ERROR), proxy_(proxy),
user_(username), pass_(password) {
}
AsyncSocksProxySocket::~AsyncSocksProxySocket() = default;
int AsyncSocksProxySocket::Connect(const SocketAddress& addr) {
int ret;
dest_ = addr;
state_ = SS_INIT;
BufferInput(true);
ret = BufferedReadAdapter::Connect(proxy_);
// TODO: Set state_ appropriately if Connect fails.
return ret;
}
SocketAddress AsyncSocksProxySocket::GetRemoteAddress() const {
return dest_;
}
int AsyncSocksProxySocket::Close() {
state_ = SS_ERROR;
dest_.Clear();
return BufferedReadAdapter::Close();
}
Socket::ConnState AsyncSocksProxySocket::GetState() const {
if (state_ < SS_TUNNEL) {
return CS_CONNECTING;
} else if (state_ == SS_TUNNEL) {
return CS_CONNECTED;
} else {
return CS_CLOSED;
}
}
void AsyncSocksProxySocket::OnConnectEvent(AsyncSocket* socket) {
SendHello();
}
void AsyncSocksProxySocket::ProcessInput(char* data, size_t* len) {
ASSERT(state_ < SS_TUNNEL);
ByteBufferReader response(data, *len);
if (state_ == SS_HELLO) {
uint8_t ver, method;
if (!response.ReadUInt8(&ver) ||
!response.ReadUInt8(&method))
return;
if (ver != 5) {
Error(0);
return;
}
if (method == 0) {
SendConnect();
} else if (method == 2) {
SendAuth();
} else {
Error(0);
return;
}
} else if (state_ == SS_AUTH) {
uint8_t ver, status;
if (!response.ReadUInt8(&ver) ||
!response.ReadUInt8(&status))
return;
if ((ver != 1) || (status != 0)) {
Error(SOCKET_EACCES);
return;
}
SendConnect();
} else if (state_ == SS_CONNECT) {
uint8_t ver, rep, rsv, atyp;
if (!response.ReadUInt8(&ver) ||
!response.ReadUInt8(&rep) ||
!response.ReadUInt8(&rsv) ||
!response.ReadUInt8(&atyp))
return;
if ((ver != 5) || (rep != 0)) {
Error(0);
return;
}
uint16_t port;
if (atyp == 1) {
uint32_t addr;
if (!response.ReadUInt32(&addr) ||
!response.ReadUInt16(&port))
return;
LOG(LS_VERBOSE) << "Bound on " << addr << ":" << port;
} else if (atyp == 3) {
uint8_t len;
std::string addr;
if (!response.ReadUInt8(&len) ||
!response.ReadString(&addr, len) ||
!response.ReadUInt16(&port))
return;
LOG(LS_VERBOSE) << "Bound on " << addr << ":" << port;
} else if (atyp == 4) {
std::string addr;
if (!response.ReadString(&addr, 16) ||
!response.ReadUInt16(&port))
return;
LOG(LS_VERBOSE) << "Bound on <IPV6>:" << port;
} else {
Error(0);
return;
}
state_ = SS_TUNNEL;
}
// Consume parsed data
*len = response.Length();
memmove(data, response.Data(), *len);
if (state_ != SS_TUNNEL)
return;
bool remainder = (*len > 0);
BufferInput(false);
SignalConnectEvent(this);
// FIX: if SignalConnect causes the socket to be destroyed, we are in trouble
if (remainder)
SignalReadEvent(this); // TODO: signal this??
}
void AsyncSocksProxySocket::SendHello() {
ByteBufferWriter request;
request.WriteUInt8(5); // Socks Version
if (user_.empty()) {
request.WriteUInt8(1); // Authentication Mechanisms
request.WriteUInt8(0); // No authentication
} else {
request.WriteUInt8(2); // Authentication Mechanisms
request.WriteUInt8(0); // No authentication
request.WriteUInt8(2); // Username/Password
}
DirectSend(request.Data(), request.Length());
state_ = SS_HELLO;
}
void AsyncSocksProxySocket::SendAuth() {
ByteBufferWriter request;
request.WriteUInt8(1); // Negotiation Version
request.WriteUInt8(static_cast<uint8_t>(user_.size()));
request.WriteString(user_); // Username
request.WriteUInt8(static_cast<uint8_t>(pass_.GetLength()));
size_t len = pass_.GetLength() + 1;
char * sensitive = new char[len];
pass_.CopyTo(sensitive, true);
request.WriteString(sensitive); // Password
memset(sensitive, 0, len);
delete [] sensitive;
DirectSend(request.Data(), request.Length());
state_ = SS_AUTH;
}
void AsyncSocksProxySocket::SendConnect() {
ByteBufferWriter request;
request.WriteUInt8(5); // Socks Version
request.WriteUInt8(1); // CONNECT
request.WriteUInt8(0); // Reserved
if (dest_.IsUnresolvedIP()) {
std::string hostname = dest_.hostname();
request.WriteUInt8(3); // DOMAINNAME
request.WriteUInt8(static_cast<uint8_t>(hostname.size()));
request.WriteString(hostname); // Destination Hostname
} else {
request.WriteUInt8(1); // IPV4
request.WriteUInt32(dest_.ip()); // Destination IP
}
request.WriteUInt16(dest_.port()); // Destination Port
DirectSend(request.Data(), request.Length());
state_ = SS_CONNECT;
}
void AsyncSocksProxySocket::Error(int error) {
state_ = SS_ERROR;
BufferInput(false);
Close();
SetError(SOCKET_EACCES);
SignalCloseEvent(this, error);
}
AsyncSocksProxyServerSocket::AsyncSocksProxyServerSocket(AsyncSocket* socket)
: AsyncProxyServerSocket(socket, kBufferSize), state_(SS_HELLO) {
BufferInput(true);
}
void AsyncSocksProxyServerSocket::ProcessInput(char* data, size_t* len) {
// TODO: See if the whole message has arrived
ASSERT(state_ < SS_CONNECT_PENDING);
ByteBufferReader response(data, *len);
if (state_ == SS_HELLO) {
HandleHello(&response);
} else if (state_ == SS_AUTH) {
HandleAuth(&response);
} else if (state_ == SS_CONNECT) {
HandleConnect(&response);
}
// Consume parsed data
*len = response.Length();
memmove(data, response.Data(), *len);
}
void AsyncSocksProxyServerSocket::DirectSend(const ByteBufferWriter& buf) {
BufferedReadAdapter::DirectSend(buf.Data(), buf.Length());
}
void AsyncSocksProxyServerSocket::HandleHello(ByteBufferReader* request) {
uint8_t ver, num_methods;
if (!request->ReadUInt8(&ver) ||
!request->ReadUInt8(&num_methods)) {
Error(0);
return;
}
if (ver != 5) {
Error(0);
return;
}
// Handle either no-auth (0) or user/pass auth (2)
uint8_t method = 0xFF;
if (num_methods > 0 && !request->ReadUInt8(&method)) {
Error(0);
return;
}
// TODO: Ask the server which method to use.
SendHelloReply(method);
if (method == 0) {
state_ = SS_CONNECT;
} else if (method == 2) {
state_ = SS_AUTH;
} else {
state_ = SS_ERROR;
}
}
void AsyncSocksProxyServerSocket::SendHelloReply(uint8_t method) {
ByteBufferWriter response;
response.WriteUInt8(5); // Socks Version
response.WriteUInt8(method); // Auth method
DirectSend(response);
}
void AsyncSocksProxyServerSocket::HandleAuth(ByteBufferReader* request) {
uint8_t ver, user_len, pass_len;
std::string user, pass;
if (!request->ReadUInt8(&ver) ||
!request->ReadUInt8(&user_len) ||
!request->ReadString(&user, user_len) ||
!request->ReadUInt8(&pass_len) ||
!request->ReadString(&pass, pass_len)) {
Error(0);
return;
}
// TODO: Allow for checking of credentials.
SendAuthReply(0);
state_ = SS_CONNECT;
}
void AsyncSocksProxyServerSocket::SendAuthReply(uint8_t result) {
ByteBufferWriter response;
response.WriteUInt8(1); // Negotiation Version
response.WriteUInt8(result);
DirectSend(response);
}
void AsyncSocksProxyServerSocket::HandleConnect(ByteBufferReader* request) {
uint8_t ver, command, reserved, addr_type;
uint32_t ip;
uint16_t port;
if (!request->ReadUInt8(&ver) ||
!request->ReadUInt8(&command) ||
!request->ReadUInt8(&reserved) ||
!request->ReadUInt8(&addr_type) ||
!request->ReadUInt32(&ip) ||
!request->ReadUInt16(&port)) {
Error(0);
return;
}
if (ver != 5 || command != 1 ||
reserved != 0 || addr_type != 1) {
Error(0);
return;
}
SignalConnectRequest(this, SocketAddress(ip, port));
state_ = SS_CONNECT_PENDING;
}
void AsyncSocksProxyServerSocket::SendConnectResult(int result,
const SocketAddress& addr) {
if (state_ != SS_CONNECT_PENDING)
return;
ByteBufferWriter response;
response.WriteUInt8(5); // Socks version
response.WriteUInt8((result != 0)); // 0x01 is generic error
response.WriteUInt8(0); // reserved
response.WriteUInt8(1); // IPv4 address
response.WriteUInt32(addr.ip());
response.WriteUInt16(addr.port());
DirectSend(response);
BufferInput(false);
state_ = SS_TUNNEL;
}
void AsyncSocksProxyServerSocket::Error(int error) {
state_ = SS_ERROR;
BufferInput(false);
Close();
SetError(SOCKET_EACCES);
SignalCloseEvent(this, error);
}
///////////////////////////////////////////////////////////////////////////////
LoggingSocketAdapter::LoggingSocketAdapter(AsyncSocket* socket,
LoggingSeverity level,
const char * label, bool hex_mode)
: AsyncSocketAdapter(socket), level_(level), hex_mode_(hex_mode) {
label_.append("[");
label_.append(label);
label_.append("]");
}
int LoggingSocketAdapter::Send(const void *pv, size_t cb) {
int res = AsyncSocketAdapter::Send(pv, cb);
if (res > 0)
LogMultiline(level_, label_.c_str(), false, pv, res, hex_mode_, &lms_);
return res;
}
int LoggingSocketAdapter::SendTo(const void *pv, size_t cb,
const SocketAddress& addr) {
int res = AsyncSocketAdapter::SendTo(pv, cb, addr);
if (res > 0)
LogMultiline(level_, label_.c_str(), false, pv, res, hex_mode_, &lms_);
return res;
}
int LoggingSocketAdapter::Recv(void *pv, size_t cb) {
int res = AsyncSocketAdapter::Recv(pv, cb);
if (res > 0)
LogMultiline(level_, label_.c_str(), true, pv, res, hex_mode_, &lms_);
return res;
}
int LoggingSocketAdapter::RecvFrom(void *pv, size_t cb, SocketAddress *paddr) {
int res = AsyncSocketAdapter::RecvFrom(pv, cb, paddr);
if (res > 0)
LogMultiline(level_, label_.c_str(), true, pv, res, hex_mode_, &lms_);
return res;
}
int LoggingSocketAdapter::Close() {
LogMultiline(level_, label_.c_str(), false, NULL, 0, hex_mode_, &lms_);
LogMultiline(level_, label_.c_str(), true, NULL, 0, hex_mode_, &lms_);
LOG_V(level_) << label_ << " Closed locally";
return socket_->Close();
}
void LoggingSocketAdapter::OnConnectEvent(AsyncSocket * socket) {
LOG_V(level_) << label_ << " Connected";
AsyncSocketAdapter::OnConnectEvent(socket);
}
void LoggingSocketAdapter::OnCloseEvent(AsyncSocket * socket, int err) {
LogMultiline(level_, label_.c_str(), false, NULL, 0, hex_mode_, &lms_);
LogMultiline(level_, label_.c_str(), true, NULL, 0, hex_mode_, &lms_);
LOG_V(level_) << label_ << " Closed with error: " << err;
AsyncSocketAdapter::OnCloseEvent(socket, err);
}
///////////////////////////////////////////////////////////////////////////////
} // namespace rtc