blob: ada275b457de84c28594638b6fd7cc79682eb1cc [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_AUDIO_DEVICE_AUDIO_DEVICE_PULSE_LINUX_H
#define WEBRTC_AUDIO_DEVICE_AUDIO_DEVICE_PULSE_LINUX_H
#include <memory>
#include "webrtc/modules/audio_device/audio_device_generic.h"
#include "webrtc/modules/audio_device/linux/audio_mixer_manager_pulse_linux.h"
#include "webrtc/rtc_base/criticalsection.h"
#include "webrtc/rtc_base/platform_thread.h"
#include "webrtc/rtc_base/thread_checker.h"
#include <X11/Xlib.h>
#include <pulse/pulseaudio.h>
// We define this flag if it's missing from our headers, because we want to be
// able to compile against old headers but still use PA_STREAM_ADJUST_LATENCY
// if run against a recent version of the library.
#ifndef PA_STREAM_ADJUST_LATENCY
#define PA_STREAM_ADJUST_LATENCY 0x2000U
#endif
#ifndef PA_STREAM_START_MUTED
#define PA_STREAM_START_MUTED 0x1000U
#endif
// Set this constant to 0 to disable latency reading
const uint32_t WEBRTC_PA_REPORT_LATENCY = 1;
// Constants from implementation by Tristan Schmelcher [tschmelcher@google.com]
// First PulseAudio protocol version that supports PA_STREAM_ADJUST_LATENCY.
const uint32_t WEBRTC_PA_ADJUST_LATENCY_PROTOCOL_VERSION = 13;
// Some timing constants for optimal operation. See
// https://tango.0pointer.de/pipermail/pulseaudio-discuss/2008-January/001170.html
// for a good explanation of some of the factors that go into this.
// Playback.
// For playback, there is a round-trip delay to fill the server-side playback
// buffer, so setting too low of a latency is a buffer underflow risk. We will
// automatically increase the latency if a buffer underflow does occur, but we
// also enforce a sane minimum at start-up time. Anything lower would be
// virtually guaranteed to underflow at least once, so there's no point in
// allowing lower latencies.
const uint32_t WEBRTC_PA_PLAYBACK_LATENCY_MINIMUM_MSECS = 20;
// Every time a playback stream underflows, we will reconfigure it with target
// latency that is greater by this amount.
const uint32_t WEBRTC_PA_PLAYBACK_LATENCY_INCREMENT_MSECS = 20;
// We also need to configure a suitable request size. Too small and we'd burn
// CPU from the overhead of transfering small amounts of data at once. Too large
// and the amount of data remaining in the buffer right before refilling it
// would be a buffer underflow risk. We set it to half of the buffer size.
const uint32_t WEBRTC_PA_PLAYBACK_REQUEST_FACTOR = 2;
// Capture.
// For capture, low latency is not a buffer overflow risk, but it makes us burn
// CPU from the overhead of transfering small amounts of data at once, so we set
// a recommended value that we use for the kLowLatency constant (but if the user
// explicitly requests something lower then we will honour it).
// 1ms takes about 6-7% CPU. 5ms takes about 5%. 10ms takes about 4.x%.
const uint32_t WEBRTC_PA_LOW_CAPTURE_LATENCY_MSECS = 10;
// There is a round-trip delay to ack the data to the server, so the
// server-side buffer needs extra space to prevent buffer overflow. 20ms is
// sufficient, but there is no penalty to making it bigger, so we make it huge.
// (750ms is libpulse's default value for the _total_ buffer size in the
// kNoLatencyRequirements case.)
const uint32_t WEBRTC_PA_CAPTURE_BUFFER_EXTRA_MSECS = 750;
const uint32_t WEBRTC_PA_MSECS_PER_SEC = 1000;
// Init _configuredLatencyRec/Play to this value to disable latency requirements
const int32_t WEBRTC_PA_NO_LATENCY_REQUIREMENTS = -1;
// Set this const to 1 to account for peeked and used data in latency calculation
const uint32_t WEBRTC_PA_CAPTURE_BUFFER_LATENCY_ADJUSTMENT = 0;
namespace webrtc
{
class EventWrapper;
class AudioDeviceLinuxPulse: public AudioDeviceGeneric
{
public:
AudioDeviceLinuxPulse();
virtual ~AudioDeviceLinuxPulse();
// Retrieve the currently utilized audio layer
int32_t ActiveAudioLayer(
AudioDeviceModule::AudioLayer& audioLayer) const override;
// Main initializaton and termination
InitStatus Init() override;
int32_t Terminate() override;
bool Initialized() const override;
// Device enumeration
int16_t PlayoutDevices() override;
int16_t RecordingDevices() override;
int32_t PlayoutDeviceName(uint16_t index,
char name[kAdmMaxDeviceNameSize],
char guid[kAdmMaxGuidSize]) override;
int32_t RecordingDeviceName(uint16_t index,
char name[kAdmMaxDeviceNameSize],
char guid[kAdmMaxGuidSize]) override;
// Device selection
int32_t SetPlayoutDevice(uint16_t index) override;
int32_t SetPlayoutDevice(
AudioDeviceModule::WindowsDeviceType device) override;
int32_t SetRecordingDevice(uint16_t index) override;
int32_t SetRecordingDevice(
AudioDeviceModule::WindowsDeviceType device) override;
// Audio transport initialization
int32_t PlayoutIsAvailable(bool& available) override;
int32_t InitPlayout() override;
bool PlayoutIsInitialized() const override;
int32_t RecordingIsAvailable(bool& available) override;
int32_t InitRecording() override;
bool RecordingIsInitialized() const override;
// Audio transport control
int32_t StartPlayout() override;
int32_t StopPlayout() override;
bool Playing() const override;
int32_t StartRecording() override;
int32_t StopRecording() override;
bool Recording() const override;
// Microphone Automatic Gain Control (AGC)
int32_t SetAGC(bool enable) override;
bool AGC() const override;
// Audio mixer initialization
int32_t InitSpeaker() override;
bool SpeakerIsInitialized() const override;
int32_t InitMicrophone() override;
bool MicrophoneIsInitialized() const override;
// Speaker volume controls
int32_t SpeakerVolumeIsAvailable(bool& available) override;
int32_t SetSpeakerVolume(uint32_t volume) override;
int32_t SpeakerVolume(uint32_t& volume) const override;
int32_t MaxSpeakerVolume(uint32_t& maxVolume) const override;
int32_t MinSpeakerVolume(uint32_t& minVolume) const override;
// Microphone volume controls
int32_t MicrophoneVolumeIsAvailable(bool& available) override;
int32_t SetMicrophoneVolume(uint32_t volume) override;
int32_t MicrophoneVolume(uint32_t& volume) const override;
int32_t MaxMicrophoneVolume(uint32_t& maxVolume) const override;
int32_t MinMicrophoneVolume(uint32_t& minVolume) const override;
// Speaker mute control
int32_t SpeakerMuteIsAvailable(bool& available) override;
int32_t SetSpeakerMute(bool enable) override;
int32_t SpeakerMute(bool& enabled) const override;
// Microphone mute control
int32_t MicrophoneMuteIsAvailable(bool& available) override;
int32_t SetMicrophoneMute(bool enable) override;
int32_t MicrophoneMute(bool& enabled) const override;
// Stereo support
int32_t StereoPlayoutIsAvailable(bool& available) override;
int32_t SetStereoPlayout(bool enable) override;
int32_t StereoPlayout(bool& enabled) const override;
int32_t StereoRecordingIsAvailable(bool& available) override;
int32_t SetStereoRecording(bool enable) override;
int32_t StereoRecording(bool& enabled) const override;
// Delay information and control
int32_t PlayoutDelay(uint16_t& delayMS) const override;
int32_t RecordingDelay(uint16_t& delayMS) const override;
bool PlayoutWarning() const override;
bool PlayoutError() const override;
bool RecordingWarning() const override;
bool RecordingError() const override;
void ClearPlayoutWarning() override;
void ClearPlayoutError() override;
void ClearRecordingWarning() override;
void ClearRecordingError() override;
void AttachAudioBuffer(AudioDeviceBuffer* audioBuffer) override;
private:
void Lock() RTC_EXCLUSIVE_LOCK_FUNCTION(_critSect) {
_critSect.Enter();
}
void UnLock() RTC_UNLOCK_FUNCTION(_critSect) {
_critSect.Leave();
}
void WaitForOperationCompletion(pa_operation* paOperation) const;
void WaitForSuccess(pa_operation* paOperation) const;
bool KeyPressed() const;
static void PaContextStateCallback(pa_context *c, void *pThis);
static void PaSinkInfoCallback(pa_context *c, const pa_sink_info *i,
int eol, void *pThis);
static void PaSourceInfoCallback(pa_context *c, const pa_source_info *i,
int eol, void *pThis);
static void PaServerInfoCallback(pa_context *c, const pa_server_info *i,
void *pThis);
static void PaStreamStateCallback(pa_stream *p, void *pThis);
void PaContextStateCallbackHandler(pa_context *c);
void PaSinkInfoCallbackHandler(const pa_sink_info *i, int eol);
void PaSourceInfoCallbackHandler(const pa_source_info *i, int eol);
void PaServerInfoCallbackHandler(const pa_server_info *i);
void PaStreamStateCallbackHandler(pa_stream *p);
void EnableWriteCallback();
void DisableWriteCallback();
static void PaStreamWriteCallback(pa_stream *unused, size_t buffer_space,
void *pThis);
void PaStreamWriteCallbackHandler(size_t buffer_space);
static void PaStreamUnderflowCallback(pa_stream *unused, void *pThis);
void PaStreamUnderflowCallbackHandler();
void EnableReadCallback();
void DisableReadCallback();
static void PaStreamReadCallback(pa_stream *unused1, size_t unused2,
void *pThis);
void PaStreamReadCallbackHandler();
static void PaStreamOverflowCallback(pa_stream *unused, void *pThis);
void PaStreamOverflowCallbackHandler();
int32_t LatencyUsecs(pa_stream *stream);
int32_t ReadRecordedData(const void* bufferData, size_t bufferSize);
int32_t ProcessRecordedData(int8_t *bufferData,
uint32_t bufferSizeInSamples,
uint32_t recDelay);
int32_t CheckPulseAudioVersion();
int32_t InitSamplingFrequency();
int32_t GetDefaultDeviceInfo(bool recDevice, char* name, uint16_t& index);
int32_t InitPulseAudio();
int32_t TerminatePulseAudio();
void PaLock();
void PaUnLock();
static bool RecThreadFunc(void*);
static bool PlayThreadFunc(void*);
bool RecThreadProcess();
bool PlayThreadProcess();
AudioDeviceBuffer* _ptrAudioBuffer;
rtc::CriticalSection _critSect;
EventWrapper& _timeEventRec;
EventWrapper& _timeEventPlay;
EventWrapper& _recStartEvent;
EventWrapper& _playStartEvent;
// TODO(pbos): Remove unique_ptr and use directly without resetting.
std::unique_ptr<rtc::PlatformThread> _ptrThreadPlay;
std::unique_ptr<rtc::PlatformThread> _ptrThreadRec;
AudioMixerManagerLinuxPulse _mixerManager;
uint16_t _inputDeviceIndex;
uint16_t _outputDeviceIndex;
bool _inputDeviceIsSpecified;
bool _outputDeviceIsSpecified;
int sample_rate_hz_;
uint8_t _recChannels;
uint8_t _playChannels;
// Stores thread ID in constructor.
// We can then use ThreadChecker::CalledOnValidThread() to ensure that
// other methods are called from the same thread.
// Currently only does RTC_DCHECK(thread_checker_.CalledOnValidThread()).
rtc::ThreadChecker thread_checker_;
bool _initialized;
bool _recording;
bool _playing;
bool _recIsInitialized;
bool _playIsInitialized;
bool _startRec;
bool _stopRec;
bool _startPlay;
bool _stopPlay;
bool _AGC;
bool update_speaker_volume_at_startup_;
uint32_t _sndCardPlayDelay;
uint32_t _sndCardRecDelay;
int32_t _writeErrors;
uint16_t _playWarning;
uint16_t _playError;
uint16_t _recWarning;
uint16_t _recError;
uint16_t _deviceIndex;
int16_t _numPlayDevices;
int16_t _numRecDevices;
char* _playDeviceName;
char* _recDeviceName;
char* _playDisplayDeviceName;
char* _recDisplayDeviceName;
char _paServerVersion[32];
int8_t* _playBuffer;
size_t _playbackBufferSize;
size_t _playbackBufferUnused;
size_t _tempBufferSpace;
int8_t* _recBuffer;
size_t _recordBufferSize;
size_t _recordBufferUsed;
const void* _tempSampleData;
size_t _tempSampleDataSize;
int32_t _configuredLatencyPlay;
int32_t _configuredLatencyRec;
// PulseAudio
uint16_t _paDeviceIndex;
bool _paStateChanged;
pa_threaded_mainloop* _paMainloop;
pa_mainloop_api* _paMainloopApi;
pa_context* _paContext;
pa_stream* _recStream;
pa_stream* _playStream;
uint32_t _recStreamFlags;
uint32_t _playStreamFlags;
pa_buffer_attr _playBufferAttr;
pa_buffer_attr _recBufferAttr;
char _oldKeyState[32];
Display* _XDisplay;
};
}
#endif // MODULES_AUDIO_DEVICE_MAIN_SOURCE_LINUX_AUDIO_DEVICE_PULSE_LINUX_H_