blob: aa37e8cdbd467ff2ef77c6c13006b3e176e52bdc [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aec3/suppression_gain.h"
#include "webrtc/typedefs.h"
#if defined(WEBRTC_ARCH_X86_FAMILY)
#include <emmintrin.h>
#endif
#include <math.h>
#include <algorithm>
#include <functional>
namespace webrtc {
namespace {
void GainPostProcessing(std::array<float, kFftLengthBy2Plus1>* gain_squared) {
// Limit the low frequency gains to avoid the impact of the high-pass filter
// on the lower-frequency gain influencing the overall achieved gain.
(*gain_squared)[1] = std::min((*gain_squared)[1], (*gain_squared)[2]);
(*gain_squared)[0] = (*gain_squared)[1];
// Limit the high frequency gains to avoid the impact of the anti-aliasing
// filter on the upper-frequency gains influencing the overall achieved
// gain. TODO(peah): Update this when new anti-aliasing filters are
// implemented.
constexpr size_t kAntiAliasingImpactLimit = 64 * 0.7f;
std::for_each(gain_squared->begin() + kAntiAliasingImpactLimit,
gain_squared->end(),
[gain_squared, kAntiAliasingImpactLimit](float& a) {
a = std::min(a, (*gain_squared)[kAntiAliasingImpactLimit]);
});
(*gain_squared)[kFftLengthBy2] = (*gain_squared)[kFftLengthBy2Minus1];
}
constexpr int kNumIterations = 2;
constexpr float kEchoMaskingMargin = 1.f / 10.f;
constexpr float kBandMaskingFactor = 1.f / 2.f;
constexpr float kTimeMaskingFactor = 1.f / 10.f;
} // namespace
namespace aec3 {
#if defined(WEBRTC_ARCH_X86_FAMILY)
// Optimized SSE2 code for the gain computation.
// TODO(peah): Add further optimizations, in particular for the divisions.
void ComputeGains_SSE2(
const std::array<float, kFftLengthBy2Plus1>& nearend_power,
const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
float strong_nearend_margin,
std::array<float, kFftLengthBy2Minus1>* previous_gain_squared,
std::array<float, kFftLengthBy2Minus1>* previous_masker,
std::array<float, kFftLengthBy2Plus1>* gain) {
std::array<float, kFftLengthBy2Minus1> masker;
std::array<float, kFftLengthBy2Minus1> same_band_masker;
std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power;
std::array<bool, kFftLengthBy2Minus1> strong_nearend;
std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
// Precompute 1/residual_echo_power.
std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
one_by_residual_echo_power.begin(),
[](float a) { return a > 0.f ? 1.f / a : -1.f; });
// Precompute indicators for bands with strong nearend.
std::transform(
residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
nearend_power.begin() + 1, strong_nearend.begin(),
[&](float a, float b) { return a <= strong_nearend_margin * b; });
// Precompute masker for the same band.
std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
previous_masker->begin(), same_band_masker.begin(),
[&](float a, float b) { return a + kTimeMaskingFactor * b; });
for (int k = 0; k < kNumIterations; ++k) {
if (k == 0) {
// Add masker from the same band.
std::copy(same_band_masker.begin(), same_band_masker.end(),
masker.begin());
} else {
// Add masker for neighboring bands.
std::transform(nearend_power.begin(), nearend_power.end(),
gain_squared->begin(), neighboring_bands_masker.begin(),
std::multiplies<float>());
std::transform(neighboring_bands_masker.begin(),
neighboring_bands_masker.end(),
comfort_noise_power.begin(),
neighboring_bands_masker.begin(), std::plus<float>());
std::transform(
neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
neighboring_bands_masker.begin() + 2, masker.begin(),
[&](float a, float b) { return kBandMaskingFactor * (a + b); });
// Add masker from the same band.
std::transform(same_band_masker.begin(), same_band_masker.end(),
masker.begin(), masker.begin(), std::plus<float>());
}
// Compute new gain as:
// G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) *
// kTimeMaskingFactor
// * kEchoMaskingMargin / residual_echo_power(t,f).
// or
// G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) *
// nearend_power(t-1)) * kTimeMaskingFactor +
// (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) +
// (G2(t,f-1)*nearend_power(t, f-1) +
// G2(t,f+1)*nearend_power(t, f+1)) *
// kTimeMaskingFactor) * kBandMaskingFactor)
// * kEchoMaskingMargin / residual_echo_power(t,f).
std::transform(
masker.begin(), masker.end(), one_by_residual_echo_power.begin(),
gain_squared->begin() + 1, [&](float a, float b) {
return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f;
});
// Limit gain for bands with strong nearend.
std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
strong_nearend.begin(), gain_squared->begin() + 1,
[](float a, bool b) { return b ? 1.f : a; });
// Limit the allowed gain update over time.
std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
previous_gain_squared->begin(), gain_squared->begin() + 1,
[](float a, float b) {
return b < 0.0001f ? std::min(a, 0.0001f)
: std::min(a, b * 2.f);
});
// Process the gains to avoid artefacts caused by gain realization in the
// filterbank and impact of external pre-processing of the signal.
GainPostProcessing(gain_squared);
}
std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
previous_gain_squared->begin());
std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
nearend_power.begin() + 1, previous_masker->begin(),
std::multiplies<float>());
std::transform(previous_masker->begin(), previous_masker->end(),
comfort_noise_power.begin() + 1, previous_masker->begin(),
std::plus<float>());
for (size_t k = 0; k < kFftLengthBy2; k += 4) {
__m128 g = _mm_loadu_ps(&(*gain_squared)[k]);
g = _mm_sqrt_ps(g);
_mm_storeu_ps(&(*gain)[k], g);
}
(*gain)[kFftLengthBy2] = sqrtf((*gain)[kFftLengthBy2]);
}
#endif
void ComputeGains(
const std::array<float, kFftLengthBy2Plus1>& nearend_power,
const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
float strong_nearend_margin,
std::array<float, kFftLengthBy2Minus1>* previous_gain_squared,
std::array<float, kFftLengthBy2Minus1>* previous_masker,
std::array<float, kFftLengthBy2Plus1>* gain) {
std::array<float, kFftLengthBy2Minus1> masker;
std::array<float, kFftLengthBy2Minus1> same_band_masker;
std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power;
std::array<bool, kFftLengthBy2Minus1> strong_nearend;
std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
// Precompute 1/residual_echo_power.
std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
one_by_residual_echo_power.begin(),
[](float a) { return a > 0.f ? 1.f / a : -1.f; });
// Precompute indicators for bands with strong nearend.
std::transform(
residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
nearend_power.begin() + 1, strong_nearend.begin(),
[&](float a, float b) { return a <= strong_nearend_margin * b; });
// Precompute masker for the same band.
std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
previous_masker->begin(), same_band_masker.begin(),
[&](float a, float b) { return a + kTimeMaskingFactor * b; });
for (int k = 0; k < kNumIterations; ++k) {
if (k == 0) {
// Add masker from the same band.
std::copy(same_band_masker.begin(), same_band_masker.end(),
masker.begin());
} else {
// Add masker for neightboring bands.
std::transform(nearend_power.begin(), nearend_power.end(),
gain_squared->begin(), neighboring_bands_masker.begin(),
std::multiplies<float>());
std::transform(neighboring_bands_masker.begin(),
neighboring_bands_masker.end(),
comfort_noise_power.begin(),
neighboring_bands_masker.begin(), std::plus<float>());
std::transform(
neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
neighboring_bands_masker.begin() + 2, masker.begin(),
[&](float a, float b) { return kBandMaskingFactor * (a + b); });
// Add masker from the same band.
std::transform(same_band_masker.begin(), same_band_masker.end(),
masker.begin(), masker.begin(), std::plus<float>());
}
// Compute new gain as:
// G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) *
// kTimeMaskingFactor
// * kEchoMaskingMargin / residual_echo_power(t,f).
// or
// G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) *
// nearend_power(t-1)) * kTimeMaskingFactor +
// (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) +
// (G2(t,f-1)*nearend_power(t, f-1) +
// G2(t,f+1)*nearend_power(t, f+1)) *
// kTimeMaskingFactor) * kBandMaskingFactor)
// * kEchoMaskingMargin / residual_echo_power(t,f).
std::transform(
masker.begin(), masker.end(), one_by_residual_echo_power.begin(),
gain_squared->begin() + 1, [&](float a, float b) {
return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f;
});
// Limit gain for bands with strong nearend.
std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
strong_nearend.begin(), gain_squared->begin() + 1,
[](float a, bool b) { return b ? 1.f : a; });
// Limit the allowed gain update over time.
std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
previous_gain_squared->begin(), gain_squared->begin() + 1,
[](float a, float b) {
return b < 0.0001f ? std::min(a, 0.0001f)
: std::min(a, b * 2.f);
});
// Process the gains to avoid artefacts caused by gain realization in the
// filterbank and impact of external pre-processing of the signal.
GainPostProcessing(gain_squared);
}
std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
previous_gain_squared->begin());
std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
nearend_power.begin() + 1, previous_masker->begin(),
std::multiplies<float>());
std::transform(previous_masker->begin(), previous_masker->end(),
comfort_noise_power.begin() + 1, previous_masker->begin(),
std::plus<float>());
std::transform(gain_squared->begin(), gain_squared->end(), gain->begin(),
[](float a) { return sqrtf(a); });
}
} // namespace aec3
SuppressionGain::SuppressionGain(Aec3Optimization optimization)
: optimization_(optimization) {
previous_gain_squared_.fill(1.f);
previous_masker_.fill(0.f);
}
void SuppressionGain::GetGain(
const std::array<float, kFftLengthBy2Plus1>& nearend_power,
const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
float strong_nearend_margin,
std::array<float, kFftLengthBy2Plus1>* gain) {
RTC_DCHECK(gain);
switch (optimization_) {
#if defined(WEBRTC_ARCH_X86_FAMILY)
case Aec3Optimization::kSse2:
aec3::ComputeGains_SSE2(nearend_power, residual_echo_power,
comfort_noise_power, strong_nearend_margin,
&previous_gain_squared_, &previous_masker_, gain);
break;
#endif
default:
aec3::ComputeGains(nearend_power, residual_echo_power,
comfort_noise_power, strong_nearend_margin,
&previous_gain_squared_, &previous_masker_, gain);
}
}
} // namespace webrtc