blob: 9b25f181c17265ae0b4442d7c194cffafd02518e [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aec3/render_signal_analyzer.h"
#include <math.h>
#include <array>
#include <vector>
#include "webrtc/base/array_view.h"
#include "webrtc/base/random.h"
#include "webrtc/modules/audio_processing/aec3/aec3_common.h"
#include "webrtc/modules/audio_processing/aec3/aec3_fft.h"
#include "webrtc/modules/audio_processing/aec3/fft_data.h"
#include "webrtc/modules/audio_processing/aec3/render_buffer.h"
#include "webrtc/modules/audio_processing/test/echo_canceller_test_tools.h"
#include "webrtc/test/gtest.h"
namespace webrtc {
namespace {
constexpr float kPi = 3.141592f;
void ProduceSinusoid(int sample_rate_hz,
float sinusoidal_frequency_hz,
size_t* sample_counter,
rtc::ArrayView<float> x) {
// Produce a sinusoid of the specified frequency.
for (size_t k = *sample_counter, j = 0; k < (*sample_counter + kBlockSize);
++k, ++j) {
x[j] =
32767.f * sin(2.f * kPi * sinusoidal_frequency_hz * k / sample_rate_hz);
}
*sample_counter = *sample_counter + kBlockSize;
}
} // namespace
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output parameter works.
TEST(RenderSignalAnalyzer, NullMaskOutput) {
RenderSignalAnalyzer analyzer;
EXPECT_DEATH(analyzer.MaskRegionsAroundNarrowBands(nullptr), "");
}
#endif
// Verify that no narrow bands are detected in a Gaussian noise signal.
TEST(RenderSignalAnalyzer, NoFalseDetectionOfNarrowBands) {
RenderSignalAnalyzer analyzer;
Random random_generator(42U);
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
std::array<float, kBlockSize> x_old;
FftData X;
Aec3Fft fft;
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 1,
std::vector<size_t>(1, 1));
std::array<float, kFftLengthBy2Plus1> mask;
x_old.fill(0.f);
for (size_t k = 0; k < 100; ++k) {
RandomizeSampleVector(&random_generator, x[0]);
fft.PaddedFft(x[0], x_old, &X);
render_buffer.Insert(x);
analyzer.Update(render_buffer, rtc::Optional<size_t>(0));
}
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
EXPECT_TRUE(
std::all_of(mask.begin(), mask.end(), [](float a) { return a == 1.f; }));
EXPECT_FALSE(analyzer.PoorSignalExcitation());
}
// Verify that a sinusiod signal is detected as narrow bands.
TEST(RenderSignalAnalyzer, NarrowBandDetection) {
RenderSignalAnalyzer analyzer;
Random random_generator(42U);
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
std::array<float, kBlockSize> x_old;
Aec3Fft fft;
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 1,
std::vector<size_t>(1, 1));
std::array<float, kFftLengthBy2Plus1> mask;
x_old.fill(0.f);
constexpr int kSinusFrequencyBin = 32;
auto generate_sinusoid_test = [&](bool known_delay) {
size_t sample_counter = 0;
for (size_t k = 0; k < 100; ++k) {
ProduceSinusoid(16000, 16000 / 2 * kSinusFrequencyBin / kFftLengthBy2,
&sample_counter, x[0]);
render_buffer.Insert(x);
analyzer.Update(render_buffer, known_delay ? rtc::Optional<size_t>(0)
: rtc::Optional<size_t>());
}
};
generate_sinusoid_test(true);
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
for (int k = 0; k < static_cast<int>(mask.size()); ++k) {
EXPECT_EQ(abs(k - kSinusFrequencyBin) <= 2 ? 0.f : 1.f, mask[k]);
}
EXPECT_TRUE(analyzer.PoorSignalExcitation());
// Verify that no bands are detected as narrow when the delay is unknown.
generate_sinusoid_test(false);
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
std::for_each(mask.begin(), mask.end(), [](float a) { EXPECT_EQ(1.f, a); });
EXPECT_FALSE(analyzer.PoorSignalExcitation());
}
} // namespace webrtc