| /* |
| * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h" |
| |
| #include <string.h> |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| #include "webrtc/base/checks.h" |
| #include "webrtc/base/logging.h" |
| #include "webrtc/modules/include/module_common_types.h" |
| #include "webrtc/modules/rtp_rtcp/source/byte_io.h" |
| #include "webrtc/modules/rtp_rtcp/source/rtp_packet_to_send.h" |
| #include "webrtc/common_video/h264/sps_vui_rewriter.h" |
| #include "webrtc/common_video/h264/h264_common.h" |
| #include "webrtc/common_video/h264/pps_parser.h" |
| #include "webrtc/common_video/h264/sps_parser.h" |
| #include "webrtc/system_wrappers/include/metrics.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| static const size_t kNalHeaderSize = 1; |
| static const size_t kFuAHeaderSize = 2; |
| static const size_t kLengthFieldSize = 2; |
| static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize; |
| |
| static const char* kSpsValidHistogramName = "WebRTC.Video.H264.SpsValid"; |
| enum SpsValidEvent { |
| kReceivedSpsPocOk = 0, |
| kReceivedSpsVuiOk = 1, |
| kReceivedSpsRewritten = 2, |
| kReceivedSpsParseFailure = 3, |
| kSentSpsPocOk = 4, |
| kSentSpsVuiOk = 5, |
| kSentSpsRewritten = 6, |
| kSentSpsParseFailure = 7, |
| kSpsRewrittenMax = 8 |
| }; |
| |
| // Bit masks for FU (A and B) indicators. |
| enum NalDefs : uint8_t { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; |
| |
| // Bit masks for FU (A and B) headers. |
| enum FuDefs : uint8_t { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; |
| |
| // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer. |
| bool ParseStapAStartOffsets(const uint8_t* nalu_ptr, |
| size_t length_remaining, |
| std::vector<size_t>* offsets) { |
| size_t offset = 0; |
| while (length_remaining > 0) { |
| // Buffer doesn't contain room for additional nalu length. |
| if (length_remaining < sizeof(uint16_t)) |
| return false; |
| uint16_t nalu_size = ByteReader<uint16_t>::ReadBigEndian(nalu_ptr); |
| nalu_ptr += sizeof(uint16_t); |
| length_remaining -= sizeof(uint16_t); |
| if (nalu_size > length_remaining) |
| return false; |
| nalu_ptr += nalu_size; |
| length_remaining -= nalu_size; |
| |
| offsets->push_back(offset + kStapAHeaderSize); |
| offset += kLengthFieldSize + nalu_size; |
| } |
| return true; |
| } |
| |
| } // namespace |
| |
| RtpPacketizerH264::RtpPacketizerH264(size_t max_payload_len, |
| size_t last_packet_reduction_len, |
| H264PacketizationMode packetization_mode) |
| : max_payload_len_(max_payload_len), |
| last_packet_reduction_len_(last_packet_reduction_len), |
| num_packets_left_(0), |
| packetization_mode_(packetization_mode) { |
| // Guard against uninitialized memory in packetization_mode. |
| RTC_CHECK(packetization_mode == H264PacketizationMode::NonInterleaved || |
| packetization_mode == H264PacketizationMode::SingleNalUnit); |
| RTC_CHECK_GT(max_payload_len, last_packet_reduction_len); |
| } |
| |
| RtpPacketizerH264::~RtpPacketizerH264() { |
| } |
| |
| RtpPacketizerH264::Fragment::Fragment(const uint8_t* buffer, size_t length) |
| : buffer(buffer), length(length) {} |
| RtpPacketizerH264::Fragment::Fragment(const Fragment& fragment) |
| : buffer(fragment.buffer), length(fragment.length) {} |
| |
| size_t RtpPacketizerH264::SetPayloadData( |
| const uint8_t* payload_data, |
| size_t payload_size, |
| const RTPFragmentationHeader* fragmentation) { |
| RTC_DCHECK(packets_.empty()); |
| RTC_DCHECK(input_fragments_.empty()); |
| RTC_DCHECK(fragmentation); |
| for (int i = 0; i < fragmentation->fragmentationVectorSize; ++i) { |
| const uint8_t* buffer = |
| &payload_data[fragmentation->fragmentationOffset[i]]; |
| size_t length = fragmentation->fragmentationLength[i]; |
| |
| bool updated_sps = false; |
| H264::NaluType nalu_type = H264::ParseNaluType(buffer[0]); |
| if (nalu_type == H264::NaluType::kSps) { |
| // Check if stream uses picture order count type 0, and if so rewrite it |
| // to enable faster decoding. Streams in that format incur additional |
| // delay because it allows decode order to differ from render order. |
| // The mechanism used is to rewrite (edit or add) the SPS's VUI to contain |
| // restrictions on the maximum number of reordered pictures. This reduces |
| // latency significantly, though it still adds about a frame of latency to |
| // decoding. |
| // Note that we do this rewriting both here (send side, in order to |
| // protect legacy receive clients) and below in |
| // RtpDepacketizerH264::ParseSingleNalu (receive side, in orderer to |
| // protect us from unknown or legacy send clients). |
| |
| rtc::Optional<SpsParser::SpsState> sps; |
| |
| std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer()); |
| // Add the type header to the output buffer first, so that the rewriter |
| // can append modified payload on top of that. |
| output_buffer->AppendData(buffer[0]); |
| SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps( |
| buffer + H264::kNaluTypeSize, length - H264::kNaluTypeSize, &sps, |
| output_buffer.get()); |
| |
| switch (result) { |
| case SpsVuiRewriter::ParseResult::kVuiRewritten: |
| input_fragments_.push_back( |
| Fragment(output_buffer->data(), output_buffer->size())); |
| input_fragments_.rbegin()->tmp_buffer = std::move(output_buffer); |
| updated_sps = true; |
| RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| SpsValidEvent::kSentSpsRewritten, |
| SpsValidEvent::kSpsRewrittenMax); |
| break; |
| case SpsVuiRewriter::ParseResult::kPocOk: |
| RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| SpsValidEvent::kSentSpsPocOk, |
| SpsValidEvent::kSpsRewrittenMax); |
| break; |
| case SpsVuiRewriter::ParseResult::kVuiOk: |
| RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| SpsValidEvent::kSentSpsVuiOk, |
| SpsValidEvent::kSpsRewrittenMax); |
| break; |
| case SpsVuiRewriter::ParseResult::kFailure: |
| RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| SpsValidEvent::kSentSpsParseFailure, |
| SpsValidEvent::kSpsRewrittenMax); |
| break; |
| } |
| } |
| |
| if (!updated_sps) |
| input_fragments_.push_back(Fragment(buffer, length)); |
| } |
| GeneratePackets(); |
| return num_packets_left_; |
| } |
| |
| void RtpPacketizerH264::GeneratePackets() { |
| for (size_t i = 0; i < input_fragments_.size();) { |
| switch (packetization_mode_) { |
| case H264PacketizationMode::SingleNalUnit: |
| PacketizeSingleNalu(i); |
| ++i; |
| break; |
| case H264PacketizationMode::NonInterleaved: |
| size_t fragment_len = input_fragments_[i].length; |
| if (i + 1 == input_fragments_.size()) { |
| // Pretend that last fragment is larger instead of making last packet |
| // smaller. |
| fragment_len += last_packet_reduction_len_; |
| } |
| if (fragment_len > max_payload_len_) { |
| PacketizeFuA(i); |
| ++i; |
| } else { |
| i = PacketizeStapA(i); |
| } |
| break; |
| } |
| } |
| } |
| |
| void RtpPacketizerH264::PacketizeFuA(size_t fragment_index) { |
| // Fragment payload into packets (FU-A). |
| // Strip out the original header and leave room for the FU-A header. |
| const Fragment& fragment = input_fragments_[fragment_index]; |
| bool is_last_fragment = fragment_index + 1 == input_fragments_.size(); |
| size_t payload_left = fragment.length - kNalHeaderSize; |
| size_t offset = kNalHeaderSize; |
| size_t per_packet_capacity = max_payload_len_ - kFuAHeaderSize; |
| |
| // Instead of making the last packet smaller we pretend that all packets are |
| // of the same size but we write additional virtual payload to the last |
| // packet. |
| size_t extra_len = is_last_fragment ? last_packet_reduction_len_ : 0; |
| |
| // Integer divisions with rounding up. Minimal number of packets to fit all |
| // payload and virtual payload. |
| size_t num_packets = (payload_left + extra_len + (per_packet_capacity - 1)) / |
| per_packet_capacity; |
| // Bytes per packet. Average rounded down. |
| size_t payload_per_packet = (payload_left + extra_len) / num_packets; |
| // We make several first packets to be 1 bytes smaller than the rest. |
| // i.e 14 bytes splitted in 4 packets would be 3+3+4+4. |
| size_t num_larger_packets = (payload_left + extra_len) % num_packets; |
| |
| num_packets_left_ += num_packets; |
| while (payload_left > 0) { |
| // Increase payload per packet at the right time. |
| if (num_packets == num_larger_packets) |
| ++payload_per_packet; |
| size_t packet_length = payload_per_packet; |
| if (payload_left <= packet_length) { // Last portion of the payload |
| packet_length = payload_left; |
| // One additional packet may be used for extensions in the last packet. |
| // Together with last payload packet there may be at most 2 of them. |
| RTC_DCHECK_LE(num_packets, 2); |
| if (num_packets == 2) { |
| // Whole payload fits in the first num_packets-1 packets but extra |
| // packet is used for virtual payload. Leave at least one byte of data |
| // for the last packet. |
| --packet_length; |
| } |
| } |
| RTC_CHECK_GT(packet_length, 0); |
| packets_.push(PacketUnit(Fragment(fragment.buffer + offset, packet_length), |
| offset - kNalHeaderSize == 0, |
| payload_left == packet_length, false, |
| fragment.buffer[0])); |
| offset += packet_length; |
| payload_left -= packet_length; |
| --num_packets; |
| } |
| RTC_CHECK_EQ(0, payload_left); |
| } |
| |
| size_t RtpPacketizerH264::PacketizeStapA(size_t fragment_index) { |
| // Aggregate fragments into one packet (STAP-A). |
| size_t payload_size_left = max_payload_len_; |
| int aggregated_fragments = 0; |
| size_t fragment_headers_length = 0; |
| const Fragment* fragment = &input_fragments_[fragment_index]; |
| RTC_CHECK_GE(payload_size_left, fragment->length); |
| ++num_packets_left_; |
| while (payload_size_left >= fragment->length + fragment_headers_length && |
| (fragment_index + 1 < input_fragments_.size() || |
| payload_size_left >= fragment->length + fragment_headers_length + |
| last_packet_reduction_len_)) { |
| RTC_CHECK_GT(fragment->length, 0); |
| packets_.push(PacketUnit(*fragment, aggregated_fragments == 0, false, true, |
| fragment->buffer[0])); |
| payload_size_left -= fragment->length; |
| payload_size_left -= fragment_headers_length; |
| |
| fragment_headers_length = kLengthFieldSize; |
| // If we are going to try to aggregate more fragments into this packet |
| // we need to add the STAP-A NALU header and a length field for the first |
| // NALU of this packet. |
| if (aggregated_fragments == 0) |
| fragment_headers_length += kNalHeaderSize + kLengthFieldSize; |
| ++aggregated_fragments; |
| |
| // Next fragment. |
| ++fragment_index; |
| if (fragment_index == input_fragments_.size()) |
| break; |
| fragment = &input_fragments_[fragment_index]; |
| } |
| RTC_CHECK_GT(aggregated_fragments, 0); |
| packets_.back().last_fragment = true; |
| return fragment_index; |
| } |
| |
| void RtpPacketizerH264::PacketizeSingleNalu(size_t fragment_index) { |
| // Add a single NALU to the queue, no aggregation. |
| size_t payload_size_left = max_payload_len_; |
| if (fragment_index + 1 == input_fragments_.size()) |
| payload_size_left -= last_packet_reduction_len_; |
| const Fragment* fragment = &input_fragments_[fragment_index]; |
| RTC_CHECK_GE(payload_size_left, fragment->length) |
| << "Payload size left " << payload_size_left << ", fragment length " |
| << fragment->length << ", packetization mode " << packetization_mode_; |
| RTC_CHECK_GT(fragment->length, 0u); |
| packets_.push(PacketUnit(*fragment, true /* first */, true /* last */, |
| false /* aggregated */, fragment->buffer[0])); |
| ++num_packets_left_; |
| } |
| |
| bool RtpPacketizerH264::NextPacket(RtpPacketToSend* rtp_packet) { |
| RTC_DCHECK(rtp_packet); |
| if (packets_.empty()) { |
| return false; |
| } |
| |
| PacketUnit packet = packets_.front(); |
| if (packet.first_fragment && packet.last_fragment) { |
| // Single NAL unit packet. |
| size_t bytes_to_send = packet.source_fragment.length; |
| uint8_t* buffer = rtp_packet->AllocatePayload(bytes_to_send); |
| memcpy(buffer, packet.source_fragment.buffer, bytes_to_send); |
| packets_.pop(); |
| input_fragments_.pop_front(); |
| } else if (packet.aggregated) { |
| RTC_CHECK_EQ(H264PacketizationMode::NonInterleaved, packetization_mode_); |
| bool is_last_packet = num_packets_left_ == 1; |
| NextAggregatePacket(rtp_packet, is_last_packet); |
| } else { |
| RTC_CHECK_EQ(H264PacketizationMode::NonInterleaved, packetization_mode_); |
| NextFragmentPacket(rtp_packet); |
| } |
| RTC_DCHECK_LE(rtp_packet->payload_size(), max_payload_len_); |
| if (packets_.empty()) { |
| RTC_DCHECK_LE(rtp_packet->payload_size(), |
| max_payload_len_ - last_packet_reduction_len_); |
| } |
| rtp_packet->SetMarker(packets_.empty()); |
| --num_packets_left_; |
| return true; |
| } |
| |
| void RtpPacketizerH264::NextAggregatePacket(RtpPacketToSend* rtp_packet, |
| bool last) { |
| uint8_t* buffer = rtp_packet->AllocatePayload( |
| last ? max_payload_len_ - last_packet_reduction_len_ : max_payload_len_); |
| RTC_DCHECK(buffer); |
| PacketUnit* packet = &packets_.front(); |
| RTC_CHECK(packet->first_fragment); |
| // STAP-A NALU header. |
| buffer[0] = (packet->header & (kFBit | kNriMask)) | H264::NaluType::kStapA; |
| size_t index = kNalHeaderSize; |
| bool is_last_fragment = packet->last_fragment; |
| while (packet->aggregated) { |
| const Fragment& fragment = packet->source_fragment; |
| // Add NAL unit length field. |
| ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], fragment.length); |
| index += kLengthFieldSize; |
| // Add NAL unit. |
| memcpy(&buffer[index], fragment.buffer, fragment.length); |
| index += fragment.length; |
| packets_.pop(); |
| input_fragments_.pop_front(); |
| if (is_last_fragment) |
| break; |
| packet = &packets_.front(); |
| is_last_fragment = packet->last_fragment; |
| } |
| RTC_CHECK(is_last_fragment); |
| rtp_packet->SetPayloadSize(index); |
| } |
| |
| void RtpPacketizerH264::NextFragmentPacket(RtpPacketToSend* rtp_packet) { |
| PacketUnit* packet = &packets_.front(); |
| // NAL unit fragmented over multiple packets (FU-A). |
| // We do not send original NALU header, so it will be replaced by the |
| // FU indicator header of the first packet. |
| uint8_t fu_indicator = |
| (packet->header & (kFBit | kNriMask)) | H264::NaluType::kFuA; |
| uint8_t fu_header = 0; |
| |
| // S | E | R | 5 bit type. |
| fu_header |= (packet->first_fragment ? kSBit : 0); |
| fu_header |= (packet->last_fragment ? kEBit : 0); |
| uint8_t type = packet->header & kTypeMask; |
| fu_header |= type; |
| const Fragment& fragment = packet->source_fragment; |
| uint8_t* buffer = |
| rtp_packet->AllocatePayload(kFuAHeaderSize + fragment.length); |
| buffer[0] = fu_indicator; |
| buffer[1] = fu_header; |
| memcpy(buffer + kFuAHeaderSize, fragment.buffer, fragment.length); |
| if (packet->last_fragment) |
| input_fragments_.pop_front(); |
| packets_.pop(); |
| } |
| |
| ProtectionType RtpPacketizerH264::GetProtectionType() { |
| return kProtectedPacket; |
| } |
| |
| StorageType RtpPacketizerH264::GetStorageType( |
| uint32_t retransmission_settings) { |
| return kAllowRetransmission; |
| } |
| |
| std::string RtpPacketizerH264::ToString() { |
| return "RtpPacketizerH264"; |
| } |
| |
| RtpDepacketizerH264::RtpDepacketizerH264() : offset_(0), length_(0) {} |
| RtpDepacketizerH264::~RtpDepacketizerH264() {} |
| |
| bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload, |
| const uint8_t* payload_data, |
| size_t payload_data_length) { |
| RTC_CHECK(parsed_payload != nullptr); |
| if (payload_data_length == 0) { |
| LOG(LS_ERROR) << "Empty payload."; |
| return false; |
| } |
| |
| offset_ = 0; |
| length_ = payload_data_length; |
| modified_buffer_.reset(); |
| |
| uint8_t nal_type = payload_data[0] & kTypeMask; |
| parsed_payload->type.Video.codecHeader.H264.nalus_length = 0; |
| if (nal_type == H264::NaluType::kFuA) { |
| // Fragmented NAL units (FU-A). |
| if (!ParseFuaNalu(parsed_payload, payload_data)) |
| return false; |
| } else { |
| // We handle STAP-A and single NALU's the same way here. The jitter buffer |
| // will depacketize the STAP-A into NAL units later. |
| // TODO(sprang): Parse STAP-A offsets here and store in fragmentation vec. |
| if (!ProcessStapAOrSingleNalu(parsed_payload, payload_data)) |
| return false; |
| } |
| |
| const uint8_t* payload = |
| modified_buffer_ ? modified_buffer_->data() : payload_data; |
| |
| parsed_payload->payload = payload + offset_; |
| parsed_payload->payload_length = length_; |
| return true; |
| } |
| |
| bool RtpDepacketizerH264::ProcessStapAOrSingleNalu( |
| ParsedPayload* parsed_payload, |
| const uint8_t* payload_data) { |
| parsed_payload->type.Video.width = 0; |
| parsed_payload->type.Video.height = 0; |
| parsed_payload->type.Video.codec = kRtpVideoH264; |
| parsed_payload->type.Video.is_first_packet_in_frame = true; |
| RTPVideoHeaderH264* h264_header = |
| &parsed_payload->type.Video.codecHeader.H264; |
| |
| const uint8_t* nalu_start = payload_data + kNalHeaderSize; |
| const size_t nalu_length = length_ - kNalHeaderSize; |
| uint8_t nal_type = payload_data[0] & kTypeMask; |
| std::vector<size_t> nalu_start_offsets; |
| if (nal_type == H264::NaluType::kStapA) { |
| // Skip the StapA header (StapA NAL type + length). |
| if (length_ <= kStapAHeaderSize) { |
| LOG(LS_ERROR) << "StapA header truncated."; |
| return false; |
| } |
| |
| if (!ParseStapAStartOffsets(nalu_start, nalu_length, &nalu_start_offsets)) { |
| LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths."; |
| return false; |
| } |
| |
| h264_header->packetization_type = kH264StapA; |
| nal_type = payload_data[kStapAHeaderSize] & kTypeMask; |
| } else { |
| h264_header->packetization_type = kH264SingleNalu; |
| nalu_start_offsets.push_back(0); |
| } |
| h264_header->nalu_type = nal_type; |
| parsed_payload->frame_type = kVideoFrameDelta; |
| |
| nalu_start_offsets.push_back(length_ + kLengthFieldSize); // End offset. |
| for (size_t i = 0; i < nalu_start_offsets.size() - 1; ++i) { |
| size_t start_offset = nalu_start_offsets[i]; |
| // End offset is actually start offset for next unit, excluding length field |
| // so remove that from this units length. |
| size_t end_offset = nalu_start_offsets[i + 1] - kLengthFieldSize; |
| if (end_offset - start_offset < H264::kNaluTypeSize) { |
| LOG(LS_ERROR) << "STAP-A packet too short"; |
| return false; |
| } |
| |
| NaluInfo nalu; |
| nalu.type = payload_data[start_offset] & kTypeMask; |
| nalu.sps_id = -1; |
| nalu.pps_id = -1; |
| start_offset += H264::kNaluTypeSize; |
| |
| switch (nalu.type) { |
| case H264::NaluType::kSps: { |
| // Check if VUI is present in SPS and if it needs to be modified to |
| // avoid |
| // excessive decoder latency. |
| |
| // Copy any previous data first (likely just the first header). |
| std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer()); |
| if (start_offset) |
| output_buffer->AppendData(payload_data, start_offset); |
| |
| rtc::Optional<SpsParser::SpsState> sps; |
| |
| SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps( |
| &payload_data[start_offset], end_offset - start_offset, &sps, |
| output_buffer.get()); |
| switch (result) { |
| case SpsVuiRewriter::ParseResult::kVuiRewritten: |
| if (modified_buffer_) { |
| LOG(LS_WARNING) |
| << "More than one H264 SPS NAL units needing " |
| "rewriting found within a single STAP-A packet. " |
| "Keeping the first and rewriting the last."; |
| } |
| |
| // Rewrite length field to new SPS size. |
| if (h264_header->packetization_type == kH264StapA) { |
| size_t length_field_offset = |
| start_offset - (H264::kNaluTypeSize + kLengthFieldSize); |
| // Stap-A Length includes payload data and type header. |
| size_t rewritten_size = |
| output_buffer->size() - start_offset + H264::kNaluTypeSize; |
| ByteWriter<uint16_t>::WriteBigEndian( |
| &(*output_buffer)[length_field_offset], rewritten_size); |
| } |
| |
| // Append rest of packet. |
| output_buffer->AppendData( |
| &payload_data[end_offset], |
| nalu_length + kNalHeaderSize - end_offset); |
| |
| modified_buffer_ = std::move(output_buffer); |
| length_ = modified_buffer_->size(); |
| |
| RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| SpsValidEvent::kReceivedSpsRewritten, |
| SpsValidEvent::kSpsRewrittenMax); |
| break; |
| case SpsVuiRewriter::ParseResult::kPocOk: |
| RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| SpsValidEvent::kReceivedSpsPocOk, |
| SpsValidEvent::kSpsRewrittenMax); |
| break; |
| case SpsVuiRewriter::ParseResult::kVuiOk: |
| RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| SpsValidEvent::kReceivedSpsVuiOk, |
| SpsValidEvent::kSpsRewrittenMax); |
| break; |
| case SpsVuiRewriter::ParseResult::kFailure: |
| RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, |
| SpsValidEvent::kReceivedSpsParseFailure, |
| SpsValidEvent::kSpsRewrittenMax); |
| break; |
| } |
| |
| if (sps) { |
| parsed_payload->type.Video.width = sps->width; |
| parsed_payload->type.Video.height = sps->height; |
| nalu.sps_id = sps->id; |
| } else { |
| LOG(LS_WARNING) << "Failed to parse SPS id from SPS slice."; |
| } |
| parsed_payload->frame_type = kVideoFrameKey; |
| break; |
| } |
| case H264::NaluType::kPps: { |
| uint32_t pps_id; |
| uint32_t sps_id; |
| if (PpsParser::ParsePpsIds(&payload_data[start_offset], |
| end_offset - start_offset, &pps_id, |
| &sps_id)) { |
| nalu.pps_id = pps_id; |
| nalu.sps_id = sps_id; |
| } else { |
| LOG(LS_WARNING) |
| << "Failed to parse PPS id and SPS id from PPS slice."; |
| } |
| break; |
| } |
| case H264::NaluType::kIdr: |
| parsed_payload->frame_type = kVideoFrameKey; |
| FALLTHROUGH(); |
| case H264::NaluType::kSlice: { |
| rtc::Optional<uint32_t> pps_id = PpsParser::ParsePpsIdFromSlice( |
| &payload_data[start_offset], end_offset - start_offset); |
| if (pps_id) { |
| nalu.pps_id = *pps_id; |
| } else { |
| LOG(LS_WARNING) << "Failed to parse PPS id from slice of type: " |
| << static_cast<int>(nalu.type); |
| } |
| break; |
| } |
| // Slices below don't contain SPS or PPS ids. |
| case H264::NaluType::kAud: |
| case H264::NaluType::kEndOfSequence: |
| case H264::NaluType::kEndOfStream: |
| case H264::NaluType::kFiller: |
| case H264::NaluType::kSei: |
| break; |
| case H264::NaluType::kStapA: |
| case H264::NaluType::kFuA: |
| LOG(LS_WARNING) << "Unexpected STAP-A or FU-A received."; |
| return false; |
| } |
| RTPVideoHeaderH264* h264 = &parsed_payload->type.Video.codecHeader.H264; |
| if (h264->nalus_length == kMaxNalusPerPacket) { |
| LOG(LS_WARNING) |
| << "Received packet containing more than " << kMaxNalusPerPacket |
| << " NAL units. Will not keep track sps and pps ids for all of them."; |
| } else { |
| h264->nalus[h264->nalus_length++] = nalu; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool RtpDepacketizerH264::ParseFuaNalu( |
| RtpDepacketizer::ParsedPayload* parsed_payload, |
| const uint8_t* payload_data) { |
| if (length_ < kFuAHeaderSize) { |
| LOG(LS_ERROR) << "FU-A NAL units truncated."; |
| return false; |
| } |
| uint8_t fnri = payload_data[0] & (kFBit | kNriMask); |
| uint8_t original_nal_type = payload_data[1] & kTypeMask; |
| bool first_fragment = (payload_data[1] & kSBit) > 0; |
| NaluInfo nalu; |
| nalu.type = original_nal_type; |
| nalu.sps_id = -1; |
| nalu.pps_id = -1; |
| if (first_fragment) { |
| offset_ = 0; |
| length_ -= kNalHeaderSize; |
| rtc::Optional<uint32_t> pps_id = PpsParser::ParsePpsIdFromSlice( |
| payload_data + 2 * kNalHeaderSize, length_ - kNalHeaderSize); |
| if (pps_id) { |
| nalu.pps_id = *pps_id; |
| } else { |
| LOG(LS_WARNING) << "Failed to parse PPS from first fragment of FU-A NAL " |
| "unit with original type: " |
| << static_cast<int>(nalu.type); |
| } |
| uint8_t original_nal_header = fnri | original_nal_type; |
| modified_buffer_.reset(new rtc::Buffer()); |
| modified_buffer_->AppendData(payload_data + kNalHeaderSize, length_); |
| (*modified_buffer_)[0] = original_nal_header; |
| } else { |
| offset_ = kFuAHeaderSize; |
| length_ -= kFuAHeaderSize; |
| } |
| |
| if (original_nal_type == H264::NaluType::kIdr) { |
| parsed_payload->frame_type = kVideoFrameKey; |
| } else { |
| parsed_payload->frame_type = kVideoFrameDelta; |
| } |
| parsed_payload->type.Video.width = 0; |
| parsed_payload->type.Video.height = 0; |
| parsed_payload->type.Video.codec = kRtpVideoH264; |
| parsed_payload->type.Video.is_first_packet_in_frame = first_fragment; |
| RTPVideoHeaderH264* h264 = &parsed_payload->type.Video.codecHeader.H264; |
| h264->packetization_type = kH264FuA; |
| h264->nalu_type = original_nal_type; |
| if (first_fragment) { |
| h264->nalus[h264->nalus_length] = nalu; |
| h264->nalus_length = 1; |
| } |
| return true; |
| } |
| |
| } // namespace webrtc |