blob: 5038e8edf4994e7e4ca0dab7c352aa0f8aa1bcb4 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/codecs/vp8/vp8_impl.h"
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <algorithm>
#include <string>
// NOTE(ajm): Path provided by gyp.
#include "libyuv/scale.h" // NOLINT
#include "libyuv/convert.h" // NOLINT
#include "webrtc/base/checks.h"
#include "webrtc/base/random.h"
#include "webrtc/base/timeutils.h"
#include "webrtc/base/trace_event.h"
#include "webrtc/common_types.h"
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/modules/include/module_common_types.h"
#include "webrtc/modules/video_coding/codecs/vp8/include/vp8_common_types.h"
#include "webrtc/modules/video_coding/codecs/vp8/screenshare_layers.h"
#include "webrtc/modules/video_coding/codecs/vp8/simulcast_rate_allocator.h"
#include "webrtc/modules/video_coding/codecs/vp8/temporal_layers.h"
#include "webrtc/modules/video_coding/include/video_codec_interface.h"
#include "webrtc/system_wrappers/include/clock.h"
#include "webrtc/system_wrappers/include/field_trial.h"
#include "webrtc/system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
const char kVp8PostProcArmFieldTrial[] = "WebRTC-VP8-Postproc-Arm";
const char kVp8GfBoostFieldTrial[] = "WebRTC-VP8-GfBoost";
const int kTokenPartitions = VP8_ONE_TOKENPARTITION;
enum { kVp8ErrorPropagationTh = 30 };
enum { kVp832ByteAlign = 32 };
// VP8 denoiser states.
enum denoiserState {
kDenoiserOff,
kDenoiserOnYOnly,
kDenoiserOnYUV,
kDenoiserOnYUVAggressive,
// Adaptive mode defaults to kDenoiserOnYUV on key frame, but may switch
// to kDenoiserOnYUVAggressive based on a computed noise metric.
kDenoiserOnAdaptive
};
// Greatest common divisior
int GCD(int a, int b) {
int c = a % b;
while (c != 0) {
a = b;
b = c;
c = a % b;
}
return b;
}
uint32_t SumStreamMaxBitrate(int streams, const VideoCodec& codec) {
uint32_t bitrate_sum = 0;
for (int i = 0; i < streams; ++i) {
bitrate_sum += codec.simulcastStream[i].maxBitrate;
}
return bitrate_sum;
}
int NumberOfStreams(const VideoCodec& codec) {
int streams =
codec.numberOfSimulcastStreams < 1 ? 1 : codec.numberOfSimulcastStreams;
uint32_t simulcast_max_bitrate = SumStreamMaxBitrate(streams, codec);
if (simulcast_max_bitrate == 0) {
streams = 1;
}
return streams;
}
bool ValidSimulcastResolutions(const VideoCodec& codec, int num_streams) {
if (codec.width != codec.simulcastStream[num_streams - 1].width ||
codec.height != codec.simulcastStream[num_streams - 1].height) {
return false;
}
for (int i = 0; i < num_streams; ++i) {
if (codec.width * codec.simulcastStream[i].height !=
codec.height * codec.simulcastStream[i].width) {
return false;
}
}
return true;
}
int NumStreamsDisabled(const std::vector<bool>& streams) {
int num_disabled = 0;
for (bool stream : streams) {
if (!stream)
++num_disabled;
}
return num_disabled;
}
bool GetGfBoostPercentageFromFieldTrialGroup(int* boost_percentage) {
std::string group = webrtc::field_trial::FindFullName(kVp8GfBoostFieldTrial);
if (group.empty())
return false;
if (sscanf(group.c_str(), "Enabled-%d", boost_percentage) != 1)
return false;
if (*boost_percentage < 0 || *boost_percentage > 100)
return false;
return true;
}
} // namespace
VP8Encoder* VP8Encoder::Create() {
return new VP8EncoderImpl();
}
VP8Decoder* VP8Decoder::Create() {
return new VP8DecoderImpl();
}
vpx_enc_frame_flags_t VP8EncoderImpl::EncodeFlags(
const TemporalLayers::FrameConfig& references) {
RTC_DCHECK(!references.drop_frame);
vpx_enc_frame_flags_t flags = 0;
if ((references.last_buffer_flags & TemporalLayers::kReference) == 0)
flags |= VP8_EFLAG_NO_REF_LAST;
if ((references.last_buffer_flags & TemporalLayers::kUpdate) == 0)
flags |= VP8_EFLAG_NO_UPD_LAST;
if ((references.golden_buffer_flags & TemporalLayers::kReference) == 0)
flags |= VP8_EFLAG_NO_REF_GF;
if ((references.golden_buffer_flags & TemporalLayers::kUpdate) == 0)
flags |= VP8_EFLAG_NO_UPD_GF;
if ((references.arf_buffer_flags & TemporalLayers::kReference) == 0)
flags |= VP8_EFLAG_NO_REF_ARF;
if ((references.arf_buffer_flags & TemporalLayers::kUpdate) == 0)
flags |= VP8_EFLAG_NO_UPD_ARF;
if (references.freeze_entropy)
flags |= VP8_EFLAG_NO_UPD_ENTROPY;
return flags;
}
VP8EncoderImpl::VP8EncoderImpl()
: use_gf_boost_(webrtc::field_trial::IsEnabled(kVp8GfBoostFieldTrial)),
encoded_complete_callback_(nullptr),
inited_(false),
timestamp_(0),
qp_max_(56), // Setting for max quantizer.
cpu_speed_default_(-6),
number_of_cores_(0),
rc_max_intra_target_(0),
key_frame_request_(kMaxSimulcastStreams, false) {
Random random(rtc::TimeMicros());
picture_id_.reserve(kMaxSimulcastStreams);
for (int i = 0; i < kMaxSimulcastStreams; ++i) {
picture_id_.push_back(random.Rand<uint16_t>() & 0x7FFF);
tl0_pic_idx_.push_back(random.Rand<uint8_t>());
}
temporal_layers_.reserve(kMaxSimulcastStreams);
raw_images_.reserve(kMaxSimulcastStreams);
encoded_images_.reserve(kMaxSimulcastStreams);
send_stream_.reserve(kMaxSimulcastStreams);
cpu_speed_.assign(kMaxSimulcastStreams, cpu_speed_default_);
encoders_.reserve(kMaxSimulcastStreams);
configurations_.reserve(kMaxSimulcastStreams);
downsampling_factors_.reserve(kMaxSimulcastStreams);
}
VP8EncoderImpl::~VP8EncoderImpl() {
Release();
}
int VP8EncoderImpl::Release() {
int ret_val = WEBRTC_VIDEO_CODEC_OK;
while (!encoded_images_.empty()) {
EncodedImage& image = encoded_images_.back();
delete[] image._buffer;
encoded_images_.pop_back();
}
while (!encoders_.empty()) {
vpx_codec_ctx_t& encoder = encoders_.back();
if (vpx_codec_destroy(&encoder)) {
ret_val = WEBRTC_VIDEO_CODEC_MEMORY;
}
encoders_.pop_back();
}
configurations_.clear();
send_stream_.clear();
cpu_speed_.clear();
while (!raw_images_.empty()) {
vpx_img_free(&raw_images_.back());
raw_images_.pop_back();
}
for (size_t i = 0; i < temporal_layers_.size(); ++i) {
tl0_pic_idx_[i] = temporal_layers_[i]->Tl0PicIdx();
}
temporal_layers_.clear();
inited_ = false;
return ret_val;
}
int VP8EncoderImpl::SetRateAllocation(const BitrateAllocation& bitrate,
uint32_t new_framerate) {
if (!inited_)
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
if (encoders_[0].err)
return WEBRTC_VIDEO_CODEC_ERROR;
if (new_framerate < 1)
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
if (bitrate.get_sum_bps() == 0) {
// Encoder paused, turn off all encoding.
const int num_streams = static_cast<size_t>(encoders_.size());
for (int i = 0; i < num_streams; ++i)
SetStreamState(false, i);
return WEBRTC_VIDEO_CODEC_OK;
}
// At this point, bitrate allocation should already match codec settings.
if (codec_.maxBitrate > 0)
RTC_DCHECK_LE(bitrate.get_sum_kbps(), codec_.maxBitrate);
RTC_DCHECK_GE(bitrate.get_sum_kbps(), codec_.minBitrate);
if (codec_.numberOfSimulcastStreams > 0)
RTC_DCHECK_GE(bitrate.get_sum_kbps(), codec_.simulcastStream[0].minBitrate);
codec_.maxFramerate = new_framerate;
if (encoders_.size() > 1) {
// If we have more than 1 stream, reduce the qp_max for the low resolution
// stream if frame rate is not too low. The trade-off with lower qp_max is
// possibly more dropped frames, so we only do this if the frame rate is
// above some threshold (base temporal layer is down to 1/4 for 3 layers).
// We may want to condition this on bitrate later.
if (new_framerate > 20) {
configurations_[encoders_.size() - 1].rc_max_quantizer = 45;
} else {
// Go back to default value set in InitEncode.
configurations_[encoders_.size() - 1].rc_max_quantizer = qp_max_;
}
}
size_t stream_idx = encoders_.size() - 1;
for (size_t i = 0; i < encoders_.size(); ++i, --stream_idx) {
unsigned int target_bitrate_kbps =
bitrate.GetSpatialLayerSum(stream_idx) / 1000;
bool send_stream = target_bitrate_kbps > 0;
if (send_stream || encoders_.size() > 1)
SetStreamState(send_stream, stream_idx);
configurations_[i].rc_target_bitrate = target_bitrate_kbps;
temporal_layers_[stream_idx]->UpdateConfiguration(&configurations_[i]);
if (vpx_codec_enc_config_set(&encoders_[i], &configurations_[i])) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
}
return WEBRTC_VIDEO_CODEC_OK;
}
const char* VP8EncoderImpl::ImplementationName() const {
return "libvpx";
}
void VP8EncoderImpl::SetStreamState(bool send_stream,
int stream_idx) {
if (send_stream && !send_stream_[stream_idx]) {
// Need a key frame if we have not sent this stream before.
key_frame_request_[stream_idx] = true;
}
send_stream_[stream_idx] = send_stream;
}
void VP8EncoderImpl::SetupTemporalLayers(int num_streams,
int num_temporal_layers,
const VideoCodec& codec) {
RTC_DCHECK(codec.VP8().tl_factory != nullptr);
const TemporalLayersFactory* tl_factory = codec.VP8().tl_factory;
if (num_streams == 1) {
temporal_layers_.emplace_back(
tl_factory->Create(0, num_temporal_layers, tl0_pic_idx_[0]));
} else {
for (int i = 0; i < num_streams; ++i) {
RTC_CHECK_GT(num_temporal_layers, 0);
int layers = std::max(static_cast<uint8_t>(1),
codec.simulcastStream[i].numberOfTemporalLayers);
temporal_layers_.emplace_back(
tl_factory->Create(i, layers, tl0_pic_idx_[i]));
}
}
}
int VP8EncoderImpl::InitEncode(const VideoCodec* inst,
int number_of_cores,
size_t /*maxPayloadSize */) {
if (inst == NULL) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->maxFramerate < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// allow zero to represent an unspecified maxBitRate
if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->width <= 1 || inst->height <= 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (number_of_cores < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->VP8().automaticResizeOn && inst->numberOfSimulcastStreams > 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int retVal = Release();
if (retVal < 0) {
return retVal;
}
int number_of_streams = NumberOfStreams(*inst);
bool doing_simulcast = (number_of_streams > 1);
if (doing_simulcast && !ValidSimulcastResolutions(*inst, number_of_streams)) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int num_temporal_layers =
doing_simulcast ? inst->simulcastStream[0].numberOfTemporalLayers
: inst->VP8().numberOfTemporalLayers;
RTC_DCHECK_GT(num_temporal_layers, 0);
SetupTemporalLayers(number_of_streams, num_temporal_layers, *inst);
number_of_cores_ = number_of_cores;
timestamp_ = 0;
codec_ = *inst;
// Code expects simulcastStream resolutions to be correct, make sure they are
// filled even when there are no simulcast layers.
if (codec_.numberOfSimulcastStreams == 0) {
codec_.simulcastStream[0].width = codec_.width;
codec_.simulcastStream[0].height = codec_.height;
}
encoded_images_.resize(number_of_streams);
encoders_.resize(number_of_streams);
configurations_.resize(number_of_streams);
downsampling_factors_.resize(number_of_streams);
raw_images_.resize(number_of_streams);
send_stream_.resize(number_of_streams);
send_stream_[0] = true; // For non-simulcast case.
cpu_speed_.resize(number_of_streams);
std::fill(key_frame_request_.begin(), key_frame_request_.end(), false);
int idx = number_of_streams - 1;
for (int i = 0; i < (number_of_streams - 1); ++i, --idx) {
int gcd = GCD(inst->simulcastStream[idx].width,
inst->simulcastStream[idx - 1].width);
downsampling_factors_[i].num = inst->simulcastStream[idx].width / gcd;
downsampling_factors_[i].den = inst->simulcastStream[idx - 1].width / gcd;
send_stream_[i] = false;
}
if (number_of_streams > 1) {
send_stream_[number_of_streams - 1] = false;
downsampling_factors_[number_of_streams - 1].num = 1;
downsampling_factors_[number_of_streams - 1].den = 1;
}
for (int i = 0; i < number_of_streams; ++i) {
// allocate memory for encoded image
if (encoded_images_[i]._buffer != NULL) {
delete[] encoded_images_[i]._buffer;
}
encoded_images_[i]._size =
CalcBufferSize(VideoType::kI420, codec_.width, codec_.height);
encoded_images_[i]._buffer = new uint8_t[encoded_images_[i]._size];
encoded_images_[i]._completeFrame = true;
}
// populate encoder configuration with default values
if (vpx_codec_enc_config_default(vpx_codec_vp8_cx(), &configurations_[0],
0)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
// setting the time base of the codec
configurations_[0].g_timebase.num = 1;
configurations_[0].g_timebase.den = 90000;
configurations_[0].g_lag_in_frames = 0; // 0- no frame lagging
// Set the error resilience mode according to user settings.
switch (inst->VP8().resilience) {
case kResilienceOff:
configurations_[0].g_error_resilient = 0;
break;
case kResilientStream:
configurations_[0].g_error_resilient = VPX_ERROR_RESILIENT_DEFAULT;
break;
case kResilientFrames:
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; // Not supported
}
// rate control settings
configurations_[0].rc_dropframe_thresh = inst->VP8().frameDroppingOn ? 30 : 0;
configurations_[0].rc_end_usage = VPX_CBR;
configurations_[0].g_pass = VPX_RC_ONE_PASS;
// Handle resizing outside of libvpx.
configurations_[0].rc_resize_allowed = 0;
configurations_[0].rc_min_quantizer = 2;
if (inst->qpMax >= configurations_[0].rc_min_quantizer) {
qp_max_ = inst->qpMax;
}
configurations_[0].rc_max_quantizer = qp_max_;
configurations_[0].rc_undershoot_pct = 100;
configurations_[0].rc_overshoot_pct = 15;
configurations_[0].rc_buf_initial_sz = 500;
configurations_[0].rc_buf_optimal_sz = 600;
configurations_[0].rc_buf_sz = 1000;
// Set the maximum target size of any key-frame.
rc_max_intra_target_ = MaxIntraTarget(configurations_[0].rc_buf_optimal_sz);
if (inst->VP8().keyFrameInterval > 0) {
configurations_[0].kf_mode = VPX_KF_AUTO;
configurations_[0].kf_max_dist = inst->VP8().keyFrameInterval;
} else {
configurations_[0].kf_mode = VPX_KF_DISABLED;
}
// Allow the user to set the complexity for the base stream.
switch (inst->VP8().complexity) {
case kComplexityHigh:
cpu_speed_[0] = -5;
break;
case kComplexityHigher:
cpu_speed_[0] = -4;
break;
case kComplexityMax:
cpu_speed_[0] = -3;
break;
default:
cpu_speed_[0] = -6;
break;
}
cpu_speed_default_ = cpu_speed_[0];
// Set encoding complexity (cpu_speed) based on resolution and/or platform.
cpu_speed_[0] = SetCpuSpeed(inst->width, inst->height);
for (int i = 1; i < number_of_streams; ++i) {
cpu_speed_[i] =
SetCpuSpeed(inst->simulcastStream[number_of_streams - 1 - i].width,
inst->simulcastStream[number_of_streams - 1 - i].height);
}
configurations_[0].g_w = inst->width;
configurations_[0].g_h = inst->height;
// Determine number of threads based on the image size and #cores.
// TODO(fbarchard): Consider number of Simulcast layers.
configurations_[0].g_threads = NumberOfThreads(
configurations_[0].g_w, configurations_[0].g_h, number_of_cores);
// Creating a wrapper to the image - setting image data to NULL.
// Actual pointer will be set in encode. Setting align to 1, as it
// is meaningless (no memory allocation is done here).
vpx_img_wrap(&raw_images_[0], VPX_IMG_FMT_I420, inst->width, inst->height, 1,
NULL);
// Note the order we use is different from webm, we have lowest resolution
// at position 0 and they have highest resolution at position 0.
int stream_idx = encoders_.size() - 1;
SimulcastRateAllocator init_allocator(codec_, nullptr);
BitrateAllocation allocation = init_allocator.GetAllocation(
inst->startBitrate * 1000, inst->maxFramerate);
std::vector<uint32_t> stream_bitrates;
for (int i = 0; i == 0 || i < inst->numberOfSimulcastStreams; ++i) {
uint32_t bitrate = allocation.GetSpatialLayerSum(i) / 1000;
stream_bitrates.push_back(bitrate);
}
configurations_[0].rc_target_bitrate = stream_bitrates[stream_idx];
temporal_layers_[stream_idx]->OnRatesUpdated(
stream_bitrates[stream_idx], inst->maxBitrate, inst->maxFramerate);
temporal_layers_[stream_idx]->UpdateConfiguration(&configurations_[0]);
--stream_idx;
for (size_t i = 1; i < encoders_.size(); ++i, --stream_idx) {
memcpy(&configurations_[i], &configurations_[0],
sizeof(configurations_[0]));
configurations_[i].g_w = inst->simulcastStream[stream_idx].width;
configurations_[i].g_h = inst->simulcastStream[stream_idx].height;
// Use 1 thread for lower resolutions.
configurations_[i].g_threads = 1;
// Setting alignment to 32 - as that ensures at least 16 for all
// planes (32 for Y, 16 for U,V). Libvpx sets the requested stride for
// the y plane, but only half of it to the u and v planes.
vpx_img_alloc(&raw_images_[i], VPX_IMG_FMT_I420,
inst->simulcastStream[stream_idx].width,
inst->simulcastStream[stream_idx].height, kVp832ByteAlign);
SetStreamState(stream_bitrates[stream_idx] > 0, stream_idx);
configurations_[i].rc_target_bitrate = stream_bitrates[stream_idx];
temporal_layers_[stream_idx]->OnRatesUpdated(
stream_bitrates[stream_idx], inst->maxBitrate, inst->maxFramerate);
temporal_layers_[stream_idx]->UpdateConfiguration(&configurations_[i]);
}
return InitAndSetControlSettings();
}
int VP8EncoderImpl::SetCpuSpeed(int width, int height) {
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || defined(ANDROID)
// On mobile platform, use a lower speed setting for lower resolutions for
// CPUs with 4 or more cores.
RTC_DCHECK_GT(number_of_cores_, 0);
if (number_of_cores_ <= 3)
return -12;
if (width * height <= 352 * 288)
return -8;
else if (width * height <= 640 * 480)
return -10;
else
return -12;
#else
// For non-ARM, increase encoding complexity (i.e., use lower speed setting)
// if resolution is below CIF. Otherwise, keep the default/user setting
// (|cpu_speed_default_|) set on InitEncode via VP8().complexity.
if (width * height < 352 * 288)
return (cpu_speed_default_ < -4) ? -4 : cpu_speed_default_;
else
return cpu_speed_default_;
#endif
}
int VP8EncoderImpl::NumberOfThreads(int width, int height, int cpus) {
#if defined(ANDROID)
if (width * height >= 320 * 180) {
if (cpus >= 4) {
// 3 threads for CPUs with 4 and more cores since most of times only 4
// cores will be active.
return 3;
} else if (cpus == 3 || cpus == 2) {
return 2;
} else {
return 1;
}
}
return 1;
#else
if (width * height >= 1920 * 1080 && cpus > 8) {
return 8; // 8 threads for 1080p on high perf machines.
} else if (width * height > 1280 * 960 && cpus >= 6) {
// 3 threads for 1080p.
return 3;
} else if (width * height > 640 * 480 && cpus >= 3) {
// 2 threads for qHD/HD.
return 2;
} else {
// 1 thread for VGA or less.
return 1;
}
#endif
}
int VP8EncoderImpl::InitAndSetControlSettings() {
vpx_codec_flags_t flags = 0;
flags |= VPX_CODEC_USE_OUTPUT_PARTITION;
if (encoders_.size() > 1) {
int error = vpx_codec_enc_init_multi(&encoders_[0], vpx_codec_vp8_cx(),
&configurations_[0], encoders_.size(),
flags, &downsampling_factors_[0]);
if (error) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
} else {
if (vpx_codec_enc_init(&encoders_[0], vpx_codec_vp8_cx(),
&configurations_[0], flags)) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
}
// Enable denoising for the highest resolution stream, and for
// the second highest resolution if we are doing more than 2
// spatial layers/streams.
// TODO(holmer): Investigate possibility of adding a libvpx API
// for getting the denoised frame from the encoder and using that
// when encoding lower resolution streams. Would it work with the
// multi-res encoding feature?
denoiserState denoiser_state = kDenoiserOnYOnly;
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || defined(ANDROID)
denoiser_state = kDenoiserOnYOnly;
#else
denoiser_state = kDenoiserOnAdaptive;
#endif
vpx_codec_control(&encoders_[0], VP8E_SET_NOISE_SENSITIVITY,
codec_.VP8()->denoisingOn ? denoiser_state : kDenoiserOff);
if (encoders_.size() > 2) {
vpx_codec_control(
&encoders_[1], VP8E_SET_NOISE_SENSITIVITY,
codec_.VP8()->denoisingOn ? denoiser_state : kDenoiserOff);
}
for (size_t i = 0; i < encoders_.size(); ++i) {
// Allow more screen content to be detected as static.
vpx_codec_control(&(encoders_[i]), VP8E_SET_STATIC_THRESHOLD,
codec_.mode == kScreensharing ? 300 : 1);
vpx_codec_control(&(encoders_[i]), VP8E_SET_CPUUSED, cpu_speed_[i]);
vpx_codec_control(&(encoders_[i]), VP8E_SET_TOKEN_PARTITIONS,
static_cast<vp8e_token_partitions>(kTokenPartitions));
vpx_codec_control(&(encoders_[i]), VP8E_SET_MAX_INTRA_BITRATE_PCT,
rc_max_intra_target_);
// VP8E_SET_SCREEN_CONTENT_MODE 2 = screen content with more aggressive
// rate control (drop frames on large target bitrate overshoot)
vpx_codec_control(&(encoders_[i]), VP8E_SET_SCREEN_CONTENT_MODE,
codec_.mode == kScreensharing ? 2 : 0);
// Apply boost on golden frames (has only effect when resilience is off).
if (use_gf_boost_ && codec_.VP8()->resilience == kResilienceOff) {
int gf_boost_percent;
if (GetGfBoostPercentageFromFieldTrialGroup(&gf_boost_percent)) {
vpx_codec_control(&(encoders_[i]), VP8E_SET_GF_CBR_BOOST_PCT,
gf_boost_percent);
}
}
}
inited_ = true;
return WEBRTC_VIDEO_CODEC_OK;
}
uint32_t VP8EncoderImpl::MaxIntraTarget(uint32_t optimalBuffersize) {
// Set max to the optimal buffer level (normalized by target BR),
// and scaled by a scalePar.
// Max target size = scalePar * optimalBufferSize * targetBR[Kbps].
// This values is presented in percentage of perFrameBw:
// perFrameBw = targetBR[Kbps] * 1000 / frameRate.
// The target in % is as follows:
float scalePar = 0.5;
uint32_t targetPct = optimalBuffersize * scalePar * codec_.maxFramerate / 10;
// Don't go below 3 times the per frame bandwidth.
const uint32_t minIntraTh = 300;
return (targetPct < minIntraTh) ? minIntraTh : targetPct;
}
int VP8EncoderImpl::Encode(const VideoFrame& frame,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
RTC_DCHECK_EQ(frame.width(), codec_.width);
RTC_DCHECK_EQ(frame.height(), codec_.height);
if (!inited_)
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
if (encoded_complete_callback_ == NULL)
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
rtc::scoped_refptr<I420BufferInterface> input_image =
frame.video_frame_buffer()->ToI420();
// Since we are extracting raw pointers from |input_image| to
// |raw_images_[0]|, the resolution of these frames must match.
RTC_DCHECK_EQ(input_image->width(), raw_images_[0].d_w);
RTC_DCHECK_EQ(input_image->height(), raw_images_[0].d_h);
// Image in vpx_image_t format.
// Input image is const. VP8's raw image is not defined as const.
raw_images_[0].planes[VPX_PLANE_Y] =
const_cast<uint8_t*>(input_image->DataY());
raw_images_[0].planes[VPX_PLANE_U] =
const_cast<uint8_t*>(input_image->DataU());
raw_images_[0].planes[VPX_PLANE_V] =
const_cast<uint8_t*>(input_image->DataV());
raw_images_[0].stride[VPX_PLANE_Y] = input_image->StrideY();
raw_images_[0].stride[VPX_PLANE_U] = input_image->StrideU();
raw_images_[0].stride[VPX_PLANE_V] = input_image->StrideV();
for (size_t i = 1; i < encoders_.size(); ++i) {
// Scale the image down a number of times by downsampling factor
libyuv::I420Scale(
raw_images_[i - 1].planes[VPX_PLANE_Y],
raw_images_[i - 1].stride[VPX_PLANE_Y],
raw_images_[i - 1].planes[VPX_PLANE_U],
raw_images_[i - 1].stride[VPX_PLANE_U],
raw_images_[i - 1].planes[VPX_PLANE_V],
raw_images_[i - 1].stride[VPX_PLANE_V], raw_images_[i - 1].d_w,
raw_images_[i - 1].d_h, raw_images_[i].planes[VPX_PLANE_Y],
raw_images_[i].stride[VPX_PLANE_Y], raw_images_[i].planes[VPX_PLANE_U],
raw_images_[i].stride[VPX_PLANE_U], raw_images_[i].planes[VPX_PLANE_V],
raw_images_[i].stride[VPX_PLANE_V], raw_images_[i].d_w,
raw_images_[i].d_h, libyuv::kFilterBilinear);
}
vpx_enc_frame_flags_t flags[kMaxSimulcastStreams];
TemporalLayers::FrameConfig tl_configs[kMaxSimulcastStreams];
for (size_t i = 0; i < encoders_.size(); ++i) {
tl_configs[i] = temporal_layers_[i]->UpdateLayerConfig(frame.timestamp());
if (tl_configs[i].drop_frame) {
// Drop this frame.
return WEBRTC_VIDEO_CODEC_OK;
}
flags[i] = EncodeFlags(tl_configs[i]);
}
bool send_key_frame = false;
for (size_t i = 0; i < key_frame_request_.size() && i < send_stream_.size();
++i) {
if (key_frame_request_[i] && send_stream_[i]) {
send_key_frame = true;
break;
}
}
if (!send_key_frame && frame_types) {
for (size_t i = 0; i < frame_types->size() && i < send_stream_.size();
++i) {
if ((*frame_types)[i] == kVideoFrameKey && send_stream_[i]) {
send_key_frame = true;
break;
}
}
}
if (send_key_frame) {
// Adapt the size of the key frame when in screenshare with 1 temporal
// layer.
if (encoders_.size() == 1 && codec_.mode == kScreensharing &&
codec_.VP8()->numberOfTemporalLayers <= 1) {
const uint32_t forceKeyFrameIntraTh = 100;
vpx_codec_control(&(encoders_[0]), VP8E_SET_MAX_INTRA_BITRATE_PCT,
forceKeyFrameIntraTh);
}
// Key frame request from caller.
// Will update both golden and alt-ref.
for (size_t i = 0; i < encoders_.size(); ++i) {
flags[i] = VPX_EFLAG_FORCE_KF;
}
std::fill(key_frame_request_.begin(), key_frame_request_.end(), false);
}
// Set the encoder frame flags and temporal layer_id for each spatial stream.
// Note that |temporal_layers_| are defined starting from lowest resolution at
// position 0 to highest resolution at position |encoders_.size() - 1|,
// whereas |encoder_| is from highest to lowest resolution.
size_t stream_idx = encoders_.size() - 1;
for (size_t i = 0; i < encoders_.size(); ++i, --stream_idx) {
// Allow the layers adapter to temporarily modify the configuration. This
// change isn't stored in configurations_ so change will be discarded at
// the next update.
vpx_codec_enc_cfg_t temp_config;
memcpy(&temp_config, &configurations_[i], sizeof(vpx_codec_enc_cfg_t));
if (temporal_layers_[stream_idx]->UpdateConfiguration(&temp_config)) {
if (vpx_codec_enc_config_set(&encoders_[i], &temp_config))
return WEBRTC_VIDEO_CODEC_ERROR;
}
vpx_codec_control(&encoders_[i], VP8E_SET_FRAME_FLAGS, flags[stream_idx]);
vpx_codec_control(
&encoders_[i], VP8E_SET_TEMPORAL_LAYER_ID,
temporal_layers_[stream_idx]->GetTemporalLayerId(tl_configs[i]));
}
// TODO(holmer): Ideally the duration should be the timestamp diff of this
// frame and the next frame to be encoded, which we don't have. Instead we
// would like to use the duration of the previous frame. Unfortunately the
// rate control seems to be off with that setup. Using the average input
// frame rate to calculate an average duration for now.
assert(codec_.maxFramerate > 0);
uint32_t duration = 90000 / codec_.maxFramerate;
// Note we must pass 0 for |flags| field in encode call below since they are
// set above in |vpx_codec_control| function for each encoder/spatial layer.
int error = vpx_codec_encode(&encoders_[0], &raw_images_[0], timestamp_,
duration, 0, VPX_DL_REALTIME);
// Reset specific intra frame thresholds, following the key frame.
if (send_key_frame) {
vpx_codec_control(&(encoders_[0]), VP8E_SET_MAX_INTRA_BITRATE_PCT,
rc_max_intra_target_);
}
if (error)
return WEBRTC_VIDEO_CODEC_ERROR;
timestamp_ += duration;
// Examines frame timestamps only.
return GetEncodedPartitions(tl_configs, frame);
}
void VP8EncoderImpl::PopulateCodecSpecific(
CodecSpecificInfo* codec_specific,
const TemporalLayers::FrameConfig& tl_config,
const vpx_codec_cx_pkt_t& pkt,
int stream_idx,
uint32_t timestamp) {
assert(codec_specific != NULL);
codec_specific->codecType = kVideoCodecVP8;
codec_specific->codec_name = ImplementationName();
CodecSpecificInfoVP8* vp8Info = &(codec_specific->codecSpecific.VP8);
vp8Info->pictureId = picture_id_[stream_idx];
vp8Info->simulcastIdx = stream_idx;
vp8Info->keyIdx = kNoKeyIdx; // TODO(hlundin) populate this
vp8Info->nonReference = (pkt.data.frame.flags & VPX_FRAME_IS_DROPPABLE) != 0;
temporal_layers_[stream_idx]->PopulateCodecSpecific(
(pkt.data.frame.flags & VPX_FRAME_IS_KEY) != 0, tl_config, vp8Info,
timestamp);
// Prepare next.
picture_id_[stream_idx] = (picture_id_[stream_idx] + 1) & 0x7FFF;
}
int VP8EncoderImpl::GetEncodedPartitions(
const TemporalLayers::FrameConfig tl_configs[],
const VideoFrame& input_image) {
int bw_resolutions_disabled =
(encoders_.size() > 1) ? NumStreamsDisabled(send_stream_) : -1;
int stream_idx = static_cast<int>(encoders_.size()) - 1;
int result = WEBRTC_VIDEO_CODEC_OK;
for (size_t encoder_idx = 0; encoder_idx < encoders_.size();
++encoder_idx, --stream_idx) {
vpx_codec_iter_t iter = NULL;
int part_idx = 0;
encoded_images_[encoder_idx]._length = 0;
encoded_images_[encoder_idx]._frameType = kVideoFrameDelta;
RTPFragmentationHeader frag_info;
// kTokenPartitions is number of bits used.
frag_info.VerifyAndAllocateFragmentationHeader((1 << kTokenPartitions) + 1);
CodecSpecificInfo codec_specific;
const vpx_codec_cx_pkt_t* pkt = NULL;
while ((pkt = vpx_codec_get_cx_data(&encoders_[encoder_idx], &iter)) !=
NULL) {
switch (pkt->kind) {
case VPX_CODEC_CX_FRAME_PKT: {
size_t length = encoded_images_[encoder_idx]._length;
if (pkt->data.frame.sz + length >
encoded_images_[encoder_idx]._size) {
uint8_t* buffer = new uint8_t[pkt->data.frame.sz + length];
memcpy(buffer, encoded_images_[encoder_idx]._buffer, length);
delete[] encoded_images_[encoder_idx]._buffer;
encoded_images_[encoder_idx]._buffer = buffer;
encoded_images_[encoder_idx]._size = pkt->data.frame.sz + length;
}
memcpy(&encoded_images_[encoder_idx]._buffer[length],
pkt->data.frame.buf, pkt->data.frame.sz);
frag_info.fragmentationOffset[part_idx] = length;
frag_info.fragmentationLength[part_idx] = pkt->data.frame.sz;
frag_info.fragmentationPlType[part_idx] = 0; // not known here
frag_info.fragmentationTimeDiff[part_idx] = 0;
encoded_images_[encoder_idx]._length += pkt->data.frame.sz;
assert(length <= encoded_images_[encoder_idx]._size);
++part_idx;
break;
}
default:
break;
}
// End of frame
if ((pkt->data.frame.flags & VPX_FRAME_IS_FRAGMENT) == 0) {
// check if encoded frame is a key frame
if (pkt->data.frame.flags & VPX_FRAME_IS_KEY) {
encoded_images_[encoder_idx]._frameType = kVideoFrameKey;
}
PopulateCodecSpecific(&codec_specific, tl_configs[stream_idx], *pkt,
stream_idx, input_image.timestamp());
break;
}
}
encoded_images_[encoder_idx]._timeStamp = input_image.timestamp();
encoded_images_[encoder_idx].capture_time_ms_ =
input_image.render_time_ms();
encoded_images_[encoder_idx].rotation_ = input_image.rotation();
encoded_images_[encoder_idx].content_type_ =
(codec_.mode == kScreensharing) ? VideoContentType::SCREENSHARE
: VideoContentType::UNSPECIFIED;
encoded_images_[encoder_idx].timing_.is_timing_frame = false;
int qp = -1;
vpx_codec_control(&encoders_[encoder_idx], VP8E_GET_LAST_QUANTIZER_64, &qp);
temporal_layers_[stream_idx]->FrameEncoded(
encoded_images_[encoder_idx]._length, qp);
if (send_stream_[stream_idx]) {
if (encoded_images_[encoder_idx]._length > 0) {
TRACE_COUNTER_ID1("webrtc", "EncodedFrameSize", encoder_idx,
encoded_images_[encoder_idx]._length);
encoded_images_[encoder_idx]._encodedHeight =
codec_.simulcastStream[stream_idx].height;
encoded_images_[encoder_idx]._encodedWidth =
codec_.simulcastStream[stream_idx].width;
// Report once per frame (lowest stream always sent).
encoded_images_[encoder_idx].adapt_reason_.bw_resolutions_disabled =
(stream_idx == 0) ? bw_resolutions_disabled : -1;
int qp_128 = -1;
vpx_codec_control(&encoders_[encoder_idx], VP8E_GET_LAST_QUANTIZER,
&qp_128);
encoded_images_[encoder_idx].qp_ = qp_128;
encoded_complete_callback_->OnEncodedImage(encoded_images_[encoder_idx],
&codec_specific, &frag_info);
} else if (codec_.mode == kScreensharing) {
result = WEBRTC_VIDEO_CODEC_TARGET_BITRATE_OVERSHOOT;
}
}
}
return result;
}
VideoEncoder::ScalingSettings VP8EncoderImpl::GetScalingSettings() const {
const bool enable_scaling = encoders_.size() == 1 &&
configurations_[0].rc_dropframe_thresh > 0 &&
codec_.VP8().automaticResizeOn;
return VideoEncoder::ScalingSettings(enable_scaling);
}
int VP8EncoderImpl::SetChannelParameters(uint32_t packetLoss, int64_t rtt) {
return WEBRTC_VIDEO_CODEC_OK;
}
int VP8EncoderImpl::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
encoded_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
VP8DecoderImpl::VP8DecoderImpl()
: use_postproc_arm_(webrtc::field_trial::FindFullName(
kVp8PostProcArmFieldTrial) == "Enabled"),
buffer_pool_(false, 300 /* max_number_of_buffers*/),
decode_complete_callback_(NULL),
inited_(false),
decoder_(NULL),
propagation_cnt_(-1),
last_frame_width_(0),
last_frame_height_(0),
key_frame_required_(true) {}
VP8DecoderImpl::~VP8DecoderImpl() {
inited_ = true; // in order to do the actual release
Release();
}
int VP8DecoderImpl::InitDecode(const VideoCodec* inst, int number_of_cores) {
int ret_val = Release();
if (ret_val < 0) {
return ret_val;
}
if (decoder_ == NULL) {
decoder_ = new vpx_codec_ctx_t;
memset(decoder_, 0, sizeof(*decoder_));
}
vpx_codec_dec_cfg_t cfg;
// Setting number of threads to a constant value (1)
cfg.threads = 1;
cfg.h = cfg.w = 0; // set after decode
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || defined(ANDROID)
vpx_codec_flags_t flags = use_postproc_arm_ ? VPX_CODEC_USE_POSTPROC : 0;
#else
vpx_codec_flags_t flags = VPX_CODEC_USE_POSTPROC;
#endif
if (vpx_codec_dec_init(decoder_, vpx_codec_vp8_dx(), &cfg, flags)) {
delete decoder_;
decoder_ = nullptr;
return WEBRTC_VIDEO_CODEC_MEMORY;
}
propagation_cnt_ = -1;
inited_ = true;
// Always start with a complete key frame.
key_frame_required_ = true;
return WEBRTC_VIDEO_CODEC_OK;
}
int VP8DecoderImpl::Decode(const EncodedImage& input_image,
bool missing_frames,
const RTPFragmentationHeader* fragmentation,
const CodecSpecificInfo* codec_specific_info,
int64_t /*render_time_ms*/) {
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (decode_complete_callback_ == NULL) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (input_image._buffer == NULL && input_image._length > 0) {
// Reset to avoid requesting key frames too often.
if (propagation_cnt_ > 0)
propagation_cnt_ = 0;
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Post process configurations.
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || defined(ANDROID)
if (use_postproc_arm_) {
vp8_postproc_cfg_t ppcfg;
ppcfg.post_proc_flag = VP8_MFQE;
// For low resolutions, use stronger deblocking filter and enable the
// deblock and demacroblocker.
int last_width_x_height = last_frame_width_ * last_frame_height_;
if (last_width_x_height > 0 && last_width_x_height <= 320 * 240) {
ppcfg.deblocking_level = 6; // Only affects VP8_DEMACROBLOCK.
ppcfg.post_proc_flag |= VP8_DEBLOCK | VP8_DEMACROBLOCK;
}
vpx_codec_control(decoder_, VP8_SET_POSTPROC, &ppcfg);
}
#else
vp8_postproc_cfg_t ppcfg;
// MFQE enabled to reduce key frame popping.
ppcfg.post_proc_flag = VP8_MFQE | VP8_DEBLOCK;
// For VGA resolutions and lower, enable the demacroblocker postproc.
if (last_frame_width_ * last_frame_height_ <= 640 * 360) {
ppcfg.post_proc_flag |= VP8_DEMACROBLOCK;
}
// Strength of deblocking filter. Valid range:[0,16]
ppcfg.deblocking_level = 3;
vpx_codec_control(decoder_, VP8_SET_POSTPROC, &ppcfg);
#endif
// Always start with a complete key frame.
if (key_frame_required_) {
if (input_image._frameType != kVideoFrameKey)
return WEBRTC_VIDEO_CODEC_ERROR;
// We have a key frame - is it complete?
if (input_image._completeFrame) {
key_frame_required_ = false;
} else {
return WEBRTC_VIDEO_CODEC_ERROR;
}
}
// Restrict error propagation using key frame requests.
// Reset on a key frame refresh.
if (input_image._frameType == kVideoFrameKey && input_image._completeFrame) {
propagation_cnt_ = -1;
// Start count on first loss.
} else if ((!input_image._completeFrame || missing_frames) &&
propagation_cnt_ == -1) {
propagation_cnt_ = 0;
}
if (propagation_cnt_ >= 0) {
propagation_cnt_++;
}
vpx_codec_iter_t iter = NULL;
vpx_image_t* img;
int ret;
// Check for missing frames.
if (missing_frames) {
// Call decoder with zero data length to signal missing frames.
if (vpx_codec_decode(decoder_, NULL, 0, 0, VPX_DL_REALTIME)) {
// Reset to avoid requesting key frames too often.
if (propagation_cnt_ > 0)
propagation_cnt_ = 0;
return WEBRTC_VIDEO_CODEC_ERROR;
}
img = vpx_codec_get_frame(decoder_, &iter);
iter = NULL;
}
uint8_t* buffer = input_image._buffer;
if (input_image._length == 0) {
buffer = NULL; // Triggers full frame concealment.
}
if (vpx_codec_decode(decoder_, buffer, input_image._length, 0,
VPX_DL_REALTIME)) {
// Reset to avoid requesting key frames too often.
if (propagation_cnt_ > 0) {
propagation_cnt_ = 0;
}
return WEBRTC_VIDEO_CODEC_ERROR;
}
img = vpx_codec_get_frame(decoder_, &iter);
int qp;
vpx_codec_err_t vpx_ret =
vpx_codec_control(decoder_, VPXD_GET_LAST_QUANTIZER, &qp);
RTC_DCHECK_EQ(vpx_ret, VPX_CODEC_OK);
ret = ReturnFrame(img, input_image._timeStamp, input_image.ntp_time_ms_, qp);
if (ret != 0) {
// Reset to avoid requesting key frames too often.
if (ret < 0 && propagation_cnt_ > 0)
propagation_cnt_ = 0;
return ret;
}
// Check Vs. threshold
if (propagation_cnt_ > kVp8ErrorPropagationTh) {
// Reset to avoid requesting key frames too often.
propagation_cnt_ = 0;
return WEBRTC_VIDEO_CODEC_ERROR;
}
return WEBRTC_VIDEO_CODEC_OK;
}
int VP8DecoderImpl::ReturnFrame(const vpx_image_t* img,
uint32_t timestamp,
int64_t ntp_time_ms,
int qp) {
if (img == NULL) {
// Decoder OK and NULL image => No show frame
return WEBRTC_VIDEO_CODEC_NO_OUTPUT;
}
last_frame_width_ = img->d_w;
last_frame_height_ = img->d_h;
// Allocate memory for decoded image.
rtc::scoped_refptr<I420Buffer> buffer =
buffer_pool_.CreateBuffer(img->d_w, img->d_h);
if (!buffer.get()) {
// Pool has too many pending frames.
RTC_HISTOGRAM_BOOLEAN("WebRTC.Video.VP8DecoderImpl.TooManyPendingFrames",
1);
return WEBRTC_VIDEO_CODEC_NO_OUTPUT;
}
libyuv::I420Copy(img->planes[VPX_PLANE_Y], img->stride[VPX_PLANE_Y],
img->planes[VPX_PLANE_U], img->stride[VPX_PLANE_U],
img->planes[VPX_PLANE_V], img->stride[VPX_PLANE_V],
buffer->MutableDataY(), buffer->StrideY(),
buffer->MutableDataU(), buffer->StrideU(),
buffer->MutableDataV(), buffer->StrideV(),
img->d_w, img->d_h);
VideoFrame decoded_image(buffer, timestamp, 0, kVideoRotation_0);
decoded_image.set_ntp_time_ms(ntp_time_ms);
decode_complete_callback_->Decoded(decoded_image, rtc::Optional<int32_t>(),
rtc::Optional<uint8_t>(qp));
return WEBRTC_VIDEO_CODEC_OK;
}
int VP8DecoderImpl::RegisterDecodeCompleteCallback(
DecodedImageCallback* callback) {
decode_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
int VP8DecoderImpl::Release() {
if (decoder_ != NULL) {
if (vpx_codec_destroy(decoder_)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
delete decoder_;
decoder_ = NULL;
}
buffer_pool_.Release();
inited_ = false;
return WEBRTC_VIDEO_CODEC_OK;
}
const char* VP8DecoderImpl::ImplementationName() const {
return "libvpx";
}
} // namespace webrtc