blob: 1114e7cc0a42af0d2db66ce5f6cf07ac6419d031 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/frame_buffer2.h"
#include <algorithm>
#include <cstring>
#include <queue>
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/trace_event.h"
#include "webrtc/modules/video_coding/include/video_coding_defines.h"
#include "webrtc/modules/video_coding/jitter_estimator.h"
#include "webrtc/modules/video_coding/timing.h"
#include "webrtc/system_wrappers/include/clock.h"
#include "webrtc/system_wrappers/include/metrics.h"
namespace webrtc {
namespace video_coding {
namespace {
// Max number of frames the buffer will hold.
constexpr int kMaxFramesBuffered = 600;
// Max number of decoded frame info that will be saved.
constexpr int kMaxFramesHistory = 50;
} // namespace
FrameBuffer::FrameBuffer(Clock* clock,
VCMJitterEstimator* jitter_estimator,
VCMTiming* timing,
VCMReceiveStatisticsCallback* stats_callback)
: clock_(clock),
new_continuous_frame_event_(false, false),
jitter_estimator_(jitter_estimator),
timing_(timing),
inter_frame_delay_(clock_->TimeInMilliseconds()),
last_decoded_frame_timestamp_(0),
last_decoded_frame_it_(frames_.end()),
last_continuous_frame_it_(frames_.end()),
num_frames_history_(0),
num_frames_buffered_(0),
stopped_(false),
protection_mode_(kProtectionNack),
stats_callback_(stats_callback) {}
FrameBuffer::~FrameBuffer() {}
FrameBuffer::ReturnReason FrameBuffer::NextFrame(
int64_t max_wait_time_ms,
std::unique_ptr<FrameObject>* frame_out) {
TRACE_EVENT0("webrtc", "FrameBuffer::NextFrame");
int64_t latest_return_time_ms =
clock_->TimeInMilliseconds() + max_wait_time_ms;
int64_t wait_ms = max_wait_time_ms;
int64_t now_ms = 0;
do {
now_ms = clock_->TimeInMilliseconds();
{
rtc::CritScope lock(&crit_);
new_continuous_frame_event_.Reset();
if (stopped_)
return kStopped;
wait_ms = max_wait_time_ms;
// Need to hold |crit_| in order to use |frames_|, therefore we
// set it here in the loop instead of outside the loop in order to not
// acquire the lock unnecesserily.
next_frame_it_ = frames_.end();
// |frame_it| points to the first frame after the
// |last_decoded_frame_it_|.
auto frame_it = frames_.end();
if (last_decoded_frame_it_ == frames_.end()) {
frame_it = frames_.begin();
} else {
frame_it = last_decoded_frame_it_;
++frame_it;
}
// |continuous_end_it| points to the first frame after the
// |last_continuous_frame_it_|.
auto continuous_end_it = last_continuous_frame_it_;
if (continuous_end_it != frames_.end())
++continuous_end_it;
for (; frame_it != continuous_end_it && frame_it != frames_.end();
++frame_it) {
if (!frame_it->second.continuous ||
frame_it->second.num_missing_decodable > 0) {
continue;
}
FrameObject* frame = frame_it->second.frame.get();
next_frame_it_ = frame_it;
if (frame->RenderTime() == -1)
frame->SetRenderTime(timing_->RenderTimeMs(frame->timestamp, now_ms));
wait_ms = timing_->MaxWaitingTime(frame->RenderTime(), now_ms);
// This will cause the frame buffer to prefer high framerate rather
// than high resolution in the case of the decoder not decoding fast
// enough and the stream has multiple spatial and temporal layers.
if (wait_ms == 0)
continue;
break;
}
} // rtc::Critscope lock(&crit_);
wait_ms = std::min<int64_t>(wait_ms, latest_return_time_ms - now_ms);
wait_ms = std::max<int64_t>(wait_ms, 0);
} while (new_continuous_frame_event_.Wait(wait_ms));
{
rtc::CritScope lock(&crit_);
now_ms = clock_->TimeInMilliseconds();
if (next_frame_it_ != frames_.end()) {
std::unique_ptr<FrameObject> frame =
std::move(next_frame_it_->second.frame);
if (!frame->delayed_by_retransmission()) {
int64_t frame_delay;
if (inter_frame_delay_.CalculateDelay(frame->timestamp, &frame_delay,
frame->ReceivedTime())) {
jitter_estimator_->UpdateEstimate(frame_delay, frame->size());
}
float rtt_mult = protection_mode_ == kProtectionNackFEC ? 0.0 : 1.0;
timing_->SetJitterDelay(jitter_estimator_->GetJitterEstimate(rtt_mult));
timing_->UpdateCurrentDelay(frame->RenderTime(), now_ms);
}
// Gracefully handle bad RTP timestamps and render time issues.
if (HasBadRenderTiming(*frame, now_ms)) {
jitter_estimator_->Reset();
timing_->Reset();
frame->SetRenderTime(timing_->RenderTimeMs(frame->timestamp, now_ms));
}
UpdateJitterDelay();
PropagateDecodability(next_frame_it_->second);
// Sanity check for RTP timestamp monotonicity.
if (last_decoded_frame_it_ != frames_.end()) {
const FrameKey& last_decoded_frame_key = last_decoded_frame_it_->first;
const FrameKey& frame_key = next_frame_it_->first;
const bool frame_is_higher_spatial_layer_of_last_decoded_frame =
last_decoded_frame_timestamp_ == frame->timestamp &&
last_decoded_frame_key.picture_id == frame_key.picture_id &&
last_decoded_frame_key.spatial_layer < frame_key.spatial_layer;
if (AheadOrAt(last_decoded_frame_timestamp_, frame->timestamp) &&
!frame_is_higher_spatial_layer_of_last_decoded_frame) {
// TODO(brandtr): Consider clearing the entire buffer when we hit
// these conditions.
LOG(LS_WARNING) << "Frame with (timestamp:picture_id:spatial_id) ("
<< frame->timestamp << ":" << frame->picture_id << ":"
<< static_cast<int>(frame->spatial_layer) << ")"
<< " sent to decoder after frame with"
<< " (timestamp:picture_id:spatial_id) ("
<< last_decoded_frame_timestamp_ << ":"
<< last_decoded_frame_key.picture_id << ":"
<< static_cast<int>(
last_decoded_frame_key.spatial_layer)
<< ").";
}
}
AdvanceLastDecodedFrame(next_frame_it_);
last_decoded_frame_timestamp_ = frame->timestamp;
*frame_out = std::move(frame);
return kFrameFound;
}
}
if (latest_return_time_ms - now_ms > 0) {
// If |next_frame_it_ == frames_.end()| and there is still time left, it
// means that the frame buffer was cleared as the thread in this function
// was waiting to acquire |crit_| in order to return. Wait for the
// remaining time and then return.
return NextFrame(latest_return_time_ms - now_ms, frame_out);
}
return kTimeout;
}
bool FrameBuffer::HasBadRenderTiming(const FrameObject& frame, int64_t now_ms) {
// Assume that render timing errors are due to changes in the video stream.
int64_t render_time_ms = frame.RenderTimeMs();
const int64_t kMaxVideoDelayMs = 10000;
if (render_time_ms < 0) {
return true;
}
if (std::abs(render_time_ms - now_ms) > kMaxVideoDelayMs) {
int frame_delay = static_cast<int>(std::abs(render_time_ms - now_ms));
LOG(LS_WARNING) << "A frame about to be decoded is out of the configured "
<< "delay bounds (" << frame_delay << " > "
<< kMaxVideoDelayMs
<< "). Resetting the video jitter buffer.";
return true;
}
if (static_cast<int>(timing_->TargetVideoDelay()) > kMaxVideoDelayMs) {
LOG(LS_WARNING) << "The video target delay has grown larger than "
<< kMaxVideoDelayMs << " ms.";
return true;
}
return false;
}
void FrameBuffer::SetProtectionMode(VCMVideoProtection mode) {
TRACE_EVENT0("webrtc", "FrameBuffer::SetProtectionMode");
rtc::CritScope lock(&crit_);
protection_mode_ = mode;
}
void FrameBuffer::Start() {
TRACE_EVENT0("webrtc", "FrameBuffer::Start");
rtc::CritScope lock(&crit_);
stopped_ = false;
}
void FrameBuffer::Stop() {
TRACE_EVENT0("webrtc", "FrameBuffer::Stop");
rtc::CritScope lock(&crit_);
stopped_ = true;
new_continuous_frame_event_.Set();
}
bool FrameBuffer::ValidReferences(const FrameObject& frame) const {
for (size_t i = 0; i < frame.num_references; ++i) {
if (AheadOrAt(frame.references[i], frame.picture_id))
return false;
for (size_t j = i + 1; j < frame.num_references; ++j) {
if (frame.references[i] == frame.references[j])
return false;
}
}
if (frame.inter_layer_predicted && frame.spatial_layer == 0)
return false;
return true;
}
void FrameBuffer::UpdatePlayoutDelays(const FrameObject& frame) {
TRACE_EVENT0("webrtc", "FrameBuffer::UpdatePlayoutDelays");
PlayoutDelay playout_delay = frame.EncodedImage().playout_delay_;
if (playout_delay.min_ms >= 0)
timing_->set_min_playout_delay(playout_delay.min_ms);
if (playout_delay.max_ms >= 0)
timing_->set_max_playout_delay(playout_delay.max_ms);
}
int FrameBuffer::InsertFrame(std::unique_ptr<FrameObject> frame) {
TRACE_EVENT0("webrtc", "FrameBuffer::InsertFrame");
RTC_DCHECK(frame);
if (stats_callback_)
stats_callback_->OnCompleteFrame(frame->num_references == 0, frame->size());
FrameKey key(frame->picture_id, frame->spatial_layer);
rtc::CritScope lock(&crit_);
int last_continuous_picture_id =
last_continuous_frame_it_ == frames_.end()
? -1
: last_continuous_frame_it_->first.picture_id;
if (!ValidReferences(*frame)) {
LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) (" << key.picture_id
<< ":" << static_cast<int>(key.spatial_layer)
<< ") has invalid frame references, dropping frame.";
return last_continuous_picture_id;
}
if (num_frames_buffered_ >= kMaxFramesBuffered) {
LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) (" << key.picture_id
<< ":" << static_cast<int>(key.spatial_layer)
<< ") could not be inserted due to the frame "
<< "buffer being full, dropping frame.";
return last_continuous_picture_id;
}
if (last_decoded_frame_it_ != frames_.end() &&
key <= last_decoded_frame_it_->first) {
if (AheadOf(frame->timestamp, last_decoded_frame_timestamp_) &&
frame->num_references == 0) {
// If this frame has a newer timestamp but an earlier picture id then we
// assume there has been a jump in the picture id due to some encoder
// reconfiguration or some other reason. Even though this is not according
// to spec we can still continue to decode from this frame if it is a
// keyframe.
LOG(LS_WARNING) << "A jump in picture id was detected, clearing buffer.";
ClearFramesAndHistory();
last_continuous_picture_id = -1;
} else {
LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
<< key.picture_id << ":"
<< static_cast<int>(key.spatial_layer)
<< ") inserted after frame ("
<< last_decoded_frame_it_->first.picture_id << ":"
<< static_cast<int>(
last_decoded_frame_it_->first.spatial_layer)
<< ") was handed off for decoding, dropping frame.";
return last_continuous_picture_id;
}
}
// Test if inserting this frame would cause the order of the frames to become
// ambiguous (covering more than half the interval of 2^16). This can happen
// when the picture id make large jumps mid stream.
if (!frames_.empty() &&
key < frames_.begin()->first &&
frames_.rbegin()->first < key) {
LOG(LS_WARNING) << "A jump in picture id was detected, clearing buffer.";
ClearFramesAndHistory();
last_continuous_picture_id = -1;
}
auto info = frames_.insert(std::make_pair(key, FrameInfo())).first;
if (info->second.frame) {
LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) (" << key.picture_id
<< ":" << static_cast<int>(key.spatial_layer)
<< ") already inserted, dropping frame.";
return last_continuous_picture_id;
}
if (!UpdateFrameInfoWithIncomingFrame(*frame, info))
return last_continuous_picture_id;
UpdatePlayoutDelays(*frame);
info->second.frame = std::move(frame);
++num_frames_buffered_;
if (info->second.num_missing_continuous == 0) {
info->second.continuous = true;
PropagateContinuity(info);
last_continuous_picture_id = last_continuous_frame_it_->first.picture_id;
// Since we now have new continuous frames there might be a better frame
// to return from NextFrame. Signal that thread so that it again can choose
// which frame to return.
new_continuous_frame_event_.Set();
}
return last_continuous_picture_id;
}
void FrameBuffer::PropagateContinuity(FrameMap::iterator start) {
TRACE_EVENT0("webrtc", "FrameBuffer::PropagateContinuity");
RTC_DCHECK(start->second.continuous);
if (last_continuous_frame_it_ == frames_.end())
last_continuous_frame_it_ = start;
std::queue<FrameMap::iterator> continuous_frames;
continuous_frames.push(start);
// A simple BFS to traverse continuous frames.
while (!continuous_frames.empty()) {
auto frame = continuous_frames.front();
continuous_frames.pop();
if (last_continuous_frame_it_->first < frame->first)
last_continuous_frame_it_ = frame;
// Loop through all dependent frames, and if that frame no longer has
// any unfulfilled dependencies then that frame is continuous as well.
for (size_t d = 0; d < frame->second.num_dependent_frames; ++d) {
auto frame_ref = frames_.find(frame->second.dependent_frames[d]);
RTC_DCHECK(frame_ref != frames_.end());
// TODO(philipel): Look into why we've seen this happen.
if (frame_ref != frames_.end()) {
--frame_ref->second.num_missing_continuous;
if (frame_ref->second.num_missing_continuous == 0) {
frame_ref->second.continuous = true;
continuous_frames.push(frame_ref);
}
}
}
}
}
void FrameBuffer::PropagateDecodability(const FrameInfo& info) {
TRACE_EVENT0("webrtc", "FrameBuffer::PropagateDecodability");
RTC_CHECK(info.num_dependent_frames < FrameInfo::kMaxNumDependentFrames);
for (size_t d = 0; d < info.num_dependent_frames; ++d) {
auto ref_info = frames_.find(info.dependent_frames[d]);
RTC_DCHECK(ref_info != frames_.end());
// TODO(philipel): Look into why we've seen this happen.
if (ref_info != frames_.end()) {
RTC_DCHECK_GT(ref_info->second.num_missing_decodable, 0U);
--ref_info->second.num_missing_decodable;
}
}
}
void FrameBuffer::AdvanceLastDecodedFrame(FrameMap::iterator decoded) {
TRACE_EVENT0("webrtc", "FrameBuffer::AdvanceLastDecodedFrame");
if (last_decoded_frame_it_ == frames_.end()) {
last_decoded_frame_it_ = frames_.begin();
} else {
RTC_DCHECK(last_decoded_frame_it_->first < decoded->first);
++last_decoded_frame_it_;
}
--num_frames_buffered_;
++num_frames_history_;
// First, delete non-decoded frames from the history.
while (last_decoded_frame_it_ != decoded) {
if (last_decoded_frame_it_->second.frame)
--num_frames_buffered_;
last_decoded_frame_it_ = frames_.erase(last_decoded_frame_it_);
}
// Then remove old history if we have too much history saved.
if (num_frames_history_ > kMaxFramesHistory) {
frames_.erase(frames_.begin());
--num_frames_history_;
}
}
bool FrameBuffer::UpdateFrameInfoWithIncomingFrame(const FrameObject& frame,
FrameMap::iterator info) {
TRACE_EVENT0("webrtc", "FrameBuffer::UpdateFrameInfoWithIncomingFrame");
FrameKey key(frame.picture_id, frame.spatial_layer);
info->second.num_missing_continuous = frame.num_references;
info->second.num_missing_decodable = frame.num_references;
RTC_DCHECK(last_decoded_frame_it_ == frames_.end() ||
last_decoded_frame_it_->first < info->first);
// Check how many dependencies that have already been fulfilled.
for (size_t i = 0; i < frame.num_references; ++i) {
FrameKey ref_key(frame.references[i], frame.spatial_layer);
auto ref_info = frames_.find(ref_key);
// Does |frame| depend on a frame earlier than the last decoded frame?
if (last_decoded_frame_it_ != frames_.end() &&
ref_key <= last_decoded_frame_it_->first) {
if (ref_info == frames_.end()) {
LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
<< key.picture_id << ":"
<< static_cast<int>(key.spatial_layer)
<< " depends on a non-decoded frame more previous than "
<< "the last decoded frame, dropping frame.";
return false;
}
--info->second.num_missing_continuous;
--info->second.num_missing_decodable;
} else {
if (ref_info == frames_.end())
ref_info = frames_.insert(std::make_pair(ref_key, FrameInfo())).first;
if (ref_info->second.continuous)
--info->second.num_missing_continuous;
// Add backwards reference so |frame| can be updated when new
// frames are inserted or decoded.
ref_info->second.dependent_frames[ref_info->second.num_dependent_frames] =
key;
RTC_DCHECK_LT(ref_info->second.num_dependent_frames,
(FrameInfo::kMaxNumDependentFrames - 1));
// TODO(philipel): Look into why this could happen and handle
// appropriately.
if (ref_info->second.num_dependent_frames <
(FrameInfo::kMaxNumDependentFrames - 1)) {
++ref_info->second.num_dependent_frames;
}
}
RTC_DCHECK_LE(ref_info->second.num_missing_continuous,
ref_info->second.num_missing_decodable);
}
// Check if we have the lower spatial layer frame.
if (frame.inter_layer_predicted) {
++info->second.num_missing_continuous;
++info->second.num_missing_decodable;
FrameKey ref_key(frame.picture_id, frame.spatial_layer - 1);
// Gets or create the FrameInfo for the referenced frame.
auto ref_info = frames_.insert(std::make_pair(ref_key, FrameInfo())).first;
if (ref_info->second.continuous)
--info->second.num_missing_continuous;
if (ref_info == last_decoded_frame_it_) {
--info->second.num_missing_decodable;
} else {
ref_info->second.dependent_frames[ref_info->second.num_dependent_frames] =
key;
++ref_info->second.num_dependent_frames;
}
RTC_DCHECK_LE(ref_info->second.num_missing_continuous,
ref_info->second.num_missing_decodable);
}
RTC_DCHECK_LE(info->second.num_missing_continuous,
info->second.num_missing_decodable);
return true;
}
void FrameBuffer::UpdateJitterDelay() {
TRACE_EVENT0("webrtc", "FrameBuffer::UpdateJitterDelay");
if (!stats_callback_)
return;
int decode_ms;
int max_decode_ms;
int current_delay_ms;
int target_delay_ms;
int jitter_buffer_ms;
int min_playout_delay_ms;
int render_delay_ms;
if (timing_->GetTimings(&decode_ms, &max_decode_ms, &current_delay_ms,
&target_delay_ms, &jitter_buffer_ms,
&min_playout_delay_ms, &render_delay_ms)) {
stats_callback_->OnFrameBufferTimingsUpdated(
decode_ms, max_decode_ms, current_delay_ms, target_delay_ms,
jitter_buffer_ms, min_playout_delay_ms, render_delay_ms);
}
}
void FrameBuffer::ClearFramesAndHistory() {
TRACE_EVENT0("webrtc", "FrameBuffer::UpdateJitterDelay");
frames_.clear();
last_decoded_frame_it_ = frames_.end();
last_continuous_frame_it_ = frames_.end();
next_frame_it_ = frames_.end();
num_frames_history_ = 0;
num_frames_buffered_ = 0;
}
} // namespace video_coding
} // namespace webrtc