blob: a0e03fbeabc538fe696a372042fe3dda122f7175 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aec3/echo_remover.h"
#include <algorithm>
#include <memory>
#include <numeric>
#include <string>
#include "webrtc/base/array_view.h"
#include "webrtc/base/atomicops.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/modules/audio_processing/aec3/aec3_common.h"
#include "webrtc/modules/audio_processing/aec3/aec_state.h"
#include "webrtc/modules/audio_processing/aec3/comfort_noise_generator.h"
#include "webrtc/modules/audio_processing/aec3/echo_path_variability.h"
#include "webrtc/modules/audio_processing/aec3/echo_remover_metrics.h"
#include "webrtc/modules/audio_processing/aec3/fft_buffer.h"
#include "webrtc/modules/audio_processing/aec3/fft_data.h"
#include "webrtc/modules/audio_processing/aec3/output_selector.h"
#include "webrtc/modules/audio_processing/aec3/power_echo_model.h"
#include "webrtc/modules/audio_processing/aec3/render_delay_buffer.h"
#include "webrtc/modules/audio_processing/aec3/residual_echo_estimator.h"
#include "webrtc/modules/audio_processing/aec3/subtractor.h"
#include "webrtc/modules/audio_processing/aec3/suppression_filter.h"
#include "webrtc/modules/audio_processing/aec3/suppression_gain.h"
#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
namespace webrtc {
namespace {
void LinearEchoPower(const FftData& E,
const FftData& Y,
std::array<float, kFftLengthBy2Plus1>* S2) {
for (size_t k = 0; k < E.re.size(); ++k) {
(*S2)[k] = (Y.re[k] - E.re[k]) * (Y.re[k] - E.re[k]) +
(Y.im[k] - E.im[k]) * (Y.im[k] - E.im[k]);
}
}
float BlockPower(const std::array<float, kBlockSize> x) {
return std::accumulate(x.begin(), x.end(), 0.f,
[](float a, float b) -> float { return a + b * b; });
}
// Class for removing the echo from the capture signal.
class EchoRemoverImpl final : public EchoRemover {
public:
explicit EchoRemoverImpl(int sample_rate_hz);
~EchoRemoverImpl() override;
// Removes the echo from a block of samples from the capture signal. The
// supplied render signal is assumed to be pre-aligned with the capture
// signal.
void ProcessBlock(
const rtc::Optional<size_t>& external_echo_path_delay_estimate,
const EchoPathVariability& echo_path_variability,
bool capture_signal_saturation,
const std::vector<std::vector<float>>& render,
std::vector<std::vector<float>>* capture) override;
// Updates the status on whether echo leakage is detected in the output of the
// echo remover.
void UpdateEchoLeakageStatus(bool leakage_detected) override {
echo_leakage_detected_ = leakage_detected;
}
private:
static int instance_count_;
const Aec3Fft fft_;
std::unique_ptr<ApmDataDumper> data_dumper_;
const Aec3Optimization optimization_;
const int sample_rate_hz_;
Subtractor subtractor_;
SuppressionGain suppression_gain_;
ComfortNoiseGenerator cng_;
SuppressionFilter suppression_filter_;
PowerEchoModel power_echo_model_;
FftBuffer X_buffer_;
RenderSignalAnalyzer render_signal_analyzer_;
OutputSelector output_selector_;
ResidualEchoEstimator residual_echo_estimator_;
bool echo_leakage_detected_ = false;
std::array<float, kBlockSize> x_old_;
AecState aec_state_;
EchoRemoverMetrics metrics_;
RTC_DISALLOW_COPY_AND_ASSIGN(EchoRemoverImpl);
};
int EchoRemoverImpl::instance_count_ = 0;
EchoRemoverImpl::EchoRemoverImpl(int sample_rate_hz)
: fft_(),
data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
optimization_(DetectOptimization()),
sample_rate_hz_(sample_rate_hz),
subtractor_(data_dumper_.get(), optimization_),
suppression_gain_(optimization_),
cng_(optimization_),
suppression_filter_(sample_rate_hz_),
X_buffer_(optimization_,
std::max(subtractor_.MinFarendBufferLength(),
power_echo_model_.MinFarendBufferLength()),
subtractor_.NumBlocksInRenderSums()) {
RTC_DCHECK(ValidFullBandRate(sample_rate_hz));
x_old_.fill(0.f);
}
EchoRemoverImpl::~EchoRemoverImpl() = default;
void EchoRemoverImpl::ProcessBlock(
const rtc::Optional<size_t>& echo_path_delay_samples,
const EchoPathVariability& echo_path_variability,
bool capture_signal_saturation,
const std::vector<std::vector<float>>& render,
std::vector<std::vector<float>>* capture) {
const std::vector<std::vector<float>>& x = render;
std::vector<std::vector<float>>* y = capture;
RTC_DCHECK(y);
RTC_DCHECK_EQ(x.size(), NumBandsForRate(sample_rate_hz_));
RTC_DCHECK_EQ(y->size(), NumBandsForRate(sample_rate_hz_));
RTC_DCHECK_EQ(x[0].size(), kBlockSize);
RTC_DCHECK_EQ((*y)[0].size(), kBlockSize);
const std::vector<float>& x0 = x[0];
std::vector<float>& y0 = (*y)[0];
data_dumper_->DumpWav("aec3_processblock_capture_input", kBlockSize, &y0[0],
LowestBandRate(sample_rate_hz_), 1);
data_dumper_->DumpWav("aec3_processblock_render_input", kBlockSize, &x0[0],
LowestBandRate(sample_rate_hz_), 1);
aec_state_.UpdateCaptureSaturation(capture_signal_saturation);
if (echo_path_variability.AudioPathChanged()) {
subtractor_.HandleEchoPathChange(echo_path_variability);
power_echo_model_.HandleEchoPathChange(echo_path_variability);
residual_echo_estimator_.HandleEchoPathChange(echo_path_variability);
}
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kFftLengthBy2Plus1> S2_power;
std::array<float, kFftLengthBy2Plus1> R2;
std::array<float, kFftLengthBy2Plus1> S2_linear;
std::array<float, kFftLengthBy2Plus1> G;
FftData X;
FftData Y;
FftData comfort_noise;
FftData high_band_comfort_noise;
SubtractorOutput subtractor_output;
FftData& E_main = subtractor_output.E_main;
auto& E2_main = subtractor_output.E2_main;
auto& E2_shadow = subtractor_output.E2_shadow;
auto& e_main = subtractor_output.e_main;
auto& e_shadow = subtractor_output.e_shadow;
// Update the render signal buffer.
fft_.PaddedFft(x0, x_old_, &X);
X_buffer_.Insert(X);
// Analyze the render signal.
render_signal_analyzer_.Update(X_buffer_, aec_state_.FilterDelay());
// Perform linear echo cancellation.
subtractor_.Process(X_buffer_, y0, render_signal_analyzer_,
aec_state_.SaturatedCapture(), &subtractor_output);
// Compute spectra.
fft_.ZeroPaddedFft(y0, &Y);
LinearEchoPower(E_main, Y, &S2_linear);
Y.Spectrum(optimization_, &Y2);
// Update the AEC state information.
aec_state_.Update(subtractor_.FilterFrequencyResponse(),
echo_path_delay_samples, X_buffer_, E2_main, E2_shadow, Y2,
x0, echo_path_variability, echo_leakage_detected_);
// Use the power model to estimate the echo.
power_echo_model_.EstimateEcho(X_buffer_, Y2, aec_state_, &S2_power);
// Choose the linear output.
output_selector_.FormLinearOutput(e_main, y0);
data_dumper_->DumpWav("aec3_output_linear", kBlockSize, &y0[0],
LowestBandRate(sample_rate_hz_), 1);
const auto& E2 = output_selector_.UseSubtractorOutput() ? E2_main : Y2;
// Estimate the residual echo power.
residual_echo_estimator_.Estimate(
output_selector_.UseSubtractorOutput(), aec_state_, X_buffer_,
subtractor_.FilterFrequencyResponse(), E2_main, E2_shadow, S2_linear,
S2_power, Y2, &R2);
// Estimate the comfort noise.
cng_.Compute(aec_state_, Y2, &comfort_noise, &high_band_comfort_noise);
// Detect basic doubletalk.
const bool doubletalk = BlockPower(e_shadow) < BlockPower(e_main);
// A choose and apply echo suppression gain.
suppression_gain_.GetGain(E2, R2, cng_.NoiseSpectrum(),
doubletalk ? 0.001f : 0.0001f, &G);
suppression_filter_.ApplyGain(comfort_noise, high_band_comfort_noise, G, y);
// Update the metrics.
metrics_.Update(aec_state_, cng_.NoiseSpectrum(), G);
// Debug outputs for the purpose of development and analysis.
data_dumper_->DumpRaw("aec3_N2", cng_.NoiseSpectrum());
data_dumper_->DumpRaw("aec3_suppressor_gain", G);
data_dumper_->DumpWav("aec3_output",
rtc::ArrayView<const float>(&y0[0], kBlockSize),
LowestBandRate(sample_rate_hz_), 1);
data_dumper_->DumpRaw("aec3_using_subtractor_output",
output_selector_.UseSubtractorOutput() ? 1 : 0);
data_dumper_->DumpRaw("aec3_doubletalk", doubletalk ? 1 : 0);
data_dumper_->DumpRaw("aec3_E2", E2);
data_dumper_->DumpRaw("aec3_E2_main", E2_main);
data_dumper_->DumpRaw("aec3_E2_shadow", E2_shadow);
data_dumper_->DumpRaw("aec3_S2_linear", S2_linear);
data_dumper_->DumpRaw("aec3_S2_power", S2_power);
data_dumper_->DumpRaw("aec3_Y2", Y2);
data_dumper_->DumpRaw("aec3_R2", R2);
data_dumper_->DumpRaw("aec3_erle", aec_state_.Erle());
data_dumper_->DumpRaw("aec3_erl", aec_state_.Erl());
data_dumper_->DumpRaw("aec3_reliable_filter_bands",
aec_state_.BandsWithReliableFilter());
data_dumper_->DumpRaw("aec3_active_render", aec_state_.ActiveRender());
data_dumper_->DumpRaw("aec3_model_based_aec_feasible",
aec_state_.ModelBasedAecFeasible());
data_dumper_->DumpRaw("aec3_usable_linear_estimate",
aec_state_.UsableLinearEstimate());
data_dumper_->DumpRaw(
"aec3_filter_delay",
aec_state_.FilterDelay() ? *aec_state_.FilterDelay() : -1);
data_dumper_->DumpRaw(
"aec3_external_delay",
aec_state_.ExternalDelay() ? *aec_state_.ExternalDelay() : -1);
data_dumper_->DumpRaw("aec3_capture_saturation",
aec_state_.SaturatedCapture() ? 1 : 0);
}
} // namespace
EchoRemover* EchoRemover::Create(int sample_rate_hz) {
return new EchoRemoverImpl(sample_rate_hz);
}
} // namespace webrtc