|  | /* | 
|  | *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "webrtc/modules/audio_processing/vad/voice_activity_detector.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <vector> | 
|  |  | 
|  | #include "testing/gtest/include/gtest/gtest.h" | 
|  | #include "webrtc/test/testsupport/fileutils.h" | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace { | 
|  |  | 
|  | const int kStartTimeSec = 16; | 
|  | const float kMeanSpeechProbability = 0.3f; | 
|  | const float kMaxNoiseProbability = 0.1f; | 
|  | const size_t kNumChunks = 300u; | 
|  | const size_t kNumChunksPerIsacBlock = 3; | 
|  |  | 
|  | void GenerateNoise(std::vector<int16_t>* data) { | 
|  | for (size_t i = 0; i < data->size(); ++i) { | 
|  | // std::rand returns between 0 and RAND_MAX, but this will work because it | 
|  | // wraps into some random place. | 
|  | (*data)[i] = std::rand(); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | TEST(VoiceActivityDetectorTest, ConstructorSetsDefaultValues) { | 
|  | const float kDefaultVoiceValue = 1.f; | 
|  |  | 
|  | VoiceActivityDetector vad; | 
|  |  | 
|  | std::vector<double> p = vad.chunkwise_voice_probabilities(); | 
|  | std::vector<double> rms = vad.chunkwise_rms(); | 
|  |  | 
|  | EXPECT_EQ(p.size(), 0u); | 
|  | EXPECT_EQ(rms.size(), 0u); | 
|  |  | 
|  | EXPECT_FLOAT_EQ(vad.last_voice_probability(), kDefaultVoiceValue); | 
|  | } | 
|  |  | 
|  | TEST(VoiceActivityDetectorTest, Speech16kHzHasHighVoiceProbabilities) { | 
|  | const int kSampleRateHz = 16000; | 
|  | const int kLength10Ms = kSampleRateHz / 100; | 
|  |  | 
|  | VoiceActivityDetector vad; | 
|  |  | 
|  | std::vector<int16_t> data(kLength10Ms); | 
|  | float mean_probability = 0.f; | 
|  |  | 
|  | FILE* pcm_file = | 
|  | fopen(test::ResourcePath("audio_processing/transient/audio16kHz", "pcm") | 
|  | .c_str(), | 
|  | "rb"); | 
|  | ASSERT_TRUE(pcm_file != nullptr); | 
|  | // The silences in the file are skipped to get a more robust voice probability | 
|  | // for speech. | 
|  | ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]), | 
|  | SEEK_SET), | 
|  | 0); | 
|  |  | 
|  | size_t num_chunks = 0; | 
|  | while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) == | 
|  | data.size()) { | 
|  | vad.ProcessChunk(&data[0], data.size(), kSampleRateHz); | 
|  |  | 
|  | mean_probability += vad.last_voice_probability(); | 
|  |  | 
|  | ++num_chunks; | 
|  | } | 
|  |  | 
|  | mean_probability /= num_chunks; | 
|  |  | 
|  | EXPECT_GT(mean_probability, kMeanSpeechProbability); | 
|  | } | 
|  |  | 
|  | TEST(VoiceActivityDetectorTest, Speech32kHzHasHighVoiceProbabilities) { | 
|  | const int kSampleRateHz = 32000; | 
|  | const int kLength10Ms = kSampleRateHz / 100; | 
|  |  | 
|  | VoiceActivityDetector vad; | 
|  |  | 
|  | std::vector<int16_t> data(kLength10Ms); | 
|  | float mean_probability = 0.f; | 
|  |  | 
|  | FILE* pcm_file = | 
|  | fopen(test::ResourcePath("audio_processing/transient/audio32kHz", "pcm") | 
|  | .c_str(), | 
|  | "rb"); | 
|  | ASSERT_TRUE(pcm_file != nullptr); | 
|  | // The silences in the file are skipped to get a more robust voice probability | 
|  | // for speech. | 
|  | ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]), | 
|  | SEEK_SET), | 
|  | 0); | 
|  |  | 
|  | size_t num_chunks = 0; | 
|  | while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) == | 
|  | data.size()) { | 
|  | vad.ProcessChunk(&data[0], data.size(), kSampleRateHz); | 
|  |  | 
|  | mean_probability += vad.last_voice_probability(); | 
|  |  | 
|  | ++num_chunks; | 
|  | } | 
|  |  | 
|  | mean_probability /= num_chunks; | 
|  |  | 
|  | EXPECT_GT(mean_probability, kMeanSpeechProbability); | 
|  | } | 
|  |  | 
|  | TEST(VoiceActivityDetectorTest, Noise16kHzHasLowVoiceProbabilities) { | 
|  | VoiceActivityDetector vad; | 
|  |  | 
|  | std::vector<int16_t> data(kLength10Ms); | 
|  | float max_probability = 0.f; | 
|  |  | 
|  | std::srand(42); | 
|  |  | 
|  | for (size_t i = 0; i < kNumChunks; ++i) { | 
|  | GenerateNoise(&data); | 
|  |  | 
|  | vad.ProcessChunk(&data[0], data.size(), kSampleRateHz); | 
|  |  | 
|  | // Before the |vad has enough data to process an ISAC block it will return | 
|  | // the default value, 1.f, which would ruin the |max_probability| value. | 
|  | if (i > kNumChunksPerIsacBlock) { | 
|  | max_probability = std::max(max_probability, vad.last_voice_probability()); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPECT_LT(max_probability, kMaxNoiseProbability); | 
|  | } | 
|  |  | 
|  | TEST(VoiceActivityDetectorTest, Noise32kHzHasLowVoiceProbabilities) { | 
|  | VoiceActivityDetector vad; | 
|  |  | 
|  | std::vector<int16_t> data(2 * kLength10Ms); | 
|  | float max_probability = 0.f; | 
|  |  | 
|  | std::srand(42); | 
|  |  | 
|  | for (size_t i = 0; i < kNumChunks; ++i) { | 
|  | GenerateNoise(&data); | 
|  |  | 
|  | vad.ProcessChunk(&data[0], data.size(), 2 * kSampleRateHz); | 
|  |  | 
|  | // Before the |vad has enough data to process an ISAC block it will return | 
|  | // the default value, 1.f, which would ruin the |max_probability| value. | 
|  | if (i > kNumChunksPerIsacBlock) { | 
|  | max_probability = std::max(max_probability, vad.last_voice_probability()); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPECT_LT(max_probability, kMaxNoiseProbability); | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |