blob: b495e3cf77ee05d6a8b7a54139fb4e257e76289e [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This is the implementation of the PacketBuffer class. It is mostly based on
// an STL list. The list is kept sorted at all times so that the next packet to
// decode is at the beginning of the list.
#include "webrtc/modules/audio_coding/neteq/packet_buffer.h"
#include <algorithm> // find_if()
#include "webrtc/api/audio_codecs/audio_decoder.h"
#include "webrtc/modules/audio_coding/neteq/decoder_database.h"
#include "webrtc/modules/audio_coding/neteq/tick_timer.h"
#include "webrtc/rtc_base/logging.h"
namespace webrtc {
namespace {
// Predicate used when inserting packets in the buffer list.
// Operator() returns true when |packet| goes before |new_packet|.
class NewTimestampIsLarger {
public:
explicit NewTimestampIsLarger(const Packet& new_packet)
: new_packet_(new_packet) {
}
bool operator()(const Packet& packet) {
return (new_packet_ >= packet);
}
private:
const Packet& new_packet_;
};
// Returns true if both payload types are known to the decoder database, and
// have the same sample rate.
bool EqualSampleRates(uint8_t pt1,
uint8_t pt2,
const DecoderDatabase& decoder_database) {
auto* di1 = decoder_database.GetDecoderInfo(pt1);
auto* di2 = decoder_database.GetDecoderInfo(pt2);
return di1 && di2 && di1->SampleRateHz() == di2->SampleRateHz();
}
} // namespace
PacketBuffer::PacketBuffer(size_t max_number_of_packets,
const TickTimer* tick_timer)
: max_number_of_packets_(max_number_of_packets), tick_timer_(tick_timer) {}
// Destructor. All packets in the buffer will be destroyed.
PacketBuffer::~PacketBuffer() {
Flush();
}
// Flush the buffer. All packets in the buffer will be destroyed.
void PacketBuffer::Flush() {
buffer_.clear();
}
bool PacketBuffer::Empty() const {
return buffer_.empty();
}
int PacketBuffer::InsertPacket(Packet&& packet) {
if (packet.empty()) {
LOG(LS_WARNING) << "InsertPacket invalid packet";
return kInvalidPacket;
}
RTC_DCHECK_GE(packet.priority.codec_level, 0);
RTC_DCHECK_GE(packet.priority.red_level, 0);
int return_val = kOK;
packet.waiting_time = tick_timer_->GetNewStopwatch();
if (buffer_.size() >= max_number_of_packets_) {
// Buffer is full. Flush it.
Flush();
LOG(LS_WARNING) << "Packet buffer flushed";
return_val = kFlushed;
}
// Get an iterator pointing to the place in the buffer where the new packet
// should be inserted. The list is searched from the back, since the most
// likely case is that the new packet should be near the end of the list.
PacketList::reverse_iterator rit = std::find_if(
buffer_.rbegin(), buffer_.rend(),
NewTimestampIsLarger(packet));
// The new packet is to be inserted to the right of |rit|. If it has the same
// timestamp as |rit|, which has a higher priority, do not insert the new
// packet to list.
if (rit != buffer_.rend() && packet.timestamp == rit->timestamp) {
return return_val;
}
// The new packet is to be inserted to the left of |it|. If it has the same
// timestamp as |it|, which has a lower priority, replace |it| with the new
// packet.
PacketList::iterator it = rit.base();
if (it != buffer_.end() && packet.timestamp == it->timestamp) {
it = buffer_.erase(it);
}
buffer_.insert(it, std::move(packet)); // Insert the packet at that position.
return return_val;
}
int PacketBuffer::InsertPacketList(
PacketList* packet_list,
const DecoderDatabase& decoder_database,
rtc::Optional<uint8_t>* current_rtp_payload_type,
rtc::Optional<uint8_t>* current_cng_rtp_payload_type) {
bool flushed = false;
for (auto& packet : *packet_list) {
if (decoder_database.IsComfortNoise(packet.payload_type)) {
if (*current_cng_rtp_payload_type &&
**current_cng_rtp_payload_type != packet.payload_type) {
// New CNG payload type implies new codec type.
*current_rtp_payload_type = rtc::Optional<uint8_t>();
Flush();
flushed = true;
}
*current_cng_rtp_payload_type =
rtc::Optional<uint8_t>(packet.payload_type);
} else if (!decoder_database.IsDtmf(packet.payload_type)) {
// This must be speech.
if ((*current_rtp_payload_type &&
**current_rtp_payload_type != packet.payload_type) ||
(*current_cng_rtp_payload_type &&
!EqualSampleRates(packet.payload_type,
**current_cng_rtp_payload_type,
decoder_database))) {
*current_cng_rtp_payload_type = rtc::Optional<uint8_t>();
Flush();
flushed = true;
}
*current_rtp_payload_type = rtc::Optional<uint8_t>(packet.payload_type);
}
int return_val = InsertPacket(std::move(packet));
if (return_val == kFlushed) {
// The buffer flushed, but this is not an error. We can still continue.
flushed = true;
} else if (return_val != kOK) {
// An error occurred. Delete remaining packets in list and return.
packet_list->clear();
return return_val;
}
}
packet_list->clear();
return flushed ? kFlushed : kOK;
}
int PacketBuffer::NextTimestamp(uint32_t* next_timestamp) const {
if (Empty()) {
return kBufferEmpty;
}
if (!next_timestamp) {
return kInvalidPointer;
}
*next_timestamp = buffer_.front().timestamp;
return kOK;
}
int PacketBuffer::NextHigherTimestamp(uint32_t timestamp,
uint32_t* next_timestamp) const {
if (Empty()) {
return kBufferEmpty;
}
if (!next_timestamp) {
return kInvalidPointer;
}
PacketList::const_iterator it;
for (it = buffer_.begin(); it != buffer_.end(); ++it) {
if (it->timestamp >= timestamp) {
// Found a packet matching the search.
*next_timestamp = it->timestamp;
return kOK;
}
}
return kNotFound;
}
const Packet* PacketBuffer::PeekNextPacket() const {
return buffer_.empty() ? nullptr : &buffer_.front();
}
rtc::Optional<Packet> PacketBuffer::GetNextPacket() {
if (Empty()) {
// Buffer is empty.
return rtc::Optional<Packet>();
}
rtc::Optional<Packet> packet(std::move(buffer_.front()));
// Assert that the packet sanity checks in InsertPacket method works.
RTC_DCHECK(!packet->empty());
buffer_.pop_front();
return packet;
}
int PacketBuffer::DiscardNextPacket() {
if (Empty()) {
return kBufferEmpty;
}
// Assert that the packet sanity checks in InsertPacket method works.
RTC_DCHECK(!buffer_.front().empty());
buffer_.pop_front();
return kOK;
}
int PacketBuffer::DiscardOldPackets(uint32_t timestamp_limit,
uint32_t horizon_samples) {
while (!Empty() && timestamp_limit != buffer_.front().timestamp &&
IsObsoleteTimestamp(buffer_.front().timestamp, timestamp_limit,
horizon_samples)) {
if (DiscardNextPacket() != kOK) {
assert(false); // Must be ok by design.
}
}
return 0;
}
int PacketBuffer::DiscardAllOldPackets(uint32_t timestamp_limit) {
return DiscardOldPackets(timestamp_limit, 0);
}
void PacketBuffer::DiscardPacketsWithPayloadType(uint8_t payload_type) {
for (auto it = buffer_.begin(); it != buffer_.end(); /* */) {
const Packet& packet = *it;
if (packet.payload_type == payload_type) {
it = buffer_.erase(it);
} else {
++it;
}
}
}
size_t PacketBuffer::NumPacketsInBuffer() const {
return buffer_.size();
}
size_t PacketBuffer::NumSamplesInBuffer(size_t last_decoded_length) const {
size_t num_samples = 0;
size_t last_duration = last_decoded_length;
for (const Packet& packet : buffer_) {
if (packet.frame) {
// TODO(hlundin): Verify that it's fine to count all packets and remove
// this check.
if (packet.priority != Packet::Priority(0, 0)) {
continue;
}
size_t duration = packet.frame->Duration();
if (duration > 0) {
last_duration = duration; // Save the most up-to-date (valid) duration.
}
}
num_samples += last_duration;
}
return num_samples;
}
void PacketBuffer::BufferStat(int* num_packets, int* max_num_packets) const {
*num_packets = static_cast<int>(buffer_.size());
*max_num_packets = static_cast<int>(max_number_of_packets_);
}
} // namespace webrtc