blob: 69b55e52ca7fb82a7a297cb99652bb04a879e4c0 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_UNITTEST_H_
#define WEBRTC_MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_UNITTEST_H_
#include <algorithm>
#include <map>
#include <memory>
#include <vector>
#include "webrtc/api/video/i420_buffer.h"
#include "webrtc/api/video/video_frame.h"
#include "webrtc/common_video/include/video_frame.h"
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/modules/video_coding/codecs/vp8/include/vp8.h"
#include "webrtc/modules/video_coding/codecs/vp8/simulcast_rate_allocator.h"
#include "webrtc/modules/video_coding/codecs/vp8/temporal_layers.h"
#include "webrtc/modules/video_coding/include/mock/mock_video_codec_interface.h"
#include "webrtc/modules/video_coding/include/video_coding_defines.h"
#include "webrtc/rtc_base/checks.h"
#include "webrtc/test/gtest.h"
using ::testing::_;
using ::testing::AllOf;
using ::testing::Field;
using ::testing::Return;
namespace webrtc {
namespace testing {
const int kDefaultWidth = 1280;
const int kDefaultHeight = 720;
const int kNumberOfSimulcastStreams = 3;
const int kColorY = 66;
const int kColorU = 22;
const int kColorV = 33;
const int kMaxBitrates[kNumberOfSimulcastStreams] = {150, 600, 1200};
const int kMinBitrates[kNumberOfSimulcastStreams] = {50, 150, 600};
const int kTargetBitrates[kNumberOfSimulcastStreams] = {100, 450, 1000};
const int kDefaultTemporalLayerProfile[3] = {3, 3, 3};
template <typename T>
void SetExpectedValues3(T value0, T value1, T value2, T* expected_values) {
expected_values[0] = value0;
expected_values[1] = value1;
expected_values[2] = value2;
}
enum PlaneType {
kYPlane = 0,
kUPlane = 1,
kVPlane = 2,
kNumOfPlanes = 3,
};
class Vp8TestEncodedImageCallback : public EncodedImageCallback {
public:
Vp8TestEncodedImageCallback() : picture_id_(-1) {
memset(temporal_layer_, -1, sizeof(temporal_layer_));
memset(layer_sync_, false, sizeof(layer_sync_));
}
~Vp8TestEncodedImageCallback() {
delete[] encoded_key_frame_._buffer;
delete[] encoded_frame_._buffer;
}
virtual Result OnEncodedImage(const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) {
// Only store the base layer.
if (codec_specific_info->codecSpecific.VP8.simulcastIdx == 0) {
if (encoded_image._frameType == kVideoFrameKey) {
delete[] encoded_key_frame_._buffer;
encoded_key_frame_._buffer = new uint8_t[encoded_image._size];
encoded_key_frame_._size = encoded_image._size;
encoded_key_frame_._length = encoded_image._length;
encoded_key_frame_._frameType = kVideoFrameKey;
encoded_key_frame_._completeFrame = encoded_image._completeFrame;
memcpy(encoded_key_frame_._buffer, encoded_image._buffer,
encoded_image._length);
} else {
delete[] encoded_frame_._buffer;
encoded_frame_._buffer = new uint8_t[encoded_image._size];
encoded_frame_._size = encoded_image._size;
encoded_frame_._length = encoded_image._length;
memcpy(encoded_frame_._buffer, encoded_image._buffer,
encoded_image._length);
}
}
picture_id_ = codec_specific_info->codecSpecific.VP8.pictureId;
layer_sync_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
codec_specific_info->codecSpecific.VP8.layerSync;
temporal_layer_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
codec_specific_info->codecSpecific.VP8.temporalIdx;
return Result(Result::OK, encoded_image._timeStamp);
}
void GetLastEncodedFrameInfo(int* picture_id,
int* temporal_layer,
bool* layer_sync,
int stream) {
*picture_id = picture_id_;
*temporal_layer = temporal_layer_[stream];
*layer_sync = layer_sync_[stream];
}
void GetLastEncodedKeyFrame(EncodedImage* encoded_key_frame) {
*encoded_key_frame = encoded_key_frame_;
}
void GetLastEncodedFrame(EncodedImage* encoded_frame) {
*encoded_frame = encoded_frame_;
}
private:
EncodedImage encoded_key_frame_;
EncodedImage encoded_frame_;
int picture_id_;
int temporal_layer_[kNumberOfSimulcastStreams];
bool layer_sync_[kNumberOfSimulcastStreams];
};
class Vp8TestDecodedImageCallback : public DecodedImageCallback {
public:
Vp8TestDecodedImageCallback() : decoded_frames_(0) {}
int32_t Decoded(VideoFrame& decoded_image) override {
rtc::scoped_refptr<I420BufferInterface> i420_buffer =
decoded_image.video_frame_buffer()->ToI420();
for (int i = 0; i < decoded_image.width(); ++i) {
EXPECT_NEAR(kColorY, i420_buffer->DataY()[i], 1);
}
// TODO(mikhal): Verify the difference between U,V and the original.
for (int i = 0; i < i420_buffer->ChromaWidth(); ++i) {
EXPECT_NEAR(kColorU, i420_buffer->DataU()[i], 4);
EXPECT_NEAR(kColorV, i420_buffer->DataV()[i], 4);
}
decoded_frames_++;
return 0;
}
int32_t Decoded(VideoFrame& decoded_image, int64_t decode_time_ms) override {
RTC_NOTREACHED();
return -1;
}
void Decoded(VideoFrame& decoded_image,
rtc::Optional<int32_t> decode_time_ms,
rtc::Optional<uint8_t> qp) override {
Decoded(decoded_image);
}
int DecodedFrames() { return decoded_frames_; }
private:
int decoded_frames_;
};
class TestVp8Simulcast : public ::testing::Test {
public:
TestVp8Simulcast(VP8Encoder* encoder, VP8Decoder* decoder)
: encoder_(encoder), decoder_(decoder) {}
static void SetPlane(uint8_t* data,
uint8_t value,
int width,
int height,
int stride) {
for (int i = 0; i < height; i++, data += stride) {
// Setting allocated area to zero - setting only image size to
// requested values - will make it easier to distinguish between image
// size and frame size (accounting for stride).
memset(data, value, width);
memset(data + width, 0, stride - width);
}
}
// Fills in an I420Buffer from |plane_colors|.
static void CreateImage(const rtc::scoped_refptr<I420Buffer>& buffer,
int plane_colors[kNumOfPlanes]) {
SetPlane(buffer->MutableDataY(), plane_colors[0], buffer->width(),
buffer->height(), buffer->StrideY());
SetPlane(buffer->MutableDataU(), plane_colors[1], buffer->ChromaWidth(),
buffer->ChromaHeight(), buffer->StrideU());
SetPlane(buffer->MutableDataV(), plane_colors[2], buffer->ChromaWidth(),
buffer->ChromaHeight(), buffer->StrideV());
}
static void DefaultSettings(VideoCodec* settings,
const int* temporal_layer_profile) {
RTC_CHECK(settings);
memset(settings, 0, sizeof(VideoCodec));
strncpy(settings->plName, "VP8", 4);
settings->codecType = kVideoCodecVP8;
// 96 to 127 dynamic payload types for video codecs
settings->plType = 120;
settings->startBitrate = 300;
settings->minBitrate = 30;
settings->maxBitrate = 0;
settings->maxFramerate = 30;
settings->width = kDefaultWidth;
settings->height = kDefaultHeight;
settings->numberOfSimulcastStreams = kNumberOfSimulcastStreams;
ASSERT_EQ(3, kNumberOfSimulcastStreams);
settings->timing_frame_thresholds = {kDefaultTimingFramesDelayMs,
kDefaultOutlierFrameSizePercent};
ConfigureStream(kDefaultWidth / 4, kDefaultHeight / 4, kMaxBitrates[0],
kMinBitrates[0], kTargetBitrates[0],
&settings->simulcastStream[0], temporal_layer_profile[0]);
ConfigureStream(kDefaultWidth / 2, kDefaultHeight / 2, kMaxBitrates[1],
kMinBitrates[1], kTargetBitrates[1],
&settings->simulcastStream[1], temporal_layer_profile[1]);
ConfigureStream(kDefaultWidth, kDefaultHeight, kMaxBitrates[2],
kMinBitrates[2], kTargetBitrates[2],
&settings->simulcastStream[2], temporal_layer_profile[2]);
settings->VP8()->resilience = kResilientStream;
settings->VP8()->denoisingOn = true;
settings->VP8()->errorConcealmentOn = false;
settings->VP8()->automaticResizeOn = false;
settings->VP8()->frameDroppingOn = true;
settings->VP8()->keyFrameInterval = 3000;
}
static void ConfigureStream(int width,
int height,
int max_bitrate,
int min_bitrate,
int target_bitrate,
SimulcastStream* stream,
int num_temporal_layers) {
assert(stream);
stream->width = width;
stream->height = height;
stream->maxBitrate = max_bitrate;
stream->minBitrate = min_bitrate;
stream->targetBitrate = target_bitrate;
stream->numberOfTemporalLayers = num_temporal_layers;
stream->qpMax = 45;
}
protected:
void SetUp() override { SetUpCodec(kDefaultTemporalLayerProfile); }
void TearDown() override {
encoder_->Release();
decoder_->Release();
}
void SetUpCodec(const int* temporal_layer_profile) {
encoder_->RegisterEncodeCompleteCallback(&encoder_callback_);
decoder_->RegisterDecodeCompleteCallback(&decoder_callback_);
DefaultSettings(&settings_, temporal_layer_profile);
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
EXPECT_EQ(0, decoder_->InitDecode(&settings_, 1));
input_buffer_ = I420Buffer::Create(kDefaultWidth, kDefaultHeight);
input_buffer_->InitializeData();
input_frame_.reset(
new VideoFrame(input_buffer_, 0, 0, webrtc::kVideoRotation_0));
}
void SetUpRateAllocator() {
TemporalLayersFactory* tl_factory = new TemporalLayersFactory();
rate_allocator_.reset(new SimulcastRateAllocator(
settings_, std::unique_ptr<TemporalLayersFactory>(tl_factory)));
settings_.VP8()->tl_factory = tl_factory;
}
void SetRates(uint32_t bitrate_kbps, uint32_t fps) {
encoder_->SetRateAllocation(
rate_allocator_->GetAllocation(bitrate_kbps * 1000, fps), fps);
}
void ExpectStreams(FrameType frame_type, int expected_video_streams) {
ASSERT_GE(expected_video_streams, 0);
ASSERT_LE(expected_video_streams, kNumberOfSimulcastStreams);
if (expected_video_streams >= 1) {
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 4),
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 4)),
_, _))
.Times(1)
.WillRepeatedly(Return(EncodedImageCallback::Result(
EncodedImageCallback::Result::OK, 0)));
}
if (expected_video_streams >= 2) {
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 2),
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 2)),
_, _))
.Times(1)
.WillRepeatedly(Return(EncodedImageCallback::Result(
EncodedImageCallback::Result::OK, 0)));
}
if (expected_video_streams >= 3) {
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth),
Field(&EncodedImage::_encodedHeight, kDefaultHeight)),
_, _))
.Times(1)
.WillRepeatedly(Return(EncodedImageCallback::Result(
EncodedImageCallback::Result::OK, 0)));
}
}
void VerifyTemporalIdxAndSyncForAllSpatialLayers(
Vp8TestEncodedImageCallback* encoder_callback,
const int* expected_temporal_idx,
const bool* expected_layer_sync,
int num_spatial_layers) {
int picture_id = -1;
int temporal_layer = -1;
bool layer_sync = false;
for (int i = 0; i < num_spatial_layers; i++) {
encoder_callback->GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
&layer_sync, i);
EXPECT_EQ(expected_temporal_idx[i], temporal_layer);
EXPECT_EQ(expected_layer_sync[i], layer_sync);
}
}
// We currently expect all active streams to generate a key frame even though
// a key frame was only requested for some of them.
void TestKeyFrameRequestsOnAllStreams() {
SetRates(kMaxBitrates[2], 30); // To get all three streams.
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
frame_types[0] = kVideoFrameKey;
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
frame_types[1] = kVideoFrameKey;
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
frame_types[2] = kVideoFrameKey;
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
ExpectStreams(kVideoFrameDelta, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestPaddingAllStreams() {
// We should always encode the base layer.
SetRates(kMinBitrates[0] - 1, 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 1);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestPaddingTwoStreams() {
// We have just enough to get only the first stream and padding for two.
SetRates(kMinBitrates[0], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 1);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestPaddingTwoStreamsOneMaxedOut() {
// We are just below limit of sending second stream, so we should get
// the first stream maxed out (at |maxBitrate|), and padding for two.
SetRates(kTargetBitrates[0] + kMinBitrates[1] - 1, 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 1);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestPaddingOneStream() {
// We have just enough to send two streams, so padding for one stream.
SetRates(kTargetBitrates[0] + kMinBitrates[1], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 2);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestPaddingOneStreamTwoMaxedOut() {
// We are just below limit of sending third stream, so we should get
// first stream's rate maxed out at |targetBitrate|, second at |maxBitrate|.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] - 1, 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 2);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestSendAllStreams() {
// We have just enough to send all streams.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 3);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 3);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestDisablingStreams() {
// We should get three media streams.
SetRates(kMaxBitrates[0] + kMaxBitrates[1] + kMaxBitrates[2], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 3);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 3);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should only get two streams and padding for one.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] / 2, 30);
ExpectStreams(kVideoFrameDelta, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should only get the first stream and padding for two.
SetRates(kTargetBitrates[0] + kMinBitrates[1] / 2, 30);
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We don't have enough bitrate for the thumbnail stream, but we should get
// it anyway with current configuration.
SetRates(kTargetBitrates[0] - 1, 30);
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should only get two streams and padding for one.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] / 2, 30);
// We get a key frame because a new stream is being enabled.
ExpectStreams(kVideoFrameKey, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should get all three streams.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kTargetBitrates[2], 30);
// We get a key frame because a new stream is being enabled.
ExpectStreams(kVideoFrameKey, 3);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SwitchingToOneStream(int width, int height) {
// Disable all streams except the last and set the bitrate of the last to
// 100 kbps. This verifies the way GTP switches to screenshare mode.
settings_.VP8()->numberOfTemporalLayers = 1;
settings_.maxBitrate = 100;
settings_.startBitrate = 100;
settings_.width = width;
settings_.height = height;
for (int i = 0; i < settings_.numberOfSimulcastStreams - 1; ++i) {
settings_.simulcastStream[i].maxBitrate = 0;
settings_.simulcastStream[i].width = settings_.width;
settings_.simulcastStream[i].height = settings_.height;
}
// Setting input image to new resolution.
input_buffer_ = I420Buffer::Create(settings_.width, settings_.height);
input_buffer_->InitializeData();
input_frame_.reset(
new VideoFrame(input_buffer_, 0, 0, webrtc::kVideoRotation_0));
// The for loop above did not set the bitrate of the highest layer.
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1]
.maxBitrate = 0;
// The highest layer has to correspond to the non-simulcast resolution.
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].width =
settings_.width;
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].height =
settings_.height;
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
// Encode one frame and verify.
SetRates(kMaxBitrates[0] + kMaxBitrates[1], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(AllOf(Field(&EncodedImage::_frameType, kVideoFrameKey),
Field(&EncodedImage::_encodedWidth, width),
Field(&EncodedImage::_encodedHeight, height)),
_, _))
.Times(1)
.WillRepeatedly(Return(
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// Switch back.
DefaultSettings(&settings_, kDefaultTemporalLayerProfile);
// Start at the lowest bitrate for enabling base stream.
settings_.startBitrate = kMinBitrates[0];
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
SetRates(settings_.startBitrate, 30);
ExpectStreams(kVideoFrameKey, 1);
// Resize |input_frame_| to the new resolution.
input_buffer_ = I420Buffer::Create(settings_.width, settings_.height);
input_buffer_->InitializeData();
input_frame_.reset(
new VideoFrame(input_buffer_, 0, 0, webrtc::kVideoRotation_0));
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestSwitchingToOneStream() { SwitchingToOneStream(1024, 768); }
void TestSwitchingToOneOddStream() { SwitchingToOneStream(1023, 769); }
void TestSwitchingToOneSmallStream() { SwitchingToOneStream(4, 4); }
// Test the layer pattern and sync flag for various spatial-temporal patterns.
// 3-3-3 pattern: 3 temporal layers for all spatial streams, so same
// temporal_layer id and layer_sync is expected for all streams.
void TestSaptioTemporalLayers333PatternEncoder() {
Vp8TestEncodedImageCallback encoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
SetRates(kMaxBitrates[2], 30); // To get all three streams.
int expected_temporal_idx[3] = {-1, -1, -1};
bool expected_layer_sync[3] = {false, false, false};
// First frame: #0.
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #1.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #2.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(1, 1, 1, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #3.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #4.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #5.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
}
// Test the layer pattern and sync flag for various spatial-temporal patterns.
// 3-2-1 pattern: 3 temporal layers for lowest resolution, 2 for middle, and
// 1 temporal layer for highest resolution.
// For this profile, we expect the temporal index pattern to be:
// 1st stream: 0, 2, 1, 2, ....
// 2nd stream: 0, 1, 0, 1, ...
// 3rd stream: -1, -1, -1, -1, ....
// Regarding the 3rd stream, note that a stream/encoder with 1 temporal layer
// should always have temporal layer idx set to kNoTemporalIdx = -1.
// Since CodecSpecificInfoVP8.temporalIdx is uint8_t, this will wrap to 255.
// TODO(marpan): Although this seems safe for now, we should fix this.
void TestSpatioTemporalLayers321PatternEncoder() {
int temporal_layer_profile[3] = {3, 2, 1};
SetUpCodec(temporal_layer_profile);
Vp8TestEncodedImageCallback encoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
SetRates(kMaxBitrates[2], 30); // To get all three streams.
int expected_temporal_idx[3] = {-1, -1, -1};
bool expected_layer_sync[3] = {false, false, false};
// First frame: #0.
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #1.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #2.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(1, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #3.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #4.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #5.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
}
void TestStrideEncodeDecode() {
Vp8TestEncodedImageCallback encoder_callback;
Vp8TestDecodedImageCallback decoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
decoder_->RegisterDecodeCompleteCallback(&decoder_callback);
SetRates(kMaxBitrates[2], 30); // To get all three streams.
// Setting two (possibly) problematic use cases for stride:
// 1. stride > width 2. stride_y != stride_uv/2
int stride_y = kDefaultWidth + 20;
int stride_uv = ((kDefaultWidth + 1) / 2) + 5;
input_buffer_ = I420Buffer::Create(kDefaultWidth, kDefaultHeight, stride_y,
stride_uv, stride_uv);
input_frame_.reset(
new VideoFrame(input_buffer_, 0, 0, webrtc::kVideoRotation_0));
// Set color.
int plane_offset[kNumOfPlanes];
plane_offset[kYPlane] = kColorY;
plane_offset[kUPlane] = kColorU;
plane_offset[kVPlane] = kColorV;
CreateImage(input_buffer_, plane_offset);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
// Change color.
plane_offset[kYPlane] += 1;
plane_offset[kUPlane] += 1;
plane_offset[kVPlane] += 1;
CreateImage(input_buffer_, plane_offset);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
EncodedImage encoded_frame;
// Only encoding one frame - so will be a key frame.
encoder_callback.GetLastEncodedKeyFrame(&encoded_frame);
EXPECT_EQ(0, decoder_->Decode(encoded_frame, false, NULL));
encoder_callback.GetLastEncodedFrame(&encoded_frame);
decoder_->Decode(encoded_frame, false, NULL);
EXPECT_EQ(2, decoder_callback.DecodedFrames());
}
std::unique_ptr<VP8Encoder> encoder_;
MockEncodedImageCallback encoder_callback_;
std::unique_ptr<VP8Decoder> decoder_;
MockDecodedImageCallback decoder_callback_;
VideoCodec settings_;
rtc::scoped_refptr<I420Buffer> input_buffer_;
std::unique_ptr<VideoFrame> input_frame_;
std::unique_ptr<SimulcastRateAllocator> rate_allocator_;
};
} // namespace testing
} // namespace webrtc
#endif // WEBRTC_MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_UNITTEST_H_