blob: a46135a3f7e1f53040236d0494a97d478fe9e68b [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* lattice.c
*
* contains the normalized lattice filter routines (MA and AR) for iSAC codec
*
*/
#include "settings.h"
#include "codec.h"
#include <math.h>
#include <memory.h>
#ifdef WEBRTC_ANDROID
#include <stdlib.h>
#endif
/* filter the signal using normalized lattice filter */
/* MA filter */
void WebRtcIsac_NormLatticeFilterMa(int orderCoef,
float *stateF,
float *stateG,
float *lat_in,
double *filtcoeflo,
double *lat_out)
{
int n,k,i,u,temp1;
int ord_1 = orderCoef+1;
float sth[MAX_AR_MODEL_ORDER];
float cth[MAX_AR_MODEL_ORDER];
float inv_cth[MAX_AR_MODEL_ORDER];
double a[MAX_AR_MODEL_ORDER+1];
float f[MAX_AR_MODEL_ORDER+1][HALF_SUBFRAMELEN], g[MAX_AR_MODEL_ORDER+1][HALF_SUBFRAMELEN];
float gain1;
for (u=0;u<SUBFRAMES;u++)
{
/* set the Direct Form coefficients */
temp1 = u*ord_1;
a[0] = 1;
memcpy(a+1, filtcoeflo+temp1+1, sizeof(double) * (ord_1-1));
/* compute lattice filter coefficients */
WebRtcIsac_Dir2Lat(a,orderCoef,sth,cth);
/* compute the gain */
gain1 = (float)filtcoeflo[temp1];
for (k=0;k<orderCoef;k++)
{
gain1 *= cth[k];
inv_cth[k] = 1/cth[k];
}
/* normalized lattice filter */
/*****************************/
/* initial conditions */
for (i=0;i<HALF_SUBFRAMELEN;i++)
{
f[0][i] = lat_in[i + u * HALF_SUBFRAMELEN];
g[0][i] = lat_in[i + u * HALF_SUBFRAMELEN];
}
/* get the state of f&g for the first input, for all orders */
for (i=1;i<ord_1;i++)
{
f[i][0] = inv_cth[i-1]*(f[i-1][0] + sth[i-1]*stateG[i-1]);
g[i][0] = cth[i-1]*stateG[i-1] + sth[i-1]* f[i][0];
}
/* filtering */
for(k=0;k<orderCoef;k++)
{
for(n=0;n<(HALF_SUBFRAMELEN-1);n++)
{
f[k+1][n+1] = inv_cth[k]*(f[k][n+1] + sth[k]*g[k][n]);
g[k+1][n+1] = cth[k]*g[k][n] + sth[k]* f[k+1][n+1];
}
}
for(n=0;n<HALF_SUBFRAMELEN;n++)
{
lat_out[n + u * HALF_SUBFRAMELEN] = gain1 * f[orderCoef][n];
}
/* save the states */
for (i=0;i<ord_1;i++)
{
stateF[i] = f[i][HALF_SUBFRAMELEN-1];
stateG[i] = g[i][HALF_SUBFRAMELEN-1];
}
/* process next frame */
}
return;
}
/*///////////////////AR filter ///////////////////////////////*/
/* filter the signal using normalized lattice filter */
void WebRtcIsac_NormLatticeFilterAr(int orderCoef,
float *stateF,
float *stateG,
double *lat_in,
double *lo_filt_coef,
float *lat_out)
{
int n,k,i,u,temp1;
int ord_1 = orderCoef+1;
float sth[MAX_AR_MODEL_ORDER];
float cth[MAX_AR_MODEL_ORDER];
double a[MAX_AR_MODEL_ORDER+1];
float ARf[MAX_AR_MODEL_ORDER+1][HALF_SUBFRAMELEN], ARg[MAX_AR_MODEL_ORDER+1][HALF_SUBFRAMELEN];
float gain1,inv_gain1;
for (u=0;u<SUBFRAMES;u++)
{
/* set the denominator and numerator of the Direct Form */
temp1 = u*ord_1;
a[0] = 1;
memcpy(a+1, lo_filt_coef+temp1+1, sizeof(double) * (ord_1-1));
WebRtcIsac_Dir2Lat(a,orderCoef,sth,cth);
gain1 = (float)lo_filt_coef[temp1];
for (k=0;k<orderCoef;k++)
{
gain1 = cth[k]*gain1;
}
/* initial conditions */
inv_gain1 = 1/gain1;
for (i=0;i<HALF_SUBFRAMELEN;i++)
{
ARf[orderCoef][i] = (float)lat_in[i + u * HALF_SUBFRAMELEN]*inv_gain1;
}
for (i=orderCoef-1;i>=0;i--) //get the state of f&g for the first input, for all orders
{
ARf[i][0] = cth[i]*ARf[i+1][0] - sth[i]*stateG[i];
ARg[i+1][0] = sth[i]*ARf[i+1][0] + cth[i]* stateG[i];
}
ARg[0][0] = ARf[0][0];
for(n=0;n<(HALF_SUBFRAMELEN-1);n++)
{
for(k=orderCoef-1;k>=0;k--)
{
ARf[k][n+1] = cth[k]*ARf[k+1][n+1] - sth[k]*ARg[k][n];
ARg[k+1][n+1] = sth[k]*ARf[k+1][n+1] + cth[k]* ARg[k][n];
}
ARg[0][n+1] = ARf[0][n+1];
}
memcpy(lat_out+u * HALF_SUBFRAMELEN, &(ARf[0][0]), sizeof(float) * HALF_SUBFRAMELEN);
/* cannot use memcpy in the following */
for (i=0;i<ord_1;i++)
{
stateF[i] = ARf[i][HALF_SUBFRAMELEN-1];
stateG[i] = ARg[i][HALF_SUBFRAMELEN-1];
}
}
return;
}
/* compute the reflection coefficients using the step-down procedure*/
/* converts the direct form parameters to lattice form.*/
/* a and b are vectors which contain the direct form coefficients,
according to
A(z) = a(1) + a(2)*z + a(3)*z^2 + ... + a(M+1)*z^M
B(z) = b(1) + b(2)*z + b(3)*z^2 + ... + b(M+1)*z^M
*/
void WebRtcIsac_Dir2Lat(double *a,
int orderCoef,
float *sth,
float *cth)
{
int m, k;
float tmp[MAX_AR_MODEL_ORDER];
float tmp_inv, cth2;
sth[orderCoef-1] = (float)a[orderCoef];
cth2 = 1.0f - sth[orderCoef-1] * sth[orderCoef-1];
cth[orderCoef-1] = (float)sqrt(cth2);
for (m=orderCoef-1; m>0; m--)
{
tmp_inv = 1.0f / cth2;
for (k=1; k<=m; k++)
{
tmp[k] = ((float)a[k] - sth[m] * (float)a[m-k+1]) * tmp_inv;
}
for (k=1; k<m; k++)
{
a[k] = tmp[k];
}
sth[m-1] = tmp[m];
cth2 = 1 - sth[m-1] * sth[m-1];
cth[m-1] = (float)sqrt(cth2);
}
}