| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| /* |
| * lattice.c |
| * |
| * contains the normalized lattice filter routines (MA and AR) for iSAC codec |
| * |
| */ |
| #include "settings.h" |
| #include "codec.h" |
| |
| #include <math.h> |
| #include <memory.h> |
| #ifdef WEBRTC_ANDROID |
| #include <stdlib.h> |
| #endif |
| |
| /* filter the signal using normalized lattice filter */ |
| /* MA filter */ |
| void WebRtcIsac_NormLatticeFilterMa(int orderCoef, |
| float *stateF, |
| float *stateG, |
| float *lat_in, |
| double *filtcoeflo, |
| double *lat_out) |
| { |
| int n,k,i,u,temp1; |
| int ord_1 = orderCoef+1; |
| float sth[MAX_AR_MODEL_ORDER]; |
| float cth[MAX_AR_MODEL_ORDER]; |
| float inv_cth[MAX_AR_MODEL_ORDER]; |
| double a[MAX_AR_MODEL_ORDER+1]; |
| float f[MAX_AR_MODEL_ORDER+1][HALF_SUBFRAMELEN], g[MAX_AR_MODEL_ORDER+1][HALF_SUBFRAMELEN]; |
| float gain1; |
| |
| for (u=0;u<SUBFRAMES;u++) |
| { |
| /* set the Direct Form coefficients */ |
| temp1 = u*ord_1; |
| a[0] = 1; |
| memcpy(a+1, filtcoeflo+temp1+1, sizeof(double) * (ord_1-1)); |
| |
| /* compute lattice filter coefficients */ |
| WebRtcIsac_Dir2Lat(a,orderCoef,sth,cth); |
| |
| /* compute the gain */ |
| gain1 = (float)filtcoeflo[temp1]; |
| for (k=0;k<orderCoef;k++) |
| { |
| gain1 *= cth[k]; |
| inv_cth[k] = 1/cth[k]; |
| } |
| |
| /* normalized lattice filter */ |
| /*****************************/ |
| |
| /* initial conditions */ |
| for (i=0;i<HALF_SUBFRAMELEN;i++) |
| { |
| f[0][i] = lat_in[i + u * HALF_SUBFRAMELEN]; |
| g[0][i] = lat_in[i + u * HALF_SUBFRAMELEN]; |
| } |
| |
| /* get the state of f&g for the first input, for all orders */ |
| for (i=1;i<ord_1;i++) |
| { |
| f[i][0] = inv_cth[i-1]*(f[i-1][0] + sth[i-1]*stateG[i-1]); |
| g[i][0] = cth[i-1]*stateG[i-1] + sth[i-1]* f[i][0]; |
| } |
| |
| /* filtering */ |
| for(k=0;k<orderCoef;k++) |
| { |
| for(n=0;n<(HALF_SUBFRAMELEN-1);n++) |
| { |
| f[k+1][n+1] = inv_cth[k]*(f[k][n+1] + sth[k]*g[k][n]); |
| g[k+1][n+1] = cth[k]*g[k][n] + sth[k]* f[k+1][n+1]; |
| } |
| } |
| |
| for(n=0;n<HALF_SUBFRAMELEN;n++) |
| { |
| lat_out[n + u * HALF_SUBFRAMELEN] = gain1 * f[orderCoef][n]; |
| } |
| |
| /* save the states */ |
| for (i=0;i<ord_1;i++) |
| { |
| stateF[i] = f[i][HALF_SUBFRAMELEN-1]; |
| stateG[i] = g[i][HALF_SUBFRAMELEN-1]; |
| } |
| /* process next frame */ |
| } |
| |
| return; |
| } |
| |
| |
| /*///////////////////AR filter ///////////////////////////////*/ |
| /* filter the signal using normalized lattice filter */ |
| void WebRtcIsac_NormLatticeFilterAr(int orderCoef, |
| float *stateF, |
| float *stateG, |
| double *lat_in, |
| double *lo_filt_coef, |
| float *lat_out) |
| { |
| int n,k,i,u,temp1; |
| int ord_1 = orderCoef+1; |
| float sth[MAX_AR_MODEL_ORDER]; |
| float cth[MAX_AR_MODEL_ORDER]; |
| double a[MAX_AR_MODEL_ORDER+1]; |
| float ARf[MAX_AR_MODEL_ORDER+1][HALF_SUBFRAMELEN], ARg[MAX_AR_MODEL_ORDER+1][HALF_SUBFRAMELEN]; |
| float gain1,inv_gain1; |
| |
| for (u=0;u<SUBFRAMES;u++) |
| { |
| /* set the denominator and numerator of the Direct Form */ |
| temp1 = u*ord_1; |
| a[0] = 1; |
| |
| memcpy(a+1, lo_filt_coef+temp1+1, sizeof(double) * (ord_1-1)); |
| |
| WebRtcIsac_Dir2Lat(a,orderCoef,sth,cth); |
| |
| gain1 = (float)lo_filt_coef[temp1]; |
| for (k=0;k<orderCoef;k++) |
| { |
| gain1 = cth[k]*gain1; |
| } |
| |
| /* initial conditions */ |
| inv_gain1 = 1/gain1; |
| for (i=0;i<HALF_SUBFRAMELEN;i++) |
| { |
| ARf[orderCoef][i] = (float)lat_in[i + u * HALF_SUBFRAMELEN]*inv_gain1; |
| } |
| |
| |
| for (i=orderCoef-1;i>=0;i--) //get the state of f&g for the first input, for all orders |
| { |
| ARf[i][0] = cth[i]*ARf[i+1][0] - sth[i]*stateG[i]; |
| ARg[i+1][0] = sth[i]*ARf[i+1][0] + cth[i]* stateG[i]; |
| } |
| ARg[0][0] = ARf[0][0]; |
| |
| for(n=0;n<(HALF_SUBFRAMELEN-1);n++) |
| { |
| for(k=orderCoef-1;k>=0;k--) |
| { |
| ARf[k][n+1] = cth[k]*ARf[k+1][n+1] - sth[k]*ARg[k][n]; |
| ARg[k+1][n+1] = sth[k]*ARf[k+1][n+1] + cth[k]* ARg[k][n]; |
| } |
| ARg[0][n+1] = ARf[0][n+1]; |
| } |
| |
| memcpy(lat_out+u * HALF_SUBFRAMELEN, &(ARf[0][0]), sizeof(float) * HALF_SUBFRAMELEN); |
| |
| /* cannot use memcpy in the following */ |
| for (i=0;i<ord_1;i++) |
| { |
| stateF[i] = ARf[i][HALF_SUBFRAMELEN-1]; |
| stateG[i] = ARg[i][HALF_SUBFRAMELEN-1]; |
| } |
| |
| } |
| |
| return; |
| } |
| |
| |
| /* compute the reflection coefficients using the step-down procedure*/ |
| /* converts the direct form parameters to lattice form.*/ |
| /* a and b are vectors which contain the direct form coefficients, |
| according to |
| A(z) = a(1) + a(2)*z + a(3)*z^2 + ... + a(M+1)*z^M |
| B(z) = b(1) + b(2)*z + b(3)*z^2 + ... + b(M+1)*z^M |
| */ |
| |
| void WebRtcIsac_Dir2Lat(double *a, |
| int orderCoef, |
| float *sth, |
| float *cth) |
| { |
| int m, k; |
| float tmp[MAX_AR_MODEL_ORDER]; |
| float tmp_inv, cth2; |
| |
| sth[orderCoef-1] = (float)a[orderCoef]; |
| cth2 = 1.0f - sth[orderCoef-1] * sth[orderCoef-1]; |
| cth[orderCoef-1] = (float)sqrt(cth2); |
| for (m=orderCoef-1; m>0; m--) |
| { |
| tmp_inv = 1.0f / cth2; |
| for (k=1; k<=m; k++) |
| { |
| tmp[k] = ((float)a[k] - sth[m] * (float)a[m-k+1]) * tmp_inv; |
| } |
| |
| for (k=1; k<m; k++) |
| { |
| a[k] = tmp[k]; |
| } |
| |
| sth[m-1] = tmp[m]; |
| cth2 = 1 - sth[m-1] * sth[m-1]; |
| cth[m-1] = (float)sqrt(cth2); |
| } |
| } |