blob: 0d0edfabd705026d3289a9c419e7f609cdcbecff [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file includes unit tests for NetEQ.
*/
#include <stdlib.h>
#include <string.h> // memset
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "modules/audio_coding/neteq/interface/webrtc_neteq.h"
#include "modules/audio_coding/neteq/interface/webrtc_neteq_help_macros.h"
#include "modules/audio_coding/neteq/interface/webrtc_neteq_internal.h"
#include "modules/audio_coding/neteq/test/NETEQTEST_CodecClass.h"
#include "modules/audio_coding/neteq/test/NETEQTEST_NetEQClass.h"
#include "modules/audio_coding/neteq/test/NETEQTEST_RTPpacket.h"
#include "testsupport/fileutils.h"
#include "typedefs.h" // NOLINT(build/include)
namespace webrtc {
class RefFiles {
public:
RefFiles(const std::string& input_file, const std::string& output_file);
~RefFiles();
template<class T> void ProcessReference(const T& test_results);
template<typename T, size_t n> void ProcessReference(
const T (&test_results)[n],
size_t length);
template<typename T, size_t n> void WriteToFile(
const T (&test_results)[n],
size_t length);
template<typename T, size_t n> void ReadFromFileAndCompare(
const T (&test_results)[n],
size_t length);
void WriteToFile(const WebRtcNetEQ_NetworkStatistics& stats);
void ReadFromFileAndCompare(const WebRtcNetEQ_NetworkStatistics& stats);
void WriteToFile(const WebRtcNetEQ_RTCPStat& stats);
void ReadFromFileAndCompare(const WebRtcNetEQ_RTCPStat& stats);
FILE* input_fp_;
FILE* output_fp_;
};
RefFiles::RefFiles(const std::string &input_file,
const std::string &output_file)
: input_fp_(NULL),
output_fp_(NULL) {
if (!input_file.empty()) {
input_fp_ = fopen(input_file.c_str(), "rb");
EXPECT_TRUE(input_fp_ != NULL);
}
if (!output_file.empty()) {
output_fp_ = fopen(output_file.c_str(), "wb");
EXPECT_TRUE(output_fp_ != NULL);
}
}
RefFiles::~RefFiles() {
if (input_fp_) {
EXPECT_EQ(EOF, fgetc(input_fp_)); // Make sure that we reached the end.
fclose(input_fp_);
}
if (output_fp_) fclose(output_fp_);
}
template<class T>
void RefFiles::ProcessReference(const T& test_results) {
WriteToFile(test_results);
ReadFromFileAndCompare(test_results);
}
template<typename T, size_t n>
void RefFiles::ProcessReference(const T (&test_results)[n], size_t length) {
WriteToFile(test_results, length);
ReadFromFileAndCompare(test_results, length);
}
template<typename T, size_t n>
void RefFiles::WriteToFile(const T (&test_results)[n], size_t length) {
if (output_fp_) {
ASSERT_EQ(length, fwrite(&test_results, sizeof(T), length, output_fp_));
}
}
template<typename T, size_t n>
void RefFiles::ReadFromFileAndCompare(const T (&test_results)[n],
size_t length) {
if (input_fp_) {
// Read from ref file.
T* ref = new T[length];
ASSERT_EQ(length, fread(ref, sizeof(T), length, input_fp_));
// Compare
EXPECT_EQ(0, memcmp(&test_results, ref, sizeof(T) * length));
delete [] ref;
}
}
void RefFiles::WriteToFile(const WebRtcNetEQ_NetworkStatistics& stats) {
if (output_fp_) {
ASSERT_EQ(1u, fwrite(&stats, sizeof(WebRtcNetEQ_NetworkStatistics), 1,
output_fp_));
}
}
void RefFiles::ReadFromFileAndCompare(
const WebRtcNetEQ_NetworkStatistics& stats) {
if (input_fp_) {
// Read from ref file.
size_t stat_size = sizeof(WebRtcNetEQ_NetworkStatistics);
WebRtcNetEQ_NetworkStatistics ref_stats;
ASSERT_EQ(1u, fread(&ref_stats, stat_size, 1, input_fp_));
// Compare
EXPECT_EQ(0, memcmp(&stats, &ref_stats, stat_size));
}
}
void RefFiles::WriteToFile(const WebRtcNetEQ_RTCPStat& stats) {
if (output_fp_) {
ASSERT_EQ(1u, fwrite(&(stats.fraction_lost), sizeof(stats.fraction_lost), 1,
output_fp_));
ASSERT_EQ(1u, fwrite(&(stats.cum_lost), sizeof(stats.cum_lost), 1,
output_fp_));
ASSERT_EQ(1u, fwrite(&(stats.ext_max), sizeof(stats.ext_max), 1,
output_fp_));
ASSERT_EQ(1u, fwrite(&(stats.jitter), sizeof(stats.jitter), 1,
output_fp_));
}
}
void RefFiles::ReadFromFileAndCompare(
const WebRtcNetEQ_RTCPStat& stats) {
if (input_fp_) {
// Read from ref file.
WebRtcNetEQ_RTCPStat ref_stats;
ASSERT_EQ(1u, fread(&(ref_stats.fraction_lost),
sizeof(ref_stats.fraction_lost), 1, input_fp_));
ASSERT_EQ(1u, fread(&(ref_stats.cum_lost), sizeof(ref_stats.cum_lost), 1,
input_fp_));
ASSERT_EQ(1u, fread(&(ref_stats.ext_max), sizeof(ref_stats.ext_max), 1,
input_fp_));
ASSERT_EQ(1u, fread(&(ref_stats.jitter), sizeof(ref_stats.jitter), 1,
input_fp_));
// Compare
EXPECT_EQ(ref_stats.fraction_lost, stats.fraction_lost);
EXPECT_EQ(ref_stats.cum_lost, stats.cum_lost);
EXPECT_EQ(ref_stats.ext_max, stats.ext_max);
EXPECT_EQ(ref_stats.jitter, stats.jitter);
}
}
class NetEqDecodingTest : public ::testing::Test {
protected:
// NetEQ must be polled for data once every 10 ms. Thus, neither of the
// constants below can be changed.
static const int kTimeStepMs = 10;
static const int kBlockSize8kHz = kTimeStepMs * 8;
static const int kBlockSize16kHz = kTimeStepMs * 16;
static const int kBlockSize32kHz = kTimeStepMs * 32;
static const int kMaxBlockSize = kBlockSize32kHz;
NetEqDecodingTest();
virtual void SetUp();
virtual void TearDown();
void SelectDecoders(WebRtcNetEQDecoder* used_codec);
void LoadDecoders();
void OpenInputFile(const std::string &rtp_file);
void Process(NETEQTEST_RTPpacket* rtp_ptr, int16_t* out_len);
void DecodeAndCompare(const std::string &rtp_file,
const std::string &ref_file);
void DecodeAndCheckStats(const std::string &rtp_file,
const std::string &stat_ref_file,
const std::string &rtcp_ref_file);
static void PopulateRtpInfo(int frame_index,
int timestamp,
WebRtcNetEQ_RTPInfo* rtp_info);
static void PopulateCng(int frame_index,
int timestamp,
WebRtcNetEQ_RTPInfo* rtp_info,
uint8_t* payload,
int* payload_len);
NETEQTEST_NetEQClass* neteq_inst_;
std::vector<NETEQTEST_Decoder*> dec_;
FILE* rtp_fp_;
unsigned int sim_clock_;
int16_t out_data_[kMaxBlockSize];
};
NetEqDecodingTest::NetEqDecodingTest()
: neteq_inst_(NULL),
rtp_fp_(NULL),
sim_clock_(0) {
memset(out_data_, 0, sizeof(out_data_));
}
void NetEqDecodingTest::SetUp() {
WebRtcNetEQDecoder usedCodec[kDecoderReservedEnd - 1];
SelectDecoders(usedCodec);
neteq_inst_ = new NETEQTEST_NetEQClass(usedCodec, dec_.size(), 8000,
kTCPLargeJitter);
ASSERT_TRUE(neteq_inst_);
LoadDecoders();
}
void NetEqDecodingTest::TearDown() {
if (neteq_inst_)
delete neteq_inst_;
for (size_t i = 0; i < dec_.size(); ++i) {
if (dec_[i])
delete dec_[i];
}
if (rtp_fp_)
fclose(rtp_fp_);
}
void NetEqDecodingTest::SelectDecoders(WebRtcNetEQDecoder* used_codec) {
*used_codec++ = kDecoderPCMu;
dec_.push_back(new decoder_PCMU(0));
*used_codec++ = kDecoderPCMa;
dec_.push_back(new decoder_PCMA(8));
*used_codec++ = kDecoderILBC;
dec_.push_back(new decoder_ILBC(102));
*used_codec++ = kDecoderISAC;
dec_.push_back(new decoder_iSAC(103));
*used_codec++ = kDecoderISACswb;
dec_.push_back(new decoder_iSACSWB(104));
*used_codec++ = kDecoderPCM16B;
dec_.push_back(new decoder_PCM16B_NB(93));
*used_codec++ = kDecoderPCM16Bwb;
dec_.push_back(new decoder_PCM16B_WB(94));
*used_codec++ = kDecoderPCM16Bswb32kHz;
dec_.push_back(new decoder_PCM16B_SWB32(95));
*used_codec++ = kDecoderCNG;
dec_.push_back(new decoder_CNG(13, 8000));
*used_codec++ = kDecoderCNG;
dec_.push_back(new decoder_CNG(98, 16000));
}
void NetEqDecodingTest::LoadDecoders() {
for (size_t i = 0; i < dec_.size(); ++i) {
ASSERT_EQ(0, dec_[i]->loadToNetEQ(*neteq_inst_));
}
}
void NetEqDecodingTest::OpenInputFile(const std::string &rtp_file) {
rtp_fp_ = fopen(rtp_file.c_str(), "rb");
ASSERT_TRUE(rtp_fp_ != NULL);
ASSERT_EQ(0, NETEQTEST_RTPpacket::skipFileHeader(rtp_fp_));
}
void NetEqDecodingTest::Process(NETEQTEST_RTPpacket* rtp, int16_t* out_len) {
// Check if time to receive.
while ((sim_clock_ >= rtp->time()) &&
(rtp->dataLen() >= 0)) {
if (rtp->dataLen() > 0) {
ASSERT_EQ(0, neteq_inst_->recIn(*rtp));
}
// Get next packet.
ASSERT_NE(-1, rtp->readFromFile(rtp_fp_));
}
// RecOut
*out_len = neteq_inst_->recOut(out_data_);
ASSERT_TRUE((*out_len == kBlockSize8kHz) ||
(*out_len == kBlockSize16kHz) ||
(*out_len == kBlockSize32kHz));
// Increase time.
sim_clock_ += kTimeStepMs;
}
void NetEqDecodingTest::DecodeAndCompare(const std::string &rtp_file,
const std::string &ref_file) {
OpenInputFile(rtp_file);
std::string ref_out_file = "";
if (ref_file.empty()) {
ref_out_file = webrtc::test::OutputPath() + "neteq_out.pcm";
}
RefFiles ref_files(ref_file, ref_out_file);
NETEQTEST_RTPpacket rtp;
ASSERT_GT(rtp.readFromFile(rtp_fp_), 0);
while (rtp.dataLen() >= 0) {
int16_t out_len;
Process(&rtp, &out_len);
ref_files.ProcessReference(out_data_, out_len);
}
}
void NetEqDecodingTest::DecodeAndCheckStats(const std::string &rtp_file,
const std::string &stat_ref_file,
const std::string &rtcp_ref_file) {
OpenInputFile(rtp_file);
std::string stat_out_file = "";
if (stat_ref_file.empty()) {
stat_out_file = webrtc::test::OutputPath() +
"neteq_network_stats.dat";
}
RefFiles network_stat_files(stat_ref_file, stat_out_file);
std::string rtcp_out_file = "";
if (rtcp_ref_file.empty()) {
rtcp_out_file = webrtc::test::OutputPath() +
"neteq_rtcp_stats.dat";
}
RefFiles rtcp_stat_files(rtcp_ref_file, rtcp_out_file);
NETEQTEST_RTPpacket rtp;
ASSERT_GT(rtp.readFromFile(rtp_fp_), 0);
while (rtp.dataLen() >= 0) {
int16_t out_len;
Process(&rtp, &out_len);
// Query the network statistics API once per second
if (sim_clock_ % 1000 == 0) {
// Process NetworkStatistics.
WebRtcNetEQ_NetworkStatistics network_stats;
ASSERT_EQ(0, WebRtcNetEQ_GetNetworkStatistics(neteq_inst_->instance(),
&network_stats));
network_stat_files.ProcessReference(network_stats);
// Process RTCPstat.
WebRtcNetEQ_RTCPStat rtcp_stats;
ASSERT_EQ(0, WebRtcNetEQ_GetRTCPStats(neteq_inst_->instance(),
&rtcp_stats));
rtcp_stat_files.ProcessReference(rtcp_stats);
}
}
}
void NetEqDecodingTest::PopulateRtpInfo(int frame_index,
int timestamp,
WebRtcNetEQ_RTPInfo* rtp_info) {
rtp_info->sequenceNumber = frame_index;
rtp_info->timeStamp = timestamp;
rtp_info->SSRC = 0x1234; // Just an arbitrary SSRC.
rtp_info->payloadType = 94; // PCM16b WB codec.
rtp_info->markerBit = 0;
}
void NetEqDecodingTest::PopulateCng(int frame_index,
int timestamp,
WebRtcNetEQ_RTPInfo* rtp_info,
uint8_t* payload,
int* payload_len) {
rtp_info->sequenceNumber = frame_index;
rtp_info->timeStamp = timestamp;
rtp_info->SSRC = 0x1234; // Just an arbitrary SSRC.
rtp_info->payloadType = 98; // WB CNG.
rtp_info->markerBit = 0;
payload[0] = 64; // Noise level -64 dBov, quite arbitrarily chosen.
*payload_len = 1; // Only noise level, no spectral parameters.
}
TEST_F(NetEqDecodingTest, TestBitExactness) {
const std::string kInputRtpFile = webrtc::test::ProjectRootPath() +
"resources/neteq_universal.rtp";
const std::string kInputRefFile =
webrtc::test::ResourcePath("neteq_universal_ref", "pcm");
DecodeAndCompare(kInputRtpFile, kInputRefFile);
}
TEST_F(NetEqDecodingTest, TestNetworkStatistics) {
const std::string kInputRtpFile = webrtc::test::ProjectRootPath() +
"resources/neteq_universal.rtp";
const std::string kNetworkStatRefFile =
webrtc::test::ResourcePath("neteq_network_stats", "dat");
const std::string kRtcpStatRefFile =
webrtc::test::ResourcePath("neteq_rtcp_stats", "dat");
DecodeAndCheckStats(kInputRtpFile, kNetworkStatRefFile, kRtcpStatRefFile);
}
TEST_F(NetEqDecodingTest, TestFrameWaitingTimeStatistics) {
// Use fax mode to avoid time-scaling. This is to simplify the testing of
// packet waiting times in the packet buffer.
ASSERT_EQ(0,
WebRtcNetEQ_SetPlayoutMode(neteq_inst_->instance(), kPlayoutFax));
// Insert 30 dummy packets at once. Each packet contains 10 ms 16 kHz audio.
int num_frames = 30;
const int kSamples = 10 * 16;
const int kPayloadBytes = kSamples * 2;
for (int i = 0; i < num_frames; ++i) {
uint16_t payload[kSamples] = {0};
WebRtcNetEQ_RTPInfo rtp_info;
rtp_info.sequenceNumber = i;
rtp_info.timeStamp = i * kSamples;
rtp_info.SSRC = 0x1234; // Just an arbitrary SSRC.
rtp_info.payloadType = 94; // PCM16b WB codec.
rtp_info.markerBit = 0;
ASSERT_EQ(0, WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(), &rtp_info,
reinterpret_cast<uint8_t*>(payload),
kPayloadBytes, 0));
}
// Pull out all data.
for (int i = 0; i < num_frames; ++i) {
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
}
const int kVecLen = 110; // More than kLenWaitingTimes in mcu.h.
int waiting_times[kVecLen];
int len = WebRtcNetEQ_GetRawFrameWaitingTimes(neteq_inst_->instance(),
kVecLen, waiting_times);
EXPECT_EQ(num_frames, len);
// Since all frames are dumped into NetEQ at once, but pulled out with 10 ms
// spacing (per definition), we expect the delay to increase with 10 ms for
// each packet.
for (int i = 0; i < len; ++i) {
EXPECT_EQ((i + 1) * 10, waiting_times[i]);
}
// Check statistics again and make sure it's been reset.
EXPECT_EQ(0, WebRtcNetEQ_GetRawFrameWaitingTimes(neteq_inst_->instance(),
kVecLen, waiting_times));
// Process > 100 frames, and make sure that that we get statistics
// only for 100 frames. Note the new SSRC, causing NetEQ to reset.
num_frames = 110;
for (int i = 0; i < num_frames; ++i) {
uint16_t payload[kSamples] = {0};
WebRtcNetEQ_RTPInfo rtp_info;
rtp_info.sequenceNumber = i;
rtp_info.timeStamp = i * kSamples;
rtp_info.SSRC = 0x1235; // Just an arbitrary SSRC.
rtp_info.payloadType = 94; // PCM16b WB codec.
rtp_info.markerBit = 0;
ASSERT_EQ(0, WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(), &rtp_info,
reinterpret_cast<uint8_t*>(payload),
kPayloadBytes, 0));
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
}
len = WebRtcNetEQ_GetRawFrameWaitingTimes(neteq_inst_->instance(),
kVecLen, waiting_times);
EXPECT_EQ(100, len);
}
TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimeNegative) {
const int kNumFrames = 3000; // Needed for convergence.
int frame_index = 0;
const int kSamples = 10 * 16;
const int kPayloadBytes = kSamples * 2;
while (frame_index < kNumFrames) {
// Insert one packet each time, except every 10th time where we insert two
// packets at once. This will create a negative clock-drift of approx. 10%.
int num_packets = (frame_index % 10 == 0 ? 2 : 1);
for (int n = 0; n < num_packets; ++n) {
uint8_t payload[kPayloadBytes] = {0};
WebRtcNetEQ_RTPInfo rtp_info;
PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info);
ASSERT_EQ(0,
WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(),
&rtp_info,
payload,
kPayloadBytes, 0));
++frame_index;
}
// Pull out data once.
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
}
WebRtcNetEQ_NetworkStatistics network_stats;
ASSERT_EQ(0, WebRtcNetEQ_GetNetworkStatistics(neteq_inst_->instance(),
&network_stats));
EXPECT_EQ(-106911, network_stats.clockDriftPPM);
}
TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimePositive) {
const int kNumFrames = 5000; // Needed for convergence.
int frame_index = 0;
const int kSamples = 10 * 16;
const int kPayloadBytes = kSamples * 2;
for (int i = 0; i < kNumFrames; ++i) {
// Insert one packet each time, except every 10th time where we don't insert
// any packet. This will create a positive clock-drift of approx. 11%.
int num_packets = (i % 10 == 9 ? 0 : 1);
for (int n = 0; n < num_packets; ++n) {
uint8_t payload[kPayloadBytes] = {0};
WebRtcNetEQ_RTPInfo rtp_info;
PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info);
ASSERT_EQ(0,
WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(),
&rtp_info,
payload,
kPayloadBytes, 0));
++frame_index;
}
// Pull out data once.
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
}
WebRtcNetEQ_NetworkStatistics network_stats;
ASSERT_EQ(0, WebRtcNetEQ_GetNetworkStatistics(neteq_inst_->instance(),
&network_stats));
EXPECT_EQ(108352, network_stats.clockDriftPPM);
}
TEST_F(NetEqDecodingTest, LongCngWithClockDrift) {
uint16_t seq_no = 0;
uint32_t timestamp = 0;
const int kFrameSizeMs = 30;
const int kSamples = kFrameSizeMs * 16;
const int kPayloadBytes = kSamples * 2;
// Apply a clock drift of -25 ms / s (sender faster than receiver).
const double kDriftFactor = 1000.0 / (1000.0 + 25.0);
double next_input_time_ms = 0.0;
double t_ms;
// Insert speech for 5 seconds.
const int kSpeechDurationMs = 5000;
for (t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) {
// Each turn in this for loop is 10 ms.
while (next_input_time_ms <= t_ms) {
// Insert one 30 ms speech frame.
uint8_t payload[kPayloadBytes] = {0};
WebRtcNetEQ_RTPInfo rtp_info;
PopulateRtpInfo(seq_no, timestamp, &rtp_info);
ASSERT_EQ(0,
WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(),
&rtp_info,
payload,
kPayloadBytes, 0));
++seq_no;
timestamp += kSamples;
next_input_time_ms += static_cast<double>(kFrameSizeMs) * kDriftFactor;
}
// Pull out data once.
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
}
EXPECT_EQ(kOutputNormal, neteq_inst_->getOutputType());
int32_t delay_before = timestamp - neteq_inst_->getSpeechTimeStamp();
// Insert CNG for 1 minute (= 60000 ms).
const int kCngPeriodMs = 100;
const int kCngPeriodSamples = kCngPeriodMs * 16; // Period in 16 kHz samples.
const int kCngDurationMs = 60000;
for (; t_ms < kSpeechDurationMs + kCngDurationMs; t_ms += 10) {
// Each turn in this for loop is 10 ms.
while (next_input_time_ms <= t_ms) {
// Insert one CNG frame each 100 ms.
uint8_t payload[kPayloadBytes];
int payload_len;
WebRtcNetEQ_RTPInfo rtp_info;
PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len);
ASSERT_EQ(0,
WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(),
&rtp_info,
payload,
payload_len, 0));
++seq_no;
timestamp += kCngPeriodSamples;
next_input_time_ms += static_cast<double>(kCngPeriodMs) * kDriftFactor;
}
// Pull out data once.
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
}
EXPECT_EQ(kOutputCNG, neteq_inst_->getOutputType());
// Insert speech again until output type is speech.
while (neteq_inst_->getOutputType() != kOutputNormal) {
// Each turn in this for loop is 10 ms.
while (next_input_time_ms <= t_ms) {
// Insert one 30 ms speech frame.
uint8_t payload[kPayloadBytes] = {0};
WebRtcNetEQ_RTPInfo rtp_info;
PopulateRtpInfo(seq_no, timestamp, &rtp_info);
ASSERT_EQ(0,
WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(),
&rtp_info,
payload,
kPayloadBytes, 0));
++seq_no;
timestamp += kSamples;
next_input_time_ms += static_cast<double>(kFrameSizeMs) * kDriftFactor;
}
// Pull out data once.
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
// Increase clock.
t_ms += 10;
}
int32_t delay_after = timestamp - neteq_inst_->getSpeechTimeStamp();
// Compare delay before and after, and make sure it differs less than 20 ms.
EXPECT_LE(delay_after, delay_before + 20 * 16);
EXPECT_GE(delay_after, delay_before - 20 * 16);
}
TEST_F(NetEqDecodingTest, NoInputDataStereo) {
void *ms_info;
ms_info = malloc(WebRtcNetEQ_GetMasterSlaveInfoSize());
neteq_inst_->setMaster();
// Slave instance without decoders (because it is easier).
WebRtcNetEQDecoder usedCodec[kDecoderReservedEnd - 1];
usedCodec[0] = kDecoderPCMu;
NETEQTEST_NetEQClass* slave_inst =
new NETEQTEST_NetEQClass(usedCodec, 1, 8000, kTCPLargeJitter);
ASSERT_TRUE(slave_inst);
NETEQTEST_Decoder* dec = new decoder_PCMU(0);
ASSERT_TRUE(dec != NULL);
dec->loadToNetEQ(*slave_inst);
slave_inst->setSlave();
// Pull out data.
const int kNumFrames = 100;
for (int i = 0; i < kNumFrames; ++i) {
ASSERT_TRUE(kBlockSize8kHz == neteq_inst_->recOut(out_data_, ms_info));
ASSERT_TRUE(kBlockSize8kHz == slave_inst->recOut(out_data_, ms_info));
}
delete dec;
delete slave_inst;
free(ms_info);
}
} // namespace