blob: 52d5086a8e4732d5279d9f9f59e0c9d0e83c112d [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/producer_fec.h"
#include "modules/rtp_rtcp/source/forward_error_correction.h"
#include "modules/rtp_rtcp/source/rtp_utility.h"
namespace webrtc {
enum { kREDForFECHeaderLength = 1 };
// This controls the maximum amount of excess overhead (actual - target)
// allowed in order to trigger GenerateFEC(), before |params_.max_fec_frames|
// is reached. Overhead here is defined as relative to number of media packets.
enum { kMaxExcessOverhead = 50 }; // Q8.
// This is the minimum number of media packets required (above some protection
// level) in order to trigger GenerateFEC(), before |params_.max_fec_frames| is
// reached.
enum { kMinimumMediaPackets = 4 };
// Threshold on the received FEC protection level, above which we enforce at
// least |kMinimumMediaPackets| packets for the FEC code. Below this
// threshold |kMinimumMediaPackets| is set to default value of 1.
enum { kHighProtectionThreshold = 80 }; // Corresponds to ~30 overhead, range
// is 0 to 255, where 255 corresponds to 100% overhead (relative to number of
// media packets).
struct RtpPacket {
WebRtc_UWord16 rtpHeaderLength;
ForwardErrorCorrection::Packet* pkt;
};
RedPacket::RedPacket(int length)
: data_(new uint8_t[length]),
length_(length),
header_length_(0) {
}
RedPacket::~RedPacket() {
delete [] data_;
}
void RedPacket::CreateHeader(const uint8_t* rtp_header, int header_length,
int red_pl_type, int pl_type) {
assert(header_length + kREDForFECHeaderLength <= length_);
memcpy(data_, rtp_header, header_length);
// Replace payload type.
data_[1] &= 0x80;
data_[1] += red_pl_type;
// Add RED header
// f-bit always 0
data_[header_length] = pl_type;
header_length_ = header_length + kREDForFECHeaderLength;
}
void RedPacket::SetSeqNum(int seq_num) {
assert(seq_num >= 0 && seq_num < (1<<16));
ModuleRTPUtility::AssignUWord16ToBuffer(&data_[2], seq_num);
}
void RedPacket::AssignPayload(const uint8_t* payload, int length) {
assert(header_length_ + length <= length_);
memcpy(data_ + header_length_, payload, length);
}
void RedPacket::ClearMarkerBit() {
data_[1] &= 0x7F;
}
uint8_t* RedPacket::data() const {
return data_;
}
int RedPacket::length() const {
return length_;
}
ProducerFec::ProducerFec(ForwardErrorCorrection* fec)
: fec_(fec),
media_packets_fec_(),
fec_packets_(),
num_frames_(0),
incomplete_frame_(false),
num_first_partition_(0),
minimum_media_packets_fec_(1),
params_(),
new_params_() {
memset(&params_, 0, sizeof(params_));
memset(&new_params_, 0, sizeof(new_params_));
}
ProducerFec::~ProducerFec() {
DeletePackets();
}
void ProducerFec::SetFecParameters(const FecProtectionParams* params,
int num_first_partition) {
// Number of first partition packets cannot exceed kMaxMediaPackets
assert(params->fec_rate >= 0 && params->fec_rate < 256);
if (num_first_partition >
static_cast<int>(ForwardErrorCorrection::kMaxMediaPackets)) {
num_first_partition =
ForwardErrorCorrection::kMaxMediaPackets;
}
// Store the new params and apply them for the next set of FEC packets being
// produced.
new_params_ = *params;
num_first_partition_ = num_first_partition;
if (params->fec_rate > kHighProtectionThreshold) {
minimum_media_packets_fec_ = kMinimumMediaPackets;
} else {
minimum_media_packets_fec_ = 1;
}
}
RedPacket* ProducerFec::BuildRedPacket(const uint8_t* data_buffer,
int payload_length,
int rtp_header_length,
int red_pl_type) {
RedPacket* red_packet = new RedPacket(payload_length +
kREDForFECHeaderLength +
rtp_header_length);
int pl_type = data_buffer[1] & 0x7f;
red_packet->CreateHeader(data_buffer, rtp_header_length,
red_pl_type, pl_type);
red_packet->AssignPayload(data_buffer + rtp_header_length, payload_length);
return red_packet;
}
int ProducerFec::AddRtpPacketAndGenerateFec(const uint8_t* data_buffer,
int payload_length,
int rtp_header_length) {
assert(fec_packets_.empty());
if (media_packets_fec_.empty()) {
params_ = new_params_;
}
incomplete_frame_ = true;
const bool marker_bit = (data_buffer[1] & kRtpMarkerBitMask) ? true : false;
if (media_packets_fec_.size() < ForwardErrorCorrection::kMaxMediaPackets) {
// Generic FEC can only protect up to kMaxMediaPackets packets.
ForwardErrorCorrection::Packet* packet = new ForwardErrorCorrection::Packet;
packet->length = payload_length + rtp_header_length;
memcpy(packet->data, data_buffer, packet->length);
media_packets_fec_.push_back(packet);
}
if (marker_bit) {
++num_frames_;
incomplete_frame_ = false;
}
// Produce FEC over at most |params_.max_fec_frames| frames, or as soon as:
// (1) the excess overhead (actual overhead - requested/target overhead) is
// less than |kMaxExcessOverhead|, and
// (2) at least |minimum_media_packets_fec_| media packets is reached.
if (!incomplete_frame_ &&
(num_frames_ == params_.max_fec_frames ||
(ExcessOverheadBelowMax() && MinimumMediaPacketsReached()))) {
assert(num_first_partition_ <=
static_cast<int>(ForwardErrorCorrection::kMaxMediaPackets));
int ret = fec_->GenerateFEC(media_packets_fec_,
params_.fec_rate,
num_first_partition_,
params_.use_uep_protection,
params_.fec_mask_type,
&fec_packets_);
if (fec_packets_.empty()) {
num_frames_ = 0;
DeletePackets();
}
return ret;
}
return 0;
}
// Returns true if the excess overhead (actual - target) for the FEC is below
// the amount |kMaxExcessOverhead|. This effects the lower protection level
// cases and low number of media packets/frame. The target overhead is given by
// |params_.fec_rate|, and is only achievable in the limit of large number of
// media packets.
bool ProducerFec::ExcessOverheadBelowMax() {
return ((Overhead() - params_.fec_rate) < kMaxExcessOverhead);
}
// Returns true if the media packet list for the FEC is at least
// |minimum_media_packets_fec_|. This condition tries to capture the effect
// that, for the same amount of protection/overhead, longer codes
// (e.g. (2k,2m) vs (k,m)) are generally more effective at recovering losses.
bool ProducerFec::MinimumMediaPacketsReached() {
float avg_num_packets_frame = static_cast<float>(media_packets_fec_.size()) /
num_frames_;
if (avg_num_packets_frame < 2.0f) {
return (static_cast<int>(media_packets_fec_.size()) >=
minimum_media_packets_fec_);
} else {
// For larger rates (more packets/frame), increase the threshold.
return (static_cast<int>(media_packets_fec_.size()) >=
minimum_media_packets_fec_ + 1);
}
}
bool ProducerFec::FecAvailable() const {
return (fec_packets_.size() > 0);
}
RedPacket* ProducerFec::GetFecPacket(int red_pl_type,
int fec_pl_type,
uint16_t seq_num,
int rtp_header_length) {
if (fec_packets_.empty())
return NULL;
// Build FEC packet. The FEC packets in |fec_packets_| doesn't
// have RTP headers, so we're reusing the header from the last
// media packet.
ForwardErrorCorrection::Packet* packet_to_send = fec_packets_.front();
ForwardErrorCorrection::Packet* last_media_packet = media_packets_fec_.back();
RedPacket* return_packet = new RedPacket(packet_to_send->length +
kREDForFECHeaderLength +
rtp_header_length);
return_packet->CreateHeader(last_media_packet->data,
rtp_header_length,
red_pl_type,
fec_pl_type);
return_packet->SetSeqNum(seq_num);
return_packet->ClearMarkerBit();
return_packet->AssignPayload(packet_to_send->data, packet_to_send->length);
fec_packets_.pop_front();
if (fec_packets_.empty()) {
// Done with all the FEC packets. Reset for next run.
DeletePackets();
num_frames_ = 0;
}
return return_packet;
}
int ProducerFec::Overhead() const {
// Overhead is defined as relative to the number of media packets, and not
// relative to total number of packets. This definition is inhereted from the
// protection factor produced by video_coding module and how the FEC
// generation is implemented.
assert(!media_packets_fec_.empty());
int num_fec_packets = fec_->GetNumberOfFecPackets(media_packets_fec_.size(),
params_.fec_rate);
// Return the overhead in Q8.
return (num_fec_packets << 8) / media_packets_fec_.size();
}
void ProducerFec::DeletePackets() {
while (!media_packets_fec_.empty()) {
delete media_packets_fec_.front();
media_packets_fec_.pop_front();
}
assert(media_packets_fec_.empty());
}
} // namespace webrtc