blob: 405c05e8d347b727ae2ab1aa7ee68137006d822b [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/main/source/jitter_buffer.h"
#include <algorithm>
#include <cassert>
#include "modules/video_coding/main/source/event.h"
#include "modules/video_coding/main/source/frame_buffer.h"
#include "modules/video_coding/main/source/inter_frame_delay.h"
#include "modules/video_coding/main/source/internal_defines.h"
#include "modules/video_coding/main/source/jitter_buffer_common.h"
#include "modules/video_coding/main/source/jitter_estimator.h"
#include "modules/video_coding/main/source/packet.h"
#include "modules/video_coding/main/source/tick_time_base.h"
#include "system_wrappers/interface/critical_section_wrapper.h"
#include "system_wrappers/interface/trace.h"
namespace webrtc {
// Predicates used when searching for frames in the frame buffer list
class FrameSmallerTimestamp {
public:
explicit FrameSmallerTimestamp(uint32_t timestamp) : timestamp_(timestamp) {}
bool operator()(VCMFrameBuffer* frame) {
return (LatestTimestamp(timestamp_, frame->TimeStamp(), NULL) ==
timestamp_);
}
private:
uint32_t timestamp_;
};
class FrameEqualTimestamp {
public:
explicit FrameEqualTimestamp(uint32_t timestamp) : timestamp_(timestamp) {}
bool operator()(VCMFrameBuffer* frame) {
return (timestamp_ == frame->TimeStamp());
}
private:
uint32_t timestamp_;
};
class CompleteDecodableKeyFrameCriteria {
public:
bool operator()(VCMFrameBuffer* frame) {
return (frame->FrameType() == kVideoFrameKey) &&
(frame->GetState() == kStateComplete ||
frame->GetState() == kStateDecodable);
}
};
VCMJitterBuffer::VCMJitterBuffer(TickTimeBase* clock,
int vcm_id,
int receiver_id,
bool master)
: vcm_id_(vcm_id),
receiver_id_(receiver_id),
clock_(clock),
running_(false),
crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
master_(master),
frame_event_(),
packet_event_(),
max_number_of_frames_(kStartNumberOfFrames),
frame_buffers_(),
frame_list_(),
last_decoded_state_(),
first_packet_(true),
num_not_decodable_packets_(0),
receive_statistics_(),
incoming_frame_rate_(0),
incoming_frame_count_(0),
time_last_incoming_frame_count_(0),
incoming_bit_count_(0),
incoming_bit_rate_(0),
drop_count_(0),
num_consecutive_old_frames_(0),
num_consecutive_old_packets_(0),
num_discarded_packets_(0),
jitter_estimate_(vcm_id, receiver_id),
inter_frame_delay_(clock_->MillisecondTimestamp()),
rtt_ms_(0),
nack_mode_(kNoNack),
low_rtt_nack_threshold_ms_(-1),
high_rtt_nack_threshold_ms_(-1),
nack_seq_nums_(),
nack_seq_nums_length_(0),
waiting_for_key_frame_(false) {
memset(frame_buffers_, 0, sizeof(frame_buffers_));
memset(receive_statistics_, 0, sizeof(receive_statistics_));
memset(nack_seq_nums_internal_, -1, sizeof(nack_seq_nums_internal_));
for (int i = 0; i < kStartNumberOfFrames; i++) {
frame_buffers_[i] = new VCMFrameBuffer();
}
}
VCMJitterBuffer::~VCMJitterBuffer() {
Stop();
for (int i = 0; i < kMaxNumberOfFrames; i++) {
if (frame_buffers_[i]) {
delete frame_buffers_[i];
}
}
delete crit_sect_;
}
void VCMJitterBuffer::CopyFrom(const VCMJitterBuffer& rhs) {
if (this != &rhs) {
crit_sect_->Enter();
rhs.crit_sect_->Enter();
vcm_id_ = rhs.vcm_id_;
receiver_id_ = rhs.receiver_id_;
running_ = rhs.running_;
master_ = !rhs.master_;
max_number_of_frames_ = rhs.max_number_of_frames_;
incoming_frame_rate_ = rhs.incoming_frame_rate_;
incoming_frame_count_ = rhs.incoming_frame_count_;
time_last_incoming_frame_count_ = rhs.time_last_incoming_frame_count_;
incoming_bit_count_ = rhs.incoming_bit_count_;
incoming_bit_rate_ = rhs.incoming_bit_rate_;
drop_count_ = rhs.drop_count_;
num_consecutive_old_frames_ = rhs.num_consecutive_old_frames_;
num_consecutive_old_packets_ = rhs.num_consecutive_old_packets_;
num_discarded_packets_ = rhs.num_discarded_packets_;
jitter_estimate_ = rhs.jitter_estimate_;
inter_frame_delay_ = rhs.inter_frame_delay_;
waiting_for_completion_ = rhs.waiting_for_completion_;
rtt_ms_ = rhs.rtt_ms_;
nack_seq_nums_length_ = rhs.nack_seq_nums_length_;
waiting_for_key_frame_ = rhs.waiting_for_key_frame_;
first_packet_ = rhs.first_packet_;
last_decoded_state_ = rhs.last_decoded_state_;
num_not_decodable_packets_ = rhs.num_not_decodable_packets_;
memcpy(receive_statistics_, rhs.receive_statistics_,
sizeof(receive_statistics_));
memcpy(nack_seq_nums_internal_, rhs.nack_seq_nums_internal_,
sizeof(nack_seq_nums_internal_));
memcpy(nack_seq_nums_, rhs.nack_seq_nums_, sizeof(nack_seq_nums_));
for (int i = 0; i < kMaxNumberOfFrames; i++) {
if (frame_buffers_[i] != NULL) {
delete frame_buffers_[i];
frame_buffers_[i] = NULL;
}
}
frame_list_.clear();
for (int i = 0; i < max_number_of_frames_; i++) {
frame_buffers_[i] = new VCMFrameBuffer(*(rhs.frame_buffers_[i]));
if (frame_buffers_[i]->Length() > 0) {
FrameList::reverse_iterator rit = std::find_if(
frame_list_.rbegin(), frame_list_.rend(),
FrameSmallerTimestamp(frame_buffers_[i]->TimeStamp()));
frame_list_.insert(rit.base(), frame_buffers_[i]);
}
}
rhs.crit_sect_->Leave();
crit_sect_->Leave();
}
}
void VCMJitterBuffer::Start() {
CriticalSectionScoped cs(crit_sect_);
running_ = true;
incoming_frame_count_ = 0;
incoming_frame_rate_ = 0;
incoming_bit_count_ = 0;
incoming_bit_rate_ = 0;
time_last_incoming_frame_count_ = clock_->MillisecondTimestamp();
memset(receive_statistics_, 0, sizeof(receive_statistics_));
num_consecutive_old_frames_ = 0;
num_consecutive_old_packets_ = 0;
num_discarded_packets_ = 0;
// Start in a non-signaled state.
frame_event_.Reset();
packet_event_.Reset();
waiting_for_completion_.frame_size = 0;
waiting_for_completion_.timestamp = 0;
waiting_for_completion_.latest_packet_time = -1;
first_packet_ = true;
nack_seq_nums_length_ = 0;
waiting_for_key_frame_ = false;
rtt_ms_ = 0;
num_not_decodable_packets_ = 0;
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_), "JB(0x%x): Jitter buffer: start",
this);
}
void VCMJitterBuffer::Stop() {
crit_sect_->Enter();
running_ = false;
last_decoded_state_.Reset();
frame_list_.clear();
for (int i = 0; i < kMaxNumberOfFrames; i++) {
if (frame_buffers_[i] != NULL) {
static_cast<VCMFrameBuffer*>(frame_buffers_[i])->SetState(kStateFree);
}
}
crit_sect_->Leave();
// Make sure we wake up any threads waiting on these events.
frame_event_.Set();
packet_event_.Set();
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_), "JB(0x%x): Jitter buffer: stop",
this);
}
bool VCMJitterBuffer::Running() const {
CriticalSectionScoped cs(crit_sect_);
return running_;
}
void VCMJitterBuffer::Flush() {
CriticalSectionScoped cs(crit_sect_);
// Erase all frames from the sorted list and set their state to free.
frame_list_.clear();
for (int i = 0; i < max_number_of_frames_; i++) {
ReleaseFrameIfNotDecoding(frame_buffers_[i]);
}
last_decoded_state_.Reset(); // TODO(mikhal): sync reset.
num_not_decodable_packets_ = 0;
frame_event_.Reset();
packet_event_.Reset();
num_consecutive_old_frames_ = 0;
num_consecutive_old_packets_ = 0;
// Also reset the jitter and delay estimates
jitter_estimate_.Reset();
inter_frame_delay_.Reset(clock_->MillisecondTimestamp());
waiting_for_completion_.frame_size = 0;
waiting_for_completion_.timestamp = 0;
waiting_for_completion_.latest_packet_time = -1;
first_packet_ = true;
nack_seq_nums_length_ = 0;
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_), "JB(0x%x): Jitter buffer: flush",
this);
}
// Get received key and delta frames
void VCMJitterBuffer::FrameStatistics(uint32_t* received_delta_frames,
uint32_t* received_key_frames) const {
assert(received_delta_frames);
assert(received_key_frames);
CriticalSectionScoped cs(crit_sect_);
*received_delta_frames = receive_statistics_[1] + receive_statistics_[3];
*received_key_frames = receive_statistics_[0] + receive_statistics_[2];
}
int VCMJitterBuffer::num_not_decodable_packets() const {
CriticalSectionScoped cs(crit_sect_);
return num_not_decodable_packets_;
}
int VCMJitterBuffer::num_discarded_packets() const {
CriticalSectionScoped cs(crit_sect_);
return num_discarded_packets_;
}
// Calculate framerate and bitrate.
void VCMJitterBuffer::IncomingRateStatistics(unsigned int* framerate,
unsigned int* bitrate) {
assert(framerate);
assert(bitrate);
CriticalSectionScoped cs(crit_sect_);
const int64_t now = clock_->MillisecondTimestamp();
int64_t diff = now - time_last_incoming_frame_count_;
if (diff < 1000 && incoming_frame_rate_ > 0 && incoming_bit_rate_ > 0) {
// Make sure we report something even though less than
// 1 second has passed since last update.
*framerate = incoming_frame_rate_;
*bitrate = incoming_bit_rate_;
} else if (incoming_frame_count_ != 0) {
// We have received frame(s) since last call to this function
// Prepare calculations
if (diff <= 0) {
diff = 1;
}
// we add 0.5f for rounding
float rate = 0.5f + ((incoming_frame_count_ * 1000.0f) / diff);
if (rate < 1.0f) {
rate = 1.0f;
}
// Calculate frame rate
// Let r be rate.
// r(0) = 1000*framecount/delta_time.
// (I.e. frames per second since last calculation.)
// frame_rate = r(0)/2 + r(-1)/2
// (I.e. fr/s average this and the previous calculation.)
*framerate = (incoming_frame_rate_ + static_cast<unsigned int>(rate)) / 2;
incoming_frame_rate_ = static_cast<unsigned int>(rate);
// Calculate bit rate
if (incoming_bit_count_ == 0) {
*bitrate = 0;
} else {
*bitrate = 10 * ((100 * incoming_bit_count_) /
static_cast<unsigned int>(diff));
}
incoming_bit_rate_ = *bitrate;
// Reset count
incoming_frame_count_ = 0;
incoming_bit_count_ = 0;
time_last_incoming_frame_count_ = now;
} else {
// No frames since last call
time_last_incoming_frame_count_ = clock_->MillisecondTimestamp();
*framerate = 0;
bitrate = 0;
incoming_bit_rate_ = 0;
}
}
// Wait for the first packet in the next frame to arrive.
int64_t VCMJitterBuffer::NextTimestamp(uint32_t max_wait_time_ms,
FrameType* incoming_frame_type,
int64_t* render_time_ms) {
assert(incoming_frame_type);
assert(render_time_ms);
if (!running_) {
return -1;
}
crit_sect_->Enter();
// Finding oldest frame ready for decoder, check sequence number and size.
CleanUpOldFrames();
FrameList::iterator it = frame_list_.begin();
if (it == frame_list_.end()) {
packet_event_.Reset();
crit_sect_->Leave();
if (packet_event_.Wait(max_wait_time_ms) == kEventSignaled) {
// are we closing down the Jitter buffer
if (!running_) {
return -1;
}
crit_sect_->Enter();
CleanUpOldFrames();
it = frame_list_.begin();
} else {
crit_sect_->Enter();
}
}
if (it == frame_list_.end()) {
crit_sect_->Leave();
return -1;
}
// We have a frame.
*incoming_frame_type = (*it)->FrameType();
*render_time_ms = (*it)->RenderTimeMs();
const uint32_t timestamp = (*it)->TimeStamp();
crit_sect_->Leave();
return timestamp;
}
// Answers the question:
// Will the packet sequence be complete if the next frame is grabbed for
// decoding right now? That is, have we lost a frame between the last decoded
// frame and the next, or is the next
// frame missing one or more packets?
bool VCMJitterBuffer::CompleteSequenceWithNextFrame() {
CriticalSectionScoped cs(crit_sect_);
// Finding oldest frame ready for decoder, check sequence number and size
CleanUpOldFrames();
if (frame_list_.empty())
return true;
VCMFrameBuffer* oldest_frame = frame_list_.front();
if (frame_list_.size() <= 1 &&
oldest_frame->GetState() != kStateComplete) {
// Frame not ready to be decoded.
return true;
}
if (!oldest_frame->Complete()) {
return false;
}
// See if we have lost a frame before this one.
if (last_decoded_state_.init()) {
// Following start, reset or flush -> check for key frame.
if (oldest_frame->FrameType() != kVideoFrameKey) {
return false;
}
} else if (oldest_frame->GetLowSeqNum() == -1) {
return false;
} else if (!last_decoded_state_.ContinuousFrame(oldest_frame)) {
return false;
}
return true;
}
// Returns immediately or a |max_wait_time_ms| ms event hang waiting for a
// complete frame, |max_wait_time_ms| decided by caller.
VCMEncodedFrame* VCMJitterBuffer::GetCompleteFrameForDecoding(
uint32_t max_wait_time_ms) {
if (!running_) {
return NULL;
}
crit_sect_->Enter();
CleanUpOldFrames();
if (last_decoded_state_.init() && WaitForRetransmissions()) {
waiting_for_key_frame_ = true;
}
FrameList::iterator it = FindOldestCompleteContinuousFrame(false);
if (it == frame_list_.end()) {
if (max_wait_time_ms == 0) {
crit_sect_->Leave();
return NULL;
}
const int64_t end_wait_time_ms = clock_->MillisecondTimestamp()
+ max_wait_time_ms;
int64_t wait_time_ms = max_wait_time_ms;
while (wait_time_ms > 0) {
crit_sect_->Leave();
const EventTypeWrapper ret =
frame_event_.Wait(static_cast<uint32_t>(wait_time_ms));
crit_sect_->Enter();
if (ret == kEventSignaled) {
// are we closing down the Jitter buffer
if (!running_) {
crit_sect_->Leave();
return NULL;
}
// Finding oldest frame ready for decoder, but check
// sequence number and size
CleanUpOldFrames();
it = FindOldestCompleteContinuousFrame(false);
if (it == frame_list_.end()) {
wait_time_ms = end_wait_time_ms -
clock_->MillisecondTimestamp();
} else {
break;
}
} else {
crit_sect_->Leave();
return NULL;
}
}
// Inside |crit_sect_|.
} else {
// We already have a frame reset the event.
frame_event_.Reset();
}
if (it == frame_list_.end()) {
// Even after signaling we're still missing a complete continuous frame.
crit_sect_->Leave();
return NULL;
}
VCMFrameBuffer* oldest_frame = *it;
it = frame_list_.erase(it);
// Update jitter estimate.
const bool retransmitted = (oldest_frame->GetNackCount() > 0);
if (retransmitted) {
jitter_estimate_.FrameNacked();
} else if (oldest_frame->Length() > 0) {
// Ignore retransmitted and empty frames.
UpdateJitterEstimate(*oldest_frame, false);
}
oldest_frame->SetState(kStateDecoding);
CleanUpOldFrames();
if (oldest_frame->FrameType() == kVideoFrameKey) {
waiting_for_key_frame_ = false;
}
// We have a frame - update decoded state with frame info.
last_decoded_state_.SetState(oldest_frame);
crit_sect_->Leave();
return oldest_frame;
}
VCMEncodedFrame* VCMJitterBuffer::GetFrameForDecoding() {
CriticalSectionScoped cs(crit_sect_);
if (!running_) {
return NULL;
}
if (WaitForRetransmissions()) {
return GetFrameForDecodingNACK();
}
CleanUpOldFrames();
if (frame_list_.empty()) {
return NULL;
}
VCMFrameBuffer* oldest_frame = frame_list_.front();
if (frame_list_.size() <= 1 &&
oldest_frame->GetState() != kStateComplete) {
return NULL;
}
// Incomplete frame pulled out from jitter buffer,
// update the jitter estimate with what we currently know.
// This frame shouldn't have been retransmitted, but if we recently
// turned off NACK this might still happen.
const bool retransmitted = (oldest_frame->GetNackCount() > 0);
if (retransmitted) {
jitter_estimate_.FrameNacked();
} else if (oldest_frame->Length() > 0) {
// Ignore retransmitted and empty frames.
// Update with the previous incomplete frame first
if (waiting_for_completion_.latest_packet_time >= 0) {
UpdateJitterEstimate(waiting_for_completion_, true);
}
// Then wait for this one to get complete
waiting_for_completion_.frame_size = oldest_frame->Length();
waiting_for_completion_.latest_packet_time =
oldest_frame->LatestPacketTimeMs();
waiting_for_completion_.timestamp = oldest_frame->TimeStamp();
}
frame_list_.erase(frame_list_.begin());
// Look for previous frame loss
VerifyAndSetPreviousFrameLost(oldest_frame);
// The state must be changed to decoding before cleaning up zero sized
// frames to avoid empty frames being cleaned up and then given to the
// decoder.
// Set as decoding. Propagates the missing_frame bit.
oldest_frame->SetState(kStateDecoding);
CleanUpOldFrames();
if (oldest_frame->FrameType() == kVideoFrameKey) {
waiting_for_key_frame_ = false;
}
num_not_decodable_packets_ += oldest_frame->NotDecodablePackets();
// We have a frame - update decoded state with frame info.
last_decoded_state_.SetState(oldest_frame);
return oldest_frame;
}
// Release frame when done with decoding. Should never be used to release
// frames from within the jitter buffer.
void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) {
CriticalSectionScoped cs(crit_sect_);
VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame);
if (frame_buffer)
frame_buffer->SetState(kStateFree);
}
// Gets frame to use for this timestamp. If no match, get empty frame.
int VCMJitterBuffer::GetFrame(const VCMPacket& packet,
VCMEncodedFrame*& frame) {
if (!running_) { // Don't accept incoming packets until we are started.
return VCM_UNINITIALIZED;
}
crit_sect_->Enter();
// Does this packet belong to an old frame?
if (last_decoded_state_.IsOldPacket(&packet)) {
// Account only for media packets.
if (packet.sizeBytes > 0) {
num_discarded_packets_++;
num_consecutive_old_packets_++;
}
// Update last decoded sequence number if the packet arrived late and
// belongs to a frame with a timestamp equal to the last decoded
// timestamp.
last_decoded_state_.UpdateOldPacket(&packet);
if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) {
Flush();
crit_sect_->Leave();
return VCM_FLUSH_INDICATOR;
}
crit_sect_->Leave();
return VCM_OLD_PACKET_ERROR;
}
num_consecutive_old_packets_ = 0;
FrameList::iterator it = std::find_if(
frame_list_.begin(),
frame_list_.end(),
FrameEqualTimestamp(packet.timestamp));
if (it != frame_list_.end()) {
frame = *it;
crit_sect_->Leave();
return VCM_OK;
}
crit_sect_->Leave();
// No match, return empty frame.
frame = GetEmptyFrame();
if (frame != NULL) {
return VCM_OK;
}
// No free frame! Try to reclaim some...
crit_sect_->Enter();
RecycleFramesUntilKeyFrame();
crit_sect_->Leave();
frame = GetEmptyFrame();
if (frame != NULL) {
return VCM_OK;
}
return VCM_JITTER_BUFFER_ERROR;
}
// Deprecated! Kept for testing purposes.
VCMEncodedFrame* VCMJitterBuffer::GetFrame(const VCMPacket& packet) {
VCMEncodedFrame* frame = NULL;
if (GetFrame(packet, frame) < 0) {
return NULL;
}
return frame;
}
int64_t VCMJitterBuffer::LastPacketTime(VCMEncodedFrame* frame,
bool* retransmitted) const {
assert(retransmitted);
CriticalSectionScoped cs(crit_sect_);
*retransmitted = (static_cast<VCMFrameBuffer*>(frame)->GetNackCount() > 0);
return static_cast<VCMFrameBuffer*>(frame)->LatestPacketTimeMs();
}
VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(VCMEncodedFrame* encoded_frame,
const VCMPacket& packet) {
assert(encoded_frame);
CriticalSectionScoped cs(crit_sect_);
int64_t now_ms = clock_->MillisecondTimestamp();
VCMFrameBufferEnum buffer_return = kSizeError;
VCMFrameBufferEnum ret = kSizeError;
VCMFrameBuffer* frame = static_cast<VCMFrameBuffer*>(encoded_frame);
// We are keeping track of the first seq num, the latest seq num and
// the number of wraps to be able to calculate how many packets we expect.
if (first_packet_) {
// Now it's time to start estimating jitter
// reset the delay estimate.
inter_frame_delay_.Reset(clock_->MillisecondTimestamp());
first_packet_ = false;
}
// Empty packets may bias the jitter estimate (lacking size component),
// therefore don't let empty packet trigger the following updates:
if (packet.frameType != kFrameEmpty) {
if (waiting_for_completion_.timestamp == packet.timestamp) {
// This can get bad if we have a lot of duplicate packets,
// we will then count some packet multiple times.
waiting_for_completion_.frame_size += packet.sizeBytes;
waiting_for_completion_.latest_packet_time = now_ms;
} else if (waiting_for_completion_.latest_packet_time >= 0 &&
waiting_for_completion_.latest_packet_time + 2000 <= now_ms) {
// A packet should never be more than two seconds late
UpdateJitterEstimate(waiting_for_completion_, true);
waiting_for_completion_.latest_packet_time = -1;
waiting_for_completion_.frame_size = 0;
waiting_for_completion_.timestamp = 0;
}
}
VCMFrameBufferStateEnum state = frame->GetState();
last_decoded_state_.UpdateOldPacket(&packet);
// Insert packet
// Check for first packet
// High sequence number will be -1 if neither an empty packet nor
// a media packet has been inserted.
bool first = (frame->GetHighSeqNum() == -1);
// When in Hybrid mode, we allow for a decodable state
// Note: Under current version, a decodable frame will never be
// triggered, as the body of the function is empty.
// TODO(mikhal): Update when decodable is enabled.
buffer_return = frame->InsertPacket(packet, now_ms,
nack_mode_ == kNackHybrid,
rtt_ms_);
ret = buffer_return;
if (buffer_return > 0) {
incoming_bit_count_ += packet.sizeBytes << 3;
// Has this packet been nacked or is it about to be nacked?
if (IsPacketRetransmitted(packet)) {
frame->IncrementNackCount();
}
// Insert each frame once on the arrival of the first packet
// belonging to that frame (media or empty).
if (state == kStateEmpty && first) {
ret = kFirstPacket;
FrameList::reverse_iterator rit = std::find_if(
frame_list_.rbegin(),
frame_list_.rend(),
FrameSmallerTimestamp(frame->TimeStamp()));
frame_list_.insert(rit.base(), frame);
}
}
switch (buffer_return) {
case kStateError:
case kTimeStampError:
case kSizeError: {
if (frame != NULL) {
// Will be released when it gets old.
frame->Reset();
frame->SetState(kStateEmpty);
}
break;
}
case kCompleteSession: {
// Only update return value for a JB flush indicator.
if (UpdateFrameState(frame) == kFlushIndicator)
ret = kFlushIndicator;
// Signal that we have a received packet.
packet_event_.Set();
break;
}
case kDecodableSession:
case kIncomplete: {
// Signal that we have a received packet.
packet_event_.Set();
break;
}
case kNoError:
case kDuplicatePacket: {
break;
}
default: {
assert(false && "JitterBuffer::InsertPacket: Undefined value");
}
}
return ret;
}
uint32_t VCMJitterBuffer::EstimatedJitterMs() {
CriticalSectionScoped cs(crit_sect_);
uint32_t estimate = VCMJitterEstimator::OPERATING_SYSTEM_JITTER;
// Compute RTT multiplier for estimation
// low_rtt_nackThresholdMs_ == -1 means no FEC.
double rtt_mult = 1.0f;
if (nack_mode_ == kNackHybrid && (low_rtt_nack_threshold_ms_ >= 0 &&
static_cast<int>(rtt_ms_) > low_rtt_nack_threshold_ms_)) {
// from here we count on FEC
rtt_mult = 0.0f;
}
estimate += static_cast<uint32_t>
(jitter_estimate_.GetJitterEstimate(rtt_mult) + 0.5);
return estimate;
}
void VCMJitterBuffer::UpdateRtt(uint32_t rtt_ms) {
CriticalSectionScoped cs(crit_sect_);
rtt_ms_ = rtt_ms;
jitter_estimate_.UpdateRtt(rtt_ms);
}
void VCMJitterBuffer::SetNackMode(VCMNackMode mode,
int low_rtt_nack_threshold_ms,
int high_rtt_nack_threshold_ms) {
CriticalSectionScoped cs(crit_sect_);
nack_mode_ = mode;
assert(low_rtt_nack_threshold_ms >= -1 && high_rtt_nack_threshold_ms >= -1);
assert(high_rtt_nack_threshold_ms == -1 ||
low_rtt_nack_threshold_ms <= high_rtt_nack_threshold_ms);
assert(low_rtt_nack_threshold_ms > -1 || high_rtt_nack_threshold_ms == -1);
low_rtt_nack_threshold_ms_ = low_rtt_nack_threshold_ms;
high_rtt_nack_threshold_ms_ = high_rtt_nack_threshold_ms;
if (nack_mode_ == kNoNack) {
jitter_estimate_.ResetNackCount();
}
}
VCMNackMode VCMJitterBuffer::nack_mode() const {
CriticalSectionScoped cs(crit_sect_);
return nack_mode_;
}
uint16_t* VCMJitterBuffer::CreateNackList(uint16_t* nack_list_size,
bool* list_extended) {
assert(nack_list_size);
assert(list_extended);
// TODO(mikhal/stefan): Refactor to use last_decoded_state.
CriticalSectionScoped cs(crit_sect_);
int i = 0;
int32_t low_seq_num = -1;
int32_t high_seq_num = -1;
*list_extended = false;
// Don't create a NACK list if we won't wait for the retransmitted packets.
if (!WaitForRetransmissions()) {
*nack_list_size = 0;
return NULL;
}
// Find the lowest (last decoded) sequence number and
// the highest (highest sequence number of the newest frame)
// sequence number. The NACK list is a subset of the range
// between those two numbers.
GetLowHighSequenceNumbers(&low_seq_num, &high_seq_num);
// Build a list of all sequence numbers we have.
if (low_seq_num == -1 || high_seq_num == -1) {
// This happens if we lose the first packet, nothing is popped.
if (high_seq_num == -1) {
// We have not received any packets yet.
*nack_list_size = 0;
} else {
// Signal that we want a key frame request to be sent.
*nack_list_size = 0xffff;
}
return NULL;
}
int number_of_seq_num = 0;
if (low_seq_num > high_seq_num) {
if (low_seq_num - high_seq_num > 0x00ff) {
// Wrap.
number_of_seq_num = (0xffff - low_seq_num) + high_seq_num + 1;
}
} else {
number_of_seq_num = high_seq_num - low_seq_num;
}
if (number_of_seq_num > kNackHistoryLength) {
// NACK list has grown too big, flush and try to restart.
WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_),
"Nack list too large, try to find a key frame and restart "
"from seq: %d. Lowest seq in jb %d",
high_seq_num, low_seq_num);
// This NACK size will trigger a key frame request.
bool found_key_frame = false;
while (number_of_seq_num > kNackHistoryLength) {
found_key_frame = RecycleFramesUntilKeyFrame();
if (!found_key_frame) {
break;
}
// Check if we still have too many packets in the jitter buffer.
low_seq_num = -1;
high_seq_num = -1;
GetLowHighSequenceNumbers(&low_seq_num, &high_seq_num);
if (high_seq_num == -1) {
assert(low_seq_num != -1); // This should never happen.
// We can't calculate the NACK list length.
return NULL;
}
number_of_seq_num = 0;
if (low_seq_num > high_seq_num) {
if (low_seq_num - high_seq_num > 0x00ff) {
// wrap
number_of_seq_num = (0xffff - low_seq_num) + high_seq_num + 1;
high_seq_num = low_seq_num;
}
} else {
number_of_seq_num = high_seq_num - low_seq_num;
}
}
if (!found_key_frame) {
// Set the last decoded sequence number to current high.
// This is to not get a large nack list again right away.
last_decoded_state_.SetSeqNum(static_cast<uint16_t>(high_seq_num));
// Set to trigger key frame signal.
*nack_list_size = 0xffff;
*list_extended = true;
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1,
"\tNo key frame found, request one. last_decoded_seq_num_ "
"%d", last_decoded_state_.sequence_num());
} else {
// We have cleaned up the jitter buffer and found a key frame.
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1,
"\tKey frame found. last_decoded_seq_num_ %d",
last_decoded_state_.sequence_num());
*nack_list_size = 0;
}
return NULL;
}
uint16_t seq_number_iterator = static_cast<uint16_t>(low_seq_num + 1);
for (i = 0; i < number_of_seq_num; i++) {
nack_seq_nums_internal_[i] = seq_number_iterator;
seq_number_iterator++;
}
// Now we have a list of all sequence numbers that could have been sent.
// Zero out the ones we have received.
for (i = 0; i < max_number_of_frames_; i++) {
// We don't need to check if frame is decoding since low_seq_num is based
// on the last decoded sequence number.
VCMFrameBufferStateEnum state = frame_buffers_[i]->GetState();
if ((kStateFree != state) &&
(kStateEmpty != state)) {
// Reaching thus far means we are going to update the NACK list
// When in hybrid mode, we use the soft NACKing feature.
if (nack_mode_ == kNackHybrid) {
frame_buffers_[i]->BuildSoftNackList(nack_seq_nums_internal_,
number_of_seq_num,
rtt_ms_);
} else {
// Used when the frame is being processed by the decoding thread
// don't need to use that info in this loop.
frame_buffers_[i]->BuildHardNackList(nack_seq_nums_internal_,
number_of_seq_num);
}
}
}
// Compress the list.
int empty_index = -1;
for (i = 0; i < number_of_seq_num; i++) {
if (nack_seq_nums_internal_[i] == -1 || nack_seq_nums_internal_[i] == -2) {
// This is empty.
if (empty_index == -1) {
// No empty index before, remember this position.
empty_index = i;
}
} else {
// This is not empty.
if (empty_index == -1) {
// No empty index, continue.
} else {
nack_seq_nums_internal_[empty_index] = nack_seq_nums_internal_[i];
nack_seq_nums_internal_[i] = -1;
empty_index++;
}
}
}
if (empty_index == -1) {
// No empty.
*nack_list_size = number_of_seq_num;
} else {
*nack_list_size = empty_index;
}
if (*nack_list_size > nack_seq_nums_length_) {
// Larger list: NACK list was extended since the last call.
*list_extended = true;
}
for (unsigned int j = 0; j < *nack_list_size; j++) {
// Check if the list has been extended since it was last created, i.e,
// new items have been added.
if (nack_seq_nums_length_ > j && !*list_extended) {
unsigned int k = 0;
for (k = j; k < nack_seq_nums_length_; k++) {
// Found the item in the last list, i.e, no new items found yet.
if (nack_seq_nums_[k] ==
static_cast<uint16_t>(nack_seq_nums_internal_[j])) {
break;
}
}
if (k == nack_seq_nums_length_) { // New item not found in last list.
*list_extended = true;
}
} else {
*list_extended = true;
}
nack_seq_nums_[j] = static_cast<uint16_t>(nack_seq_nums_internal_[j]);
}
nack_seq_nums_length_ = *nack_list_size;
return nack_seq_nums_;
}
int64_t VCMJitterBuffer::LastDecodedTimestamp() const {
CriticalSectionScoped cs(crit_sect_);
return last_decoded_state_.time_stamp();
}
VCMEncodedFrame* VCMJitterBuffer::GetFrameForDecodingNACK() {
CleanUpOldFrames();
// First look for a complete continuous__ frame.
// When waiting for nack, wait for a key frame, if a continuous frame cannot
// be determined (i.e. initial decoding state).
if (last_decoded_state_.init()) {
waiting_for_key_frame_ = true;
}
// Allow for a decodable frame when in Hybrid mode.
bool enable_decodable = nack_mode_ == kNackHybrid ? true : false;
FrameList::iterator it = FindOldestCompleteContinuousFrame(enable_decodable);
if (it == frame_list_.end()) {
// If we didn't find one we're good with a complete key/decodable frame.
it = find_if(frame_list_.begin(), frame_list_.end(),
CompleteDecodableKeyFrameCriteria());
if (it == frame_list_.end()) {
return NULL;
}
}
VCMFrameBuffer* oldest_frame = *it;
// Update jitter estimate
const bool retransmitted = (oldest_frame->GetNackCount() > 0);
if (retransmitted) {
jitter_estimate_.FrameNacked();
} else if (oldest_frame->Length() > 0) {
// Ignore retransmitted and empty frames.
UpdateJitterEstimate(*oldest_frame, false);
}
it = frame_list_.erase(it);
// Look for previous frame loss.
VerifyAndSetPreviousFrameLost(oldest_frame);
// The state must be changed to decoding before cleaning up zero sized
// frames to avoid empty frames being cleaned up and then given to the
// decoder.
oldest_frame->SetState(kStateDecoding);
// Clean up old frames and empty frames.
CleanUpOldFrames();
if (oldest_frame->FrameType() == kVideoFrameKey) {
waiting_for_key_frame_ = false;
}
// We have a frame - update decoded state with frame info.
last_decoded_state_.SetState(oldest_frame);
return oldest_frame;
}
// Set the frame state to free and remove it from the sorted
// frame list. Must be called from inside the critical section crit_sect_.
void VCMJitterBuffer::ReleaseFrameIfNotDecoding(VCMFrameBuffer* frame) {
if (frame != NULL && frame->GetState() != kStateDecoding) {
frame->SetState(kStateFree);
}
}
VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() {
if (!running_) {
return NULL;
}
crit_sect_->Enter();
for (int i = 0; i < max_number_of_frames_; ++i) {
if (kStateFree == frame_buffers_[i]->GetState()) {
// found a free buffer
frame_buffers_[i]->SetState(kStateEmpty);
crit_sect_->Leave();
return frame_buffers_[i];
}
}
// Check if we can increase JB size
if (max_number_of_frames_ < kMaxNumberOfFrames) {
VCMFrameBuffer* ptr_new_buffer = new VCMFrameBuffer();
ptr_new_buffer->SetState(kStateEmpty);
frame_buffers_[max_number_of_frames_] = ptr_new_buffer;
max_number_of_frames_++;
crit_sect_->Leave();
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_),
"JB(0x%x) FB(0x%x): Jitter buffer increased to:%d frames",
this, ptr_new_buffer, max_number_of_frames_);
return ptr_new_buffer;
}
crit_sect_->Leave();
// We have reached max size, cannot increase JB size
return NULL;
}
// Recycle oldest frames up to a key frame, used if jitter buffer is completely
// full.
bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() {
// Remove up to oldest key frame
while (frame_list_.size() > 0) {
// Throw at least one frame.
drop_count_++;
FrameList::iterator it = frame_list_.begin();
WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_),
"Jitter buffer drop count:%d, low_seq %d", drop_count_,
(*it)->GetLowSeqNum());
ReleaseFrameIfNotDecoding(*it);
it = frame_list_.erase(it);
if (it != frame_list_.end() && (*it)->FrameType() == kVideoFrameKey) {
// Fake the last_decoded_state to match this key frame.
last_decoded_state_.SetStateOneBack(*it);
return true;
}
}
waiting_for_key_frame_ = true;
last_decoded_state_.Reset(); // TODO(mikhal): No sync.
return false;
}
// Must be called under the critical section |crit_sect_|.
VCMFrameBufferEnum VCMJitterBuffer::UpdateFrameState(VCMFrameBuffer* frame) {
if (frame == NULL) {
WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_), "JB(0x%x) FB(0x%x): "
"UpdateFrameState NULL frame pointer", this, frame);
return kNoError;
}
int length = frame->Length();
if (master_) {
// Only trace the primary jitter buffer to make it possible to parse
// and plot the trace file.
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_),
"JB(0x%x) FB(0x%x): Complete frame added to jitter buffer,"
" size:%d type %d",
this, frame, length, frame->FrameType());
}
if (length != 0 && !frame->GetCountedFrame()) {
// Ignore ACK frames.
incoming_frame_count_++;
frame->SetCountedFrame(true);
}
// Check if we should drop the frame. A complete frame can arrive too late.
if (last_decoded_state_.IsOldFrame(frame)) {
// Frame is older than the latest decoded frame, drop it. Will be
// released by CleanUpOldFrames later.
frame->Reset();
frame->SetState(kStateEmpty);
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_),
"JB(0x%x) FB(0x%x): Dropping old frame in Jitter buffer",
this, frame);
drop_count_++;
WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_),
"Jitter buffer drop count: %d, consecutive drops: %u",
drop_count_, num_consecutive_old_frames_);
// Flush() if this happens consistently.
num_consecutive_old_frames_++;
if (num_consecutive_old_frames_ > kMaxConsecutiveOldFrames) {
Flush();
return kFlushIndicator;
}
return kNoError;
}
num_consecutive_old_frames_ = 0;
frame->SetState(kStateComplete);
// Update receive statistics. We count all layers, thus when you use layers
// adding all key and delta frames might differ from frame count.
if (frame->IsSessionComplete()) {
switch (frame->FrameType()) {
case kVideoFrameKey: {
receive_statistics_[0]++;
break;
}
case kVideoFrameDelta: {
receive_statistics_[1]++;
break;
}
case kVideoFrameGolden: {
receive_statistics_[2]++;
break;
}
case kVideoFrameAltRef: {
receive_statistics_[3]++;
break;
}
default:
assert(false);
}
}
const FrameList::iterator it = FindOldestCompleteContinuousFrame(false);
VCMFrameBuffer* old_frame = NULL;
if (it != frame_list_.end()) {
old_frame = *it;
}
// Only signal if this is the oldest frame.
// Not necessarily the case due to packet reordering or NACK.
if (!WaitForRetransmissions() || (old_frame != NULL && old_frame == frame)) {
frame_event_.Set();
}
return kNoError;
}
// Find oldest complete frame used for getting next frame to decode
// Must be called under critical section
FrameList::iterator VCMJitterBuffer::FindOldestCompleteContinuousFrame(
bool enable_decodable) {
// If we have more than one frame done since last time, pick oldest.
VCMFrameBuffer* oldest_frame = NULL;
FrameList::iterator it = frame_list_.begin();
// When temporal layers are available, we search for a complete or decodable
// frame until we hit one of the following:
// 1. Continuous base or sync layer.
// 2. The end of the list was reached.
for (; it != frame_list_.end(); ++it) {
oldest_frame = *it;
VCMFrameBufferStateEnum state = oldest_frame->GetState();
// Is this frame complete or decodable and continuous?
if ((state == kStateComplete ||
(enable_decodable && state == kStateDecodable)) &&
last_decoded_state_.ContinuousFrame(oldest_frame)) {
break;
} else {
int temporal_id = oldest_frame->TemporalId();
oldest_frame = NULL;
if (temporal_id <= 0) {
// When temporal layers are disabled or we have hit a base layer
// we break (regardless of continuity and completeness).
break;
}
}
}
if (oldest_frame == NULL) {
// No complete frame no point to continue.
return frame_list_.end();
} else if (waiting_for_key_frame_ &&
oldest_frame->FrameType() != kVideoFrameKey) {
// We are waiting for a key frame.
return frame_list_.end();
}
// We have a complete continuous frame.
return it;
}
// Must be called under the critical section |crit_sect_|.
void VCMJitterBuffer::CleanUpOldFrames() {
while (frame_list_.size() > 0) {
VCMFrameBuffer* oldest_frame = frame_list_.front();
bool next_frame_empty =
(last_decoded_state_.ContinuousFrame(oldest_frame) &&
oldest_frame->GetState() == kStateEmpty);
if (last_decoded_state_.IsOldFrame(oldest_frame) ||
(next_frame_empty && frame_list_.size() > 1)) {
ReleaseFrameIfNotDecoding(frame_list_.front());
frame_list_.erase(frame_list_.begin());
} else {
break;
}
}
}
void VCMJitterBuffer::VerifyAndSetPreviousFrameLost(VCMFrameBuffer* frame) {
assert(frame);
frame->MakeSessionDecodable(); // Make sure the session can be decoded.
if (frame->FrameType() == kVideoFrameKey)
return;
if (!last_decoded_state_.ContinuousFrame(frame))
frame->SetPreviousFrameLoss();
}
// Must be called from within |crit_sect_|.
bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const {
if (nack_seq_nums_length_ > 0) {
for (unsigned int i = 0; i < nack_seq_nums_length_; i++) {
if (packet.seqNum == nack_seq_nums_[i]) {
return true;
}
}
}
return false;
}
// Must be called under the critical section |crit_sect_|. Should never be
// called with retransmitted frames, they must be filtered out before this
// function is called.
void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample,
bool incomplete_frame) {
if (sample.latest_packet_time == -1) {
return;
}
if (incomplete_frame) {
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_), "Received incomplete frame "
"timestamp %u frame size %u at time %u",
sample.timestamp, sample.frame_size,
MaskWord64ToUWord32(sample.latest_packet_time));
} else {
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_), "Received complete frame "
"timestamp %u frame size %u at time %u",
sample.timestamp, sample.frame_size,
MaskWord64ToUWord32(sample.latest_packet_time));
}
UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp,
sample.frame_size, incomplete_frame);
}
// Must be called under the critical section crit_sect_. Should never be
// called with retransmitted frames, they must be filtered out before this
// function is called.
void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame,
bool incomplete_frame) {
if (frame.LatestPacketTimeMs() == -1) {
return;
}
// No retransmitted frames should be a part of the jitter
// estimate.
if (incomplete_frame) {
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_),
"Received incomplete frame timestamp %u frame type %d "
"frame size %u at time %u, jitter estimate was %u",
frame.TimeStamp(), frame.FrameType(), frame.Length(),
MaskWord64ToUWord32(frame.LatestPacketTimeMs()),
EstimatedJitterMs());
} else {
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_), "Received complete frame "
"timestamp %u frame type %d frame size %u at time %u, "
"jitter estimate was %u",
frame.TimeStamp(), frame.FrameType(), frame.Length(),
MaskWord64ToUWord32(frame.LatestPacketTimeMs()),
EstimatedJitterMs());
}
UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.TimeStamp(),
frame.Length(), incomplete_frame);
}
// Must be called under the critical section |crit_sect_|. Should never be
// called with retransmitted frames, they must be filtered out before this
// function is called.
void VCMJitterBuffer::UpdateJitterEstimate(
int64_t latest_packet_time_ms,
uint32_t timestamp,
unsigned int frame_size,
bool incomplete_frame) {
if (latest_packet_time_ms == -1) {
return;
}
int64_t frame_delay;
// Calculate the delay estimate
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, receiver_id_),
"Packet received and sent to jitter estimate with: "
"timestamp=%u wall_clock=%u", timestamp,
MaskWord64ToUWord32(latest_packet_time_ms));
bool not_reordered = inter_frame_delay_.CalculateDelay(timestamp,
&frame_delay,
latest_packet_time_ms);
// Filter out frames which have been reordered in time by the network
if (not_reordered) {
// Update the jitter estimate with the new samples
jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame);
}
}
// Assumed to be called internally from inside a critical section.
void VCMJitterBuffer::GetLowHighSequenceNumbers(
int32_t* low_seq_num, int32_t* high_seq_num) const {
assert(low_seq_num);
assert(high_seq_num);
// TODO(mikhal/stefan): Refactor to use last_decoded_state.
int i = 0;
int32_t seq_num = -1;
*high_seq_num = -1;
*low_seq_num = -1;
if (!last_decoded_state_.init())
*low_seq_num = last_decoded_state_.sequence_num();
// find highest seq numbers
for (i = 0; i < max_number_of_frames_; ++i) {
seq_num = frame_buffers_[i]->GetHighSeqNum();
// Ignore free / empty frames
VCMFrameBufferStateEnum state = frame_buffers_[i]->GetState();
if ((kStateFree != state) &&
(kStateEmpty != state) &&
(kStateDecoding != state) &&
seq_num != -1) {
bool wrap;
*high_seq_num = LatestSequenceNumber(seq_num, *high_seq_num, &wrap);
}
}
}
bool VCMJitterBuffer::WaitForRetransmissions() {
if (nack_mode_ == kNoNack) {
// NACK disabled -> don't wait for retransmissions.
return false;
} else if (nack_mode_ == kNackInfinite) {
// NACK only -> always wait for retransmissions.
return true;
}
// Hybrid mode. Evaluate if the RTT is high, and in that case we don't wait
// for retransmissions.
if (high_rtt_nack_threshold_ms_ >= 0 &&
rtt_ms_ >= static_cast<unsigned int>(high_rtt_nack_threshold_ms_)) {
return false;
}
return true;
}
} // namespace webrtc