| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "trace.h" |
| #include "internal_defines.h" |
| #include "jitter_estimator.h" |
| #include "rtt_filter.h" |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| namespace webrtc { |
| |
| VCMJitterEstimator::VCMJitterEstimator(WebRtc_Word32 vcmId, WebRtc_Word32 receiverId) : |
| _vcmId(vcmId), |
| _receiverId(receiverId), |
| _phi(0.97), |
| _psi(0.9999), |
| _alphaCountMax(400), |
| _thetaLow(0.000001), |
| _nackLimit(3), |
| _numStdDevDelayOutlier(15), |
| _numStdDevFrameSizeOutlier(3), |
| _noiseStdDevs(2.33), // ~Less than 1% chance |
| // (look up in normal distribution table)... |
| _noiseStdDevOffset(30.0), // ...of getting 30 ms freezes |
| _rttFilter(vcmId, receiverId) |
| { |
| Reset(); |
| } |
| |
| VCMJitterEstimator& |
| VCMJitterEstimator::operator=(const VCMJitterEstimator& rhs) |
| { |
| if (this != &rhs) |
| { |
| memcpy(_thetaCov, rhs._thetaCov, sizeof(_thetaCov)); |
| memcpy(_Qcov, rhs._Qcov, sizeof(_Qcov)); |
| |
| _vcmId = rhs._vcmId; |
| _receiverId = rhs._receiverId; |
| _avgFrameSize = rhs._avgFrameSize; |
| _varFrameSize = rhs._varFrameSize; |
| _maxFrameSize = rhs._maxFrameSize; |
| _fsSum = rhs._fsSum; |
| _fsCount = rhs._fsCount; |
| _lastUpdateT = rhs._lastUpdateT; |
| _prevEstimate = rhs._prevEstimate; |
| _prevFrameSize = rhs._prevFrameSize; |
| _avgNoise = rhs._avgNoise; |
| _alphaCount = rhs._alphaCount; |
| _filterJitterEstimate = rhs._filterJitterEstimate; |
| _startupCount = rhs._startupCount; |
| _latestNackTimestamp = rhs._latestNackTimestamp; |
| _nackCount = rhs._nackCount; |
| _rttFilter = rhs._rttFilter; |
| } |
| return *this; |
| } |
| |
| // Resets the JitterEstimate |
| void |
| VCMJitterEstimator::Reset() |
| { |
| _theta[0] = 1/(512e3/8); |
| _theta[1] = 0; |
| _varNoise = 4.0; |
| |
| _thetaCov[0][0] = 1e-4; |
| _thetaCov[1][1] = 1e2; |
| _thetaCov[0][1] = _thetaCov[1][0] = 0; |
| _Qcov[0][0] = 2.5e-10; |
| _Qcov[1][1] = 1e-10; |
| _Qcov[0][1] = _Qcov[1][0] = 0; |
| _avgFrameSize = 500; |
| _maxFrameSize = 500; |
| _varFrameSize = 100; |
| _lastUpdateT = -1; |
| _prevEstimate = -1.0; |
| _prevFrameSize = 0; |
| _avgNoise = 0.0; |
| _alphaCount = 1; |
| _filterJitterEstimate = 0.0; |
| _latestNackTimestamp = 0; |
| _nackCount = 0; |
| _fsSum = 0; |
| _fsCount = 0; |
| _startupCount = 0; |
| _rttFilter.Reset(); |
| } |
| |
| void |
| VCMJitterEstimator::ResetNackCount() |
| { |
| _nackCount = 0; |
| } |
| |
| // Updates the estimates with the new measurements |
| void |
| VCMJitterEstimator::UpdateEstimate(WebRtc_Word64 frameDelayMS, WebRtc_UWord32 frameSizeBytes, |
| bool incompleteFrame /* = false */) |
| { |
| WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, |
| VCMId(_vcmId, _receiverId), |
| "Jitter estimate updated with: frameSize=%d frameDelayMS=%d", |
| frameSizeBytes, frameDelayMS); |
| if (frameSizeBytes == 0) |
| { |
| return; |
| } |
| int deltaFS = frameSizeBytes - _prevFrameSize; |
| if (_fsCount < kFsAccuStartupSamples) |
| { |
| _fsSum += frameSizeBytes; |
| _fsCount++; |
| } |
| else if (_fsCount == kFsAccuStartupSamples) |
| { |
| // Give the frame size filter |
| _avgFrameSize = static_cast<double>(_fsSum) / |
| static_cast<double>(_fsCount); |
| _fsCount++; |
| } |
| if (!incompleteFrame || frameSizeBytes > _avgFrameSize) |
| { |
| double avgFrameSize = _phi * _avgFrameSize + |
| (1 - _phi) * frameSizeBytes; |
| if (frameSizeBytes < _avgFrameSize + 2 * sqrt(_varFrameSize)) |
| { |
| // Only update the average frame size if this sample wasn't a |
| // key frame |
| _avgFrameSize = avgFrameSize; |
| } |
| // Update the variance anyway since we want to capture cases where we only get |
| // key frames. |
| _varFrameSize = VCM_MAX(_phi * _varFrameSize + (1 - _phi) * |
| (frameSizeBytes - avgFrameSize) * |
| (frameSizeBytes - avgFrameSize), 1.0); |
| } |
| |
| // Update max frameSize estimate |
| _maxFrameSize = VCM_MAX(_psi * _maxFrameSize, static_cast<double>(frameSizeBytes)); |
| |
| if (_prevFrameSize == 0) |
| { |
| _prevFrameSize = frameSizeBytes; |
| return; |
| } |
| _prevFrameSize = frameSizeBytes; |
| |
| // Only update the Kalman filter if the sample is not considered |
| // an extreme outlier. Even if it is an extreme outlier from a |
| // delay point of view, if the frame size also is large the |
| // deviation is probably due to an incorrect line slope. |
| double deviation = DeviationFromExpectedDelay(frameDelayMS, deltaFS); |
| |
| if (abs(deviation) < _numStdDevDelayOutlier * sqrt(_varNoise) || |
| frameSizeBytes > _avgFrameSize + _numStdDevFrameSizeOutlier * sqrt(_varFrameSize)) |
| { |
| // Update the variance of the deviation from the |
| // line given by the Kalman filter |
| EstimateRandomJitter(deviation, incompleteFrame); |
| // Prevent updating with frames which have been congested by a large |
| // frame, and therefore arrives almost at the same time as that frame. |
| // This can occur when we receive a large frame (key frame) which |
| // has been delayed. The next frame is of normal size (delta frame), |
| // and thus deltaFS will be << 0. This removes all frame samples |
| // which arrives after a key frame. |
| if ((!incompleteFrame || deviation >= 0.0) && |
| static_cast<double>(deltaFS) > - 0.25 * _maxFrameSize) |
| { |
| // Update the Kalman filter with the new data |
| KalmanEstimateChannel(frameDelayMS, deltaFS); |
| } |
| } |
| else |
| { |
| int nStdDev = (deviation >= 0) ? _numStdDevDelayOutlier : -_numStdDevDelayOutlier; |
| EstimateRandomJitter(nStdDev * sqrt(_varNoise), incompleteFrame); |
| } |
| // Post process the total estimated jitter |
| if (_startupCount >= kStartupDelaySamples) |
| { |
| PostProcessEstimate(); |
| } |
| else |
| { |
| _startupCount++; |
| } |
| WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, VCMId(_vcmId, _receiverId), |
| "Framesize statistics: max=%f average=%f", _maxFrameSize, _avgFrameSize); |
| WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, VCMId(_vcmId, _receiverId), |
| "The estimated slope is: theta=(%f, %f)", _theta[0], _theta[1]); |
| WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, VCMId(_vcmId, _receiverId), |
| "Random jitter: mean=%f variance=%f", _avgNoise, _varNoise); |
| WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, VCMId(_vcmId, _receiverId), |
| "Current jitter estimate: %f", _filterJitterEstimate); |
| WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, VCMId(_vcmId, _receiverId), |
| "Current max RTT: %u", _rttFilter.RttMs()); |
| } |
| |
| // Updates the nack/packet ratio |
| void |
| VCMJitterEstimator::FrameNacked() |
| { |
| // Wait until _nackLimit retransmissions has been received, |
| // then always add ~1 RTT delay. |
| // TODO(holmer): Should we ever remove the additional delay if the |
| // the packet losses seem to have stopped? We could for instance scale |
| // the number of RTTs to add with the amount of retransmissions in a given |
| // time interval, or similar. |
| if (_nackCount < _nackLimit) |
| { |
| _nackCount++; |
| } |
| } |
| |
| // Updates Kalman estimate of the channel |
| // The caller is expected to sanity check the inputs. |
| void |
| VCMJitterEstimator::KalmanEstimateChannel(WebRtc_Word64 frameDelayMS, |
| WebRtc_Word32 deltaFSBytes) |
| { |
| double Mh[2]; |
| double hMh_sigma; |
| double kalmanGain[2]; |
| double measureRes; |
| double t00, t01; |
| |
| // Kalman filtering |
| |
| // Prediction |
| // M = M + Q |
| _thetaCov[0][0] += _Qcov[0][0]; |
| _thetaCov[0][1] += _Qcov[0][1]; |
| _thetaCov[1][0] += _Qcov[1][0]; |
| _thetaCov[1][1] += _Qcov[1][1]; |
| |
| // Kalman gain |
| // K = M*h'/(sigma2n + h*M*h') = M*h'/(1 + h*M*h') |
| // h = [dFS 1] |
| // Mh = M*h' |
| // hMh_sigma = h*M*h' + R |
| Mh[0] = _thetaCov[0][0] * deltaFSBytes + _thetaCov[0][1]; |
| Mh[1] = _thetaCov[1][0] * deltaFSBytes + _thetaCov[1][1]; |
| // sigma weights measurements with a small deltaFS as noisy and |
| // measurements with large deltaFS as good |
| if (_maxFrameSize < 1.0) |
| { |
| return; |
| } |
| double sigma = (300.0 * exp(-abs(static_cast<double>(deltaFSBytes)) / |
| (1e0 * _maxFrameSize)) + 1) * sqrt(_varNoise); |
| if (sigma < 1.0) |
| { |
| sigma = 1.0; |
| } |
| hMh_sigma = deltaFSBytes * Mh[0] + Mh[1] + sigma; |
| if ((hMh_sigma < 1e-9 && hMh_sigma >= 0) || (hMh_sigma > -1e-9 && hMh_sigma <= 0)) |
| { |
| assert(false); |
| return; |
| } |
| kalmanGain[0] = Mh[0] / hMh_sigma; |
| kalmanGain[1] = Mh[1] / hMh_sigma; |
| |
| // Correction |
| // theta = theta + K*(dT - h*theta) |
| measureRes = frameDelayMS - (deltaFSBytes * _theta[0] + _theta[1]); |
| _theta[0] += kalmanGain[0] * measureRes; |
| _theta[1] += kalmanGain[1] * measureRes; |
| |
| if (_theta[0] < _thetaLow) |
| { |
| _theta[0] = _thetaLow; |
| } |
| |
| // M = (I - K*h)*M |
| t00 = _thetaCov[0][0]; |
| t01 = _thetaCov[0][1]; |
| _thetaCov[0][0] = (1 - kalmanGain[0] * deltaFSBytes) * t00 - |
| kalmanGain[0] * _thetaCov[1][0]; |
| _thetaCov[0][1] = (1 - kalmanGain[0] * deltaFSBytes) * t01 - |
| kalmanGain[0] * _thetaCov[1][1]; |
| _thetaCov[1][0] = _thetaCov[1][0] * (1 - kalmanGain[1]) - |
| kalmanGain[1] * deltaFSBytes * t00; |
| _thetaCov[1][1] = _thetaCov[1][1] * (1 - kalmanGain[1]) - |
| kalmanGain[1] * deltaFSBytes * t01; |
| |
| // Covariance matrix, must be positive semi-definite |
| assert(_thetaCov[0][0] + _thetaCov[1][1] >= 0 && |
| _thetaCov[0][0] * _thetaCov[1][1] - _thetaCov[0][1] * _thetaCov[1][0] >= 0 && |
| _thetaCov[0][0] >= 0); |
| } |
| |
| // Calculate difference in delay between a sample and the |
| // expected delay estimated by the Kalman filter |
| double |
| VCMJitterEstimator::DeviationFromExpectedDelay(WebRtc_Word64 frameDelayMS, |
| WebRtc_Word32 deltaFSBytes) const |
| { |
| return frameDelayMS - (_theta[0] * deltaFSBytes + _theta[1]); |
| } |
| |
| // Estimates the random jitter by calculating the variance of the |
| // sample distance from the line given by theta. |
| void |
| VCMJitterEstimator::EstimateRandomJitter(double d_dT, bool incompleteFrame) |
| { |
| double alpha; |
| if (_alphaCount == 0) |
| { |
| assert(_alphaCount > 0); |
| return; |
| } |
| alpha = static_cast<double>(_alphaCount - 1) / static_cast<double>(_alphaCount); |
| _alphaCount++; |
| if (_alphaCount > _alphaCountMax) |
| { |
| _alphaCount = _alphaCountMax; |
| } |
| double avgNoise = alpha * _avgNoise + (1 - alpha) * d_dT; |
| double varNoise = alpha * _varNoise + |
| (1 - alpha) * (d_dT - _avgNoise) * (d_dT - _avgNoise); |
| if (!incompleteFrame || varNoise > _varNoise) |
| { |
| _avgNoise = avgNoise; |
| _varNoise = varNoise; |
| } |
| if (_varNoise < 1.0) |
| { |
| // The variance should never be zero, since we might get |
| // stuck and consider all samples as outliers. |
| _varNoise = 1.0; |
| } |
| } |
| |
| double |
| VCMJitterEstimator::NoiseThreshold() const |
| { |
| double noiseThreshold = _noiseStdDevs * sqrt(_varNoise) - _noiseStdDevOffset; |
| if (noiseThreshold < 1.0) |
| { |
| noiseThreshold = 1.0; |
| } |
| return noiseThreshold; |
| } |
| |
| // Calculates the current jitter estimate from the filtered estimates |
| double |
| VCMJitterEstimator::CalculateEstimate() |
| { |
| double ret = _theta[0] * (_maxFrameSize - _avgFrameSize) + NoiseThreshold(); |
| |
| // A very low estimate (or negative) is neglected |
| if (ret < 1.0) { |
| if (_prevEstimate <= 0.01) |
| { |
| ret = 1.0; |
| } |
| else |
| { |
| ret = _prevEstimate; |
| } |
| } |
| if (ret > 10000.0) // Sanity |
| { |
| ret = 10000.0; |
| } |
| _prevEstimate = ret; |
| return ret; |
| } |
| |
| void |
| VCMJitterEstimator::PostProcessEstimate() |
| { |
| _filterJitterEstimate = CalculateEstimate(); |
| } |
| |
| void |
| VCMJitterEstimator::UpdateRtt(WebRtc_UWord32 rttMs) |
| { |
| _rttFilter.Update(rttMs); |
| } |
| |
| void |
| VCMJitterEstimator::UpdateMaxFrameSize(WebRtc_UWord32 frameSizeBytes) |
| { |
| if (_maxFrameSize < frameSizeBytes) |
| { |
| _maxFrameSize = frameSizeBytes; |
| } |
| } |
| |
| // Returns the current filtered estimate if available, |
| // otherwise tries to calculate an estimate. |
| double |
| VCMJitterEstimator::GetJitterEstimate(double rttMultiplier) |
| { |
| double jitterMS = CalculateEstimate(); |
| if (_filterJitterEstimate > jitterMS) |
| { |
| jitterMS = _filterJitterEstimate; |
| } |
| if (_nackCount >= _nackLimit) |
| { |
| return jitterMS + _rttFilter.RttMs() * rttMultiplier; |
| } |
| return jitterMS; |
| } |
| |
| } |