| /* |
| * Copyright 2011 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #ifndef WEBRTC_RTC_BASE_ROLLINGACCUMULATOR_H_ |
| #define WEBRTC_RTC_BASE_ROLLINGACCUMULATOR_H_ |
| |
| #include <algorithm> |
| #include <vector> |
| |
| #include "webrtc/rtc_base/checks.h" |
| #include "webrtc/rtc_base/constructormagic.h" |
| |
| namespace rtc { |
| |
| // RollingAccumulator stores and reports statistics |
| // over N most recent samples. |
| // |
| // T is assumed to be an int, long, double or float. |
| template<typename T> |
| class RollingAccumulator { |
| public: |
| explicit RollingAccumulator(size_t max_count) |
| : samples_(max_count) { |
| Reset(); |
| } |
| ~RollingAccumulator() { |
| } |
| |
| size_t max_count() const { |
| return samples_.size(); |
| } |
| |
| size_t count() const { |
| return count_; |
| } |
| |
| void Reset() { |
| count_ = 0U; |
| next_index_ = 0U; |
| sum_ = 0.0; |
| sum_2_ = 0.0; |
| max_ = T(); |
| max_stale_ = false; |
| min_ = T(); |
| min_stale_ = false; |
| } |
| |
| void AddSample(T sample) { |
| if (count_ == max_count()) { |
| // Remove oldest sample. |
| T sample_to_remove = samples_[next_index_]; |
| sum_ -= sample_to_remove; |
| sum_2_ -= static_cast<double>(sample_to_remove) * sample_to_remove; |
| if (sample_to_remove >= max_) { |
| max_stale_ = true; |
| } |
| if (sample_to_remove <= min_) { |
| min_stale_ = true; |
| } |
| } else { |
| // Increase count of samples. |
| ++count_; |
| } |
| // Add new sample. |
| samples_[next_index_] = sample; |
| sum_ += sample; |
| sum_2_ += static_cast<double>(sample) * sample; |
| if (count_ == 1 || sample >= max_) { |
| max_ = sample; |
| max_stale_ = false; |
| } |
| if (count_ == 1 || sample <= min_) { |
| min_ = sample; |
| min_stale_ = false; |
| } |
| // Update next_index_. |
| next_index_ = (next_index_ + 1) % max_count(); |
| } |
| |
| T ComputeSum() const { |
| return static_cast<T>(sum_); |
| } |
| |
| double ComputeMean() const { |
| if (count_ == 0) { |
| return 0.0; |
| } |
| return sum_ / count_; |
| } |
| |
| T ComputeMax() const { |
| if (max_stale_) { |
| RTC_DCHECK(count_ > 0) << |
| "It shouldn't be possible for max_stale_ && count_ == 0"; |
| max_ = samples_[next_index_]; |
| for (size_t i = 1u; i < count_; i++) { |
| max_ = std::max(max_, samples_[(next_index_ + i) % max_count()]); |
| } |
| max_stale_ = false; |
| } |
| return max_; |
| } |
| |
| T ComputeMin() const { |
| if (min_stale_) { |
| RTC_DCHECK(count_ > 0) << |
| "It shouldn't be possible for min_stale_ && count_ == 0"; |
| min_ = samples_[next_index_]; |
| for (size_t i = 1u; i < count_; i++) { |
| min_ = std::min(min_, samples_[(next_index_ + i) % max_count()]); |
| } |
| min_stale_ = false; |
| } |
| return min_; |
| } |
| |
| // O(n) time complexity. |
| // Weights nth sample with weight (learning_rate)^n. Learning_rate should be |
| // between (0.0, 1.0], otherwise the non-weighted mean is returned. |
| double ComputeWeightedMean(double learning_rate) const { |
| if (count_ < 1 || learning_rate <= 0.0 || learning_rate >= 1.0) { |
| return ComputeMean(); |
| } |
| double weighted_mean = 0.0; |
| double current_weight = 1.0; |
| double weight_sum = 0.0; |
| const size_t max_size = max_count(); |
| for (size_t i = 0; i < count_; ++i) { |
| current_weight *= learning_rate; |
| weight_sum += current_weight; |
| // Add max_size to prevent underflow. |
| size_t index = (next_index_ + max_size - i - 1) % max_size; |
| weighted_mean += current_weight * samples_[index]; |
| } |
| return weighted_mean / weight_sum; |
| } |
| |
| // Compute estimated variance. Estimation is more accurate |
| // as the number of samples grows. |
| double ComputeVariance() const { |
| if (count_ == 0) { |
| return 0.0; |
| } |
| // Var = E[x^2] - (E[x])^2 |
| double count_inv = 1.0 / count_; |
| double mean_2 = sum_2_ * count_inv; |
| double mean = sum_ * count_inv; |
| return mean_2 - (mean * mean); |
| } |
| |
| private: |
| size_t count_; |
| size_t next_index_; |
| double sum_; // Sum(x) - double to avoid overflow |
| double sum_2_; // Sum(x*x) - double to avoid overflow |
| mutable T max_; |
| mutable bool max_stale_; |
| mutable T min_; |
| mutable bool min_stale_; |
| std::vector<T> samples_; |
| |
| RTC_DISALLOW_COPY_AND_ASSIGN(RollingAccumulator); |
| }; |
| |
| } // namespace rtc |
| |
| #endif // WEBRTC_RTC_BASE_ROLLINGACCUMULATOR_H_ |