blob: 6871f3d93f538f1c03e1a908161fe3cb2375338b [file] [log] [blame]
/*
* Copyright 2015 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_RTC_BASE_OPTIONAL_H_
#define WEBRTC_RTC_BASE_OPTIONAL_H_
#include <algorithm>
#include <memory>
#include <utility>
#ifdef UNIT_TEST
#include <iomanip>
#include <ostream>
#endif // UNIT_TEST
#include "webrtc/rtc_base/array_view.h"
#include "webrtc/rtc_base/checks.h"
#include "webrtc/rtc_base/sanitizer.h"
namespace rtc {
namespace optional_internal {
#if RTC_HAS_ASAN
// This is a non-inlined function. The optimizer can't see inside it. It
// prevents the compiler from generating optimized code that reads value_ even
// if it is unset. Although safe, this causes memory sanitizers to complain.
void* FunctionThatDoesNothingImpl(void*);
template <typename T>
inline T* FunctionThatDoesNothing(T* x) {
return reinterpret_cast<T*>(
FunctionThatDoesNothingImpl(reinterpret_cast<void*>(x)));
}
#else
template <typename T>
inline T* FunctionThatDoesNothing(T* x) { return x; }
#endif
} // namespace optional_internal
// Simple std::optional-wannabe. It either contains a T or not.
//
// A moved-from Optional<T> may only be destroyed, and assigned to if T allows
// being assigned to after having been moved from. Specifically, you may not
// assume that it just doesn't contain a value anymore.
//
// Examples of good places to use Optional:
//
// - As a class or struct member, when the member doesn't always have a value:
// struct Prisoner {
// std::string name;
// Optional<int> cell_number; // Empty if not currently incarcerated.
// };
//
// - As a return value for functions that may fail to return a value on all
// allowed inputs. For example, a function that searches an array might
// return an Optional<size_t> (the index where it found the element, or
// nothing if it didn't find it); and a function that parses numbers might
// return Optional<double> (the parsed number, or nothing if parsing failed).
//
// Examples of bad places to use Optional:
//
// - As a return value for functions that may fail because of disallowed
// inputs. For example, a string length function should not return
// Optional<size_t> so that it can return nothing in case the caller passed
// it a null pointer; the function should probably use RTC_[D]CHECK instead,
// and return plain size_t.
//
// - As a return value for functions that may fail to return a value on all
// allowed inputs, but need to tell the caller what went wrong. Returning
// Optional<double> when parsing a single number as in the example above
// might make sense, but any larger parse job is probably going to need to
// tell the caller what the problem was, not just that there was one.
//
// - As a non-mutable function argument. When you want to pass a value of a
// type T that can fail to be there, const T* is almost always both fastest
// and cleanest. (If you're *sure* that the the caller will always already
// have an Optional<T>, const Optional<T>& is slightly faster than const T*,
// but this is a micro-optimization. In general, stick to const T*.)
//
// TODO(kwiberg): Get rid of this class when the standard library has
// std::optional (and we're allowed to use it).
template <typename T>
class Optional final {
public:
// Construct an empty Optional.
Optional() : has_value_(false), empty_('\0') {
PoisonValue();
}
// Construct an Optional that contains a value.
explicit Optional(const T& value) : has_value_(true) {
new (&value_) T(value);
}
explicit Optional(T&& value) : has_value_(true) {
new (&value_) T(std::move(value));
}
// Copy constructor: copies the value from m if it has one.
Optional(const Optional& m) : has_value_(m.has_value_) {
if (has_value_)
new (&value_) T(m.value_);
else
PoisonValue();
}
// Move constructor: if m has a value, moves the value from m, leaving m
// still in a state where it has a value, but a moved-from one (the
// properties of which depends on T; the only general guarantee is that we
// can destroy m).
Optional(Optional&& m) : has_value_(m.has_value_) {
if (has_value_)
new (&value_) T(std::move(m.value_));
else
PoisonValue();
}
~Optional() {
if (has_value_)
value_.~T();
else
UnpoisonValue();
}
// Copy assignment. Uses T's copy assignment if both sides have a value, T's
// copy constructor if only the right-hand side has a value.
Optional& operator=(const Optional& m) {
if (m.has_value_) {
if (has_value_) {
value_ = m.value_; // T's copy assignment.
} else {
UnpoisonValue();
new (&value_) T(m.value_); // T's copy constructor.
has_value_ = true;
}
} else {
reset();
}
return *this;
}
// Move assignment. Uses T's move assignment if both sides have a value, T's
// move constructor if only the right-hand side has a value. The state of m
// after it's been moved from is as for the move constructor.
Optional& operator=(Optional&& m) {
if (m.has_value_) {
if (has_value_) {
value_ = std::move(m.value_); // T's move assignment.
} else {
UnpoisonValue();
new (&value_) T(std::move(m.value_)); // T's move constructor.
has_value_ = true;
}
} else {
reset();
}
return *this;
}
// Swap the values if both m1 and m2 have values; move the value if only one
// of them has one.
friend void swap(Optional& m1, Optional& m2) {
if (m1.has_value_) {
if (m2.has_value_) {
// Both have values: swap.
using std::swap;
swap(m1.value_, m2.value_);
} else {
// Only m1 has a value: move it to m2.
m2.UnpoisonValue();
new (&m2.value_) T(std::move(m1.value_));
m1.value_.~T(); // Destroy the moved-from value.
m1.has_value_ = false;
m2.has_value_ = true;
m1.PoisonValue();
}
} else if (m2.has_value_) {
// Only m2 has a value: move it to m1.
m1.UnpoisonValue();
new (&m1.value_) T(std::move(m2.value_));
m2.value_.~T(); // Destroy the moved-from value.
m1.has_value_ = true;
m2.has_value_ = false;
m2.PoisonValue();
}
}
// Destroy any contained value. Has no effect if we have no value.
void reset() {
if (!has_value_)
return;
value_.~T();
has_value_ = false;
PoisonValue();
}
template <class... Args>
void emplace(Args&&... args) {
if (has_value_)
value_.~T();
else
UnpoisonValue();
new (&value_) T(std::forward<Args>(args)...);
has_value_ = true;
}
// Conversion to bool to test if we have a value.
explicit operator bool() const { return has_value_; }
bool has_value() const { return has_value_; }
// Dereferencing. Only allowed if we have a value.
const T* operator->() const {
RTC_DCHECK(has_value_);
return &value_;
}
T* operator->() {
RTC_DCHECK(has_value_);
return &value_;
}
const T& operator*() const {
RTC_DCHECK(has_value_);
return value_;
}
T& operator*() {
RTC_DCHECK(has_value_);
return value_;
}
const T& value() const {
RTC_DCHECK(has_value_);
return value_;
}
T& value() {
RTC_DCHECK(has_value_);
return value_;
}
// Dereference with a default value in case we don't have a value.
const T& value_or(const T& default_val) const {
// The no-op call prevents the compiler from generating optimized code that
// reads value_ even if !has_value_, but only if FunctionThatDoesNothing is
// not completely inlined; see its declaration.).
return has_value_ ? *optional_internal::FunctionThatDoesNothing(&value_)
: default_val;
}
// Dereference and move value.
T MoveValue() {
RTC_DCHECK(has_value_);
return std::move(value_);
}
// Equality tests. Two Optionals are equal if they contain equivalent values,
// or if they're both empty.
friend bool operator==(const Optional& m1, const Optional& m2) {
return m1.has_value_ && m2.has_value_ ? m1.value_ == m2.value_
: m1.has_value_ == m2.has_value_;
}
friend bool operator==(const Optional& opt, const T& value) {
return opt.has_value_ && opt.value_ == value;
}
friend bool operator==(const T& value, const Optional& opt) {
return opt.has_value_ && value == opt.value_;
}
friend bool operator!=(const Optional& m1, const Optional& m2) {
return m1.has_value_ && m2.has_value_ ? m1.value_ != m2.value_
: m1.has_value_ != m2.has_value_;
}
friend bool operator!=(const Optional& opt, const T& value) {
return !opt.has_value_ || opt.value_ != value;
}
friend bool operator!=(const T& value, const Optional& opt) {
return !opt.has_value_ || value != opt.value_;
}
private:
// Tell sanitizers that value_ shouldn't be touched.
void PoisonValue() {
rtc::AsanPoison(rtc::MakeArrayView(&value_, 1));
rtc::MsanMarkUninitialized(rtc::MakeArrayView(&value_, 1));
}
// Tell sanitizers that value_ is OK to touch again.
void UnpoisonValue() {
rtc::AsanUnpoison(rtc::MakeArrayView(&value_, 1));
}
bool has_value_; // True iff value_ contains a live value.
union {
// empty_ exists only to make it possible to initialize the union, even when
// it doesn't contain any data. If the union goes uninitialized, it may
// trigger compiler warnings.
char empty_;
// By placing value_ in a union, we get to manage its construction and
// destruction manually: the Optional constructors won't automatically
// construct it, and the Optional destructor won't automatically destroy
// it. Basically, this just allocates a properly sized and aligned block of
// memory in which we can manually put a T with placement new.
T value_;
};
};
#ifdef UNIT_TEST
namespace optional_internal {
// Checks if there's a valid PrintTo(const T&, std::ostream*) call for T.
template <typename T>
struct HasPrintTo {
private:
struct No {};
template <typename T2>
static auto Test(const T2& obj)
-> decltype(PrintTo(obj, std::declval<std::ostream*>()));
template <typename>
static No Test(...);
public:
static constexpr bool value =
!std::is_same<decltype(Test<T>(std::declval<const T&>())), No>::value;
};
// Checks if there's a valid operator<<(std::ostream&, const T&) call for T.
template <typename T>
struct HasOstreamOperator {
private:
struct No {};
template <typename T2>
static auto Test(const T2& obj)
-> decltype(std::declval<std::ostream&>() << obj);
template <typename>
static No Test(...);
public:
static constexpr bool value =
!std::is_same<decltype(Test<T>(std::declval<const T&>())), No>::value;
};
// Prefer using PrintTo to print the object.
template <typename T>
typename std::enable_if<HasPrintTo<T>::value, void>::type OptionalPrintToHelper(
const T& value,
std::ostream* os) {
PrintTo(value, os);
}
// Fall back to operator<<(std::ostream&, ...) if it exists.
template <typename T>
typename std::enable_if<HasOstreamOperator<T>::value && !HasPrintTo<T>::value,
void>::type
OptionalPrintToHelper(const T& value, std::ostream* os) {
*os << value;
}
inline void OptionalPrintObjectBytes(const unsigned char* bytes,
size_t size,
std::ostream* os) {
*os << "<optional with " << size << "-byte object [";
for (size_t i = 0; i != size; ++i) {
*os << (i == 0 ? "" : ((i & 1) ? "-" : " "));
*os << std::hex << std::setw(2) << std::setfill('0')
<< static_cast<int>(bytes[i]);
}
*os << "]>";
}
// As a final back-up, just print the contents of the objcets byte-wise.
template <typename T>
typename std::enable_if<!HasOstreamOperator<T>::value && !HasPrintTo<T>::value,
void>::type
OptionalPrintToHelper(const T& value, std::ostream* os) {
OptionalPrintObjectBytes(reinterpret_cast<const unsigned char*>(&value),
sizeof(value), os);
}
} // namespace optional_internal
// PrintTo is used by gtest to print out the results of tests. We want to ensure
// the object contained in an Optional can be printed out if it's set, while
// avoiding touching the object's storage if it is undefined.
template <typename T>
void PrintTo(const rtc::Optional<T>& opt, std::ostream* os) {
if (opt) {
optional_internal::OptionalPrintToHelper(*opt, os);
} else {
*os << "<empty optional>";
}
}
#endif // UNIT_TEST
} // namespace rtc
#endif // WEBRTC_RTC_BASE_OPTIONAL_H_