|  | /* | 
|  | *  Copyright 2004 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "webrtc/base/event.h" | 
|  | #include "webrtc/base/fakeclock.h" | 
|  | #include "webrtc/base/gunit.h" | 
|  | #include "webrtc/base/helpers.h" | 
|  | #include "webrtc/base/thread.h" | 
|  | #include "webrtc/base/timeutils.h" | 
|  |  | 
|  | namespace rtc { | 
|  |  | 
|  | TEST(TimeTest, TimeInMs) { | 
|  | int64_t ts_earlier = TimeMillis(); | 
|  | Thread::SleepMs(100); | 
|  | int64_t ts_now = TimeMillis(); | 
|  | // Allow for the thread to wakeup ~20ms early. | 
|  | EXPECT_GE(ts_now, ts_earlier + 80); | 
|  | // Make sure the Time is not returning in smaller unit like microseconds. | 
|  | EXPECT_LT(ts_now, ts_earlier + 1000); | 
|  | } | 
|  |  | 
|  | TEST(TimeTest, Intervals) { | 
|  | int64_t ts_earlier = TimeMillis(); | 
|  | int64_t ts_later = TimeAfter(500); | 
|  |  | 
|  | // We can't depend on ts_later and ts_earlier to be exactly 500 apart | 
|  | // since time elapses between the calls to TimeMillis() and TimeAfter(500) | 
|  | EXPECT_LE(500,  TimeDiff(ts_later, ts_earlier)); | 
|  | EXPECT_GE(-500, TimeDiff(ts_earlier, ts_later)); | 
|  |  | 
|  | // Time has elapsed since ts_earlier | 
|  | EXPECT_GE(TimeSince(ts_earlier), 0); | 
|  |  | 
|  | // ts_earlier is earlier than now, so TimeUntil ts_earlier is -ve | 
|  | EXPECT_LE(TimeUntil(ts_earlier), 0); | 
|  |  | 
|  | // ts_later likely hasn't happened yet, so TimeSince could be -ve | 
|  | // but within 500 | 
|  | EXPECT_GE(TimeSince(ts_later), -500); | 
|  |  | 
|  | // TimeUntil ts_later is at most 500 | 
|  | EXPECT_LE(TimeUntil(ts_later), 500); | 
|  | } | 
|  |  | 
|  | TEST(TimeTest, TestTimeDiff64) { | 
|  | int64_t ts_diff = 100; | 
|  | int64_t ts_earlier = rtc::TimeMillis(); | 
|  | int64_t ts_later = ts_earlier + ts_diff; | 
|  | EXPECT_EQ(ts_diff, rtc::TimeDiff(ts_later, ts_earlier)); | 
|  | EXPECT_EQ(-ts_diff, rtc::TimeDiff(ts_earlier, ts_later)); | 
|  | } | 
|  |  | 
|  | class TimestampWrapAroundHandlerTest : public testing::Test { | 
|  | public: | 
|  | TimestampWrapAroundHandlerTest() {} | 
|  |  | 
|  | protected: | 
|  | TimestampWrapAroundHandler wraparound_handler_; | 
|  | }; | 
|  |  | 
|  | TEST_F(TimestampWrapAroundHandlerTest, Unwrap) { | 
|  | // Start value. | 
|  | int64_t ts = 2; | 
|  | EXPECT_EQ(ts, | 
|  | wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff))); | 
|  |  | 
|  | // Wrap backwards. | 
|  | ts = -2; | 
|  | EXPECT_EQ(ts, | 
|  | wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff))); | 
|  |  | 
|  | // Forward to 2 again. | 
|  | ts = 2; | 
|  | EXPECT_EQ(ts, | 
|  | wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff))); | 
|  |  | 
|  | // Max positive skip ahead, until max value (0xffffffff). | 
|  | for (uint32_t i = 0; i <= 0xf; ++i) { | 
|  | ts = (i << 28) + 0x0fffffff; | 
|  | EXPECT_EQ( | 
|  | ts, wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff))); | 
|  | } | 
|  |  | 
|  | // Wrap around. | 
|  | ts += 2; | 
|  | EXPECT_EQ(ts, | 
|  | wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff))); | 
|  |  | 
|  | // Max wrap backward... | 
|  | ts -= 0x0fffffff; | 
|  | EXPECT_EQ(ts, | 
|  | wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff))); | 
|  |  | 
|  | // ...and back again. | 
|  | ts += 0x0fffffff; | 
|  | EXPECT_EQ(ts, | 
|  | wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff))); | 
|  | } | 
|  |  | 
|  | TEST_F(TimestampWrapAroundHandlerTest, NoNegativeStart) { | 
|  | int64_t ts = 0xfffffff0; | 
|  | EXPECT_EQ(ts, | 
|  | wraparound_handler_.Unwrap(static_cast<uint32_t>(ts & 0xffffffff))); | 
|  | } | 
|  |  | 
|  | class TmToSeconds : public testing::Test { | 
|  | public: | 
|  | TmToSeconds() { | 
|  | // Set use of the test RNG to get deterministic expiration timestamp. | 
|  | rtc::SetRandomTestMode(true); | 
|  | } | 
|  | ~TmToSeconds() override { | 
|  | // Put it back for the next test. | 
|  | rtc::SetRandomTestMode(false); | 
|  | } | 
|  |  | 
|  | void TestTmToSeconds(int times) { | 
|  | static char mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; | 
|  | for (int i = 0; i < times; i++) { | 
|  |  | 
|  | // First generate something correct and check that TmToSeconds is happy. | 
|  | int year = rtc::CreateRandomId() % 400 + 1970; | 
|  |  | 
|  | bool leap_year = false; | 
|  | if (year % 4 == 0) | 
|  | leap_year = true; | 
|  | if (year % 100 == 0) | 
|  | leap_year = false; | 
|  | if (year % 400 == 0) | 
|  | leap_year = true; | 
|  |  | 
|  | std::tm tm; | 
|  | tm.tm_year = year - 1900;  // std::tm is year 1900 based. | 
|  | tm.tm_mon = rtc::CreateRandomId() % 12; | 
|  | tm.tm_mday = rtc::CreateRandomId() % mdays[tm.tm_mon] + 1; | 
|  | tm.tm_hour = rtc::CreateRandomId() % 24; | 
|  | tm.tm_min = rtc::CreateRandomId() % 60; | 
|  | tm.tm_sec = rtc::CreateRandomId() % 60; | 
|  | int64_t t = rtc::TmToSeconds(tm); | 
|  | EXPECT_TRUE(t >= 0); | 
|  |  | 
|  | // Now damage a random field and check that TmToSeconds is unhappy. | 
|  | switch (rtc::CreateRandomId() % 11) { | 
|  | case 0: | 
|  | tm.tm_year = 1969 - 1900; | 
|  | break; | 
|  | case 1: | 
|  | tm.tm_mon = -1; | 
|  | break; | 
|  | case 2: | 
|  | tm.tm_mon = 12; | 
|  | break; | 
|  | case 3: | 
|  | tm.tm_mday = 0; | 
|  | break; | 
|  | case 4: | 
|  | tm.tm_mday = mdays[tm.tm_mon] + (leap_year && tm.tm_mon == 1) + 1; | 
|  | break; | 
|  | case 5: | 
|  | tm.tm_hour = -1; | 
|  | break; | 
|  | case 6: | 
|  | tm.tm_hour = 24; | 
|  | break; | 
|  | case 7: | 
|  | tm.tm_min = -1; | 
|  | break; | 
|  | case 8: | 
|  | tm.tm_min = 60; | 
|  | break; | 
|  | case 9: | 
|  | tm.tm_sec = -1; | 
|  | break; | 
|  | case 10: | 
|  | tm.tm_sec = 60; | 
|  | break; | 
|  | } | 
|  | EXPECT_EQ(rtc::TmToSeconds(tm), -1); | 
|  | } | 
|  | // Check consistency with the system gmtime_r.  With time_t, we can only | 
|  | // portably test dates until 2038, which is achieved by the % 0x80000000. | 
|  | for (int i = 0; i < times; i++) { | 
|  | time_t t = rtc::CreateRandomId() % 0x80000000; | 
|  | #if defined(WEBRTC_WIN) | 
|  | std::tm* tm = std::gmtime(&t); | 
|  | EXPECT_TRUE(tm); | 
|  | EXPECT_TRUE(rtc::TmToSeconds(*tm) == t); | 
|  | #else | 
|  | std::tm tm; | 
|  | EXPECT_TRUE(gmtime_r(&t, &tm)); | 
|  | EXPECT_TRUE(rtc::TmToSeconds(tm) == t); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST_F(TmToSeconds, TestTmToSeconds) { | 
|  | TestTmToSeconds(100000); | 
|  | } | 
|  |  | 
|  | TEST(TimeDelta, FromAndTo) { | 
|  | EXPECT_TRUE(TimeDelta::FromSeconds(2) == TimeDelta::FromMilliseconds(2000)); | 
|  | EXPECT_TRUE(TimeDelta::FromMilliseconds(3) == | 
|  | TimeDelta::FromMicroseconds(3000)); | 
|  | EXPECT_TRUE(TimeDelta::FromMicroseconds(4) == | 
|  | TimeDelta::FromNanoseconds(4000)); | 
|  | EXPECT_EQ(13, TimeDelta::FromSeconds(13).ToSeconds()); | 
|  | EXPECT_EQ(13, TimeDelta::FromMilliseconds(13).ToMilliseconds()); | 
|  | EXPECT_EQ(13, TimeDelta::FromMicroseconds(13).ToMicroseconds()); | 
|  | EXPECT_EQ(13, TimeDelta::FromNanoseconds(13).ToNanoseconds()); | 
|  | } | 
|  |  | 
|  | TEST(TimeDelta, ComparisonOperators) { | 
|  | EXPECT_LT(TimeDelta::FromSeconds(1), TimeDelta::FromSeconds(2)); | 
|  | EXPECT_EQ(TimeDelta::FromSeconds(3), TimeDelta::FromSeconds(3)); | 
|  | EXPECT_GT(TimeDelta::FromSeconds(5), TimeDelta::FromSeconds(4)); | 
|  | } | 
|  |  | 
|  | TEST(TimeDelta, NumericOperators) { | 
|  | double d = 0.5; | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | TimeDelta::FromMilliseconds(1000) * d); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | TimeDelta::FromMilliseconds(1000) / d); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | TimeDelta::FromMilliseconds(1000) *= d); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | TimeDelta::FromMilliseconds(1000) /= d); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | d * TimeDelta::FromMilliseconds(1000)); | 
|  |  | 
|  | float f = 0.5; | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | TimeDelta::FromMilliseconds(1000) * f); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | TimeDelta::FromMilliseconds(1000) / f); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | TimeDelta::FromMilliseconds(1000) *= f); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | TimeDelta::FromMilliseconds(1000) /= f); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | f * TimeDelta::FromMilliseconds(1000)); | 
|  |  | 
|  | int i = 2; | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | TimeDelta::FromMilliseconds(1000) * i); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | TimeDelta::FromMilliseconds(1000) / i); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | TimeDelta::FromMilliseconds(1000) *= i); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | TimeDelta::FromMilliseconds(1000) /= i); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | i * TimeDelta::FromMilliseconds(1000)); | 
|  |  | 
|  | int64_t i64 = 2; | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | TimeDelta::FromMilliseconds(1000) * i64); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | TimeDelta::FromMilliseconds(1000) / i64); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | TimeDelta::FromMilliseconds(1000) *= i64); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | TimeDelta::FromMilliseconds(1000) /= i64); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | i64 * TimeDelta::FromMilliseconds(1000)); | 
|  |  | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | TimeDelta::FromMilliseconds(1000) * 0.5); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | TimeDelta::FromMilliseconds(1000) / 0.5); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | TimeDelta::FromMilliseconds(1000) *= 0.5); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | TimeDelta::FromMilliseconds(1000) /= 0.5); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | 0.5 * TimeDelta::FromMilliseconds(1000)); | 
|  |  | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | TimeDelta::FromMilliseconds(1000) * 2); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | TimeDelta::FromMilliseconds(1000) / 2); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | TimeDelta::FromMilliseconds(1000) *= 2); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(500), | 
|  | TimeDelta::FromMilliseconds(1000) /= 2); | 
|  | EXPECT_EQ(TimeDelta::FromMilliseconds(2000), | 
|  | 2 * TimeDelta::FromMilliseconds(1000)); | 
|  | } | 
|  |  | 
|  | // Test that all the time functions exposed by TimeUtils get time from the | 
|  | // fake clock when it's set. | 
|  | TEST(FakeClock, TimeFunctionsUseFakeClock) { | 
|  | FakeClock clock; | 
|  | SetClockForTesting(&clock); | 
|  |  | 
|  | clock.SetTimeNanos(987654321); | 
|  | EXPECT_EQ(987u, Time32()); | 
|  | EXPECT_EQ(987, TimeMillis()); | 
|  | EXPECT_EQ(987654, TimeMicros()); | 
|  | EXPECT_EQ(987654321, TimeNanos()); | 
|  | EXPECT_EQ(1000u, TimeAfter(13)); | 
|  |  | 
|  | SetClockForTesting(nullptr); | 
|  | // After it's unset, we should get a normal time. | 
|  | EXPECT_NE(987, TimeMillis()); | 
|  | } | 
|  |  | 
|  | TEST(FakeClock, InitialTime) { | 
|  | FakeClock clock; | 
|  | EXPECT_EQ(0, clock.TimeNanos()); | 
|  | } | 
|  |  | 
|  | TEST(FakeClock, SetTimeNanos) { | 
|  | FakeClock clock; | 
|  | clock.SetTimeNanos(123); | 
|  | EXPECT_EQ(123, clock.TimeNanos()); | 
|  | clock.SetTimeNanos(456); | 
|  | EXPECT_EQ(456, clock.TimeNanos()); | 
|  | } | 
|  |  | 
|  | TEST(FakeClock, AdvanceTime) { | 
|  | FakeClock clock; | 
|  | clock.AdvanceTime(TimeDelta::FromNanoseconds(1111u)); | 
|  | EXPECT_EQ(1111, clock.TimeNanos()); | 
|  | clock.AdvanceTime(TimeDelta::FromMicroseconds(2222u)); | 
|  | EXPECT_EQ(2223111, clock.TimeNanos()); | 
|  | clock.AdvanceTime(TimeDelta::FromMilliseconds(3333u)); | 
|  | EXPECT_EQ(3335223111, clock.TimeNanos()); | 
|  | clock.AdvanceTime(TimeDelta::FromSeconds(4444u)); | 
|  | EXPECT_EQ(4447335223111, clock.TimeNanos()); | 
|  | } | 
|  |  | 
|  | // When the clock is advanced, threads that are waiting in a socket select | 
|  | // should wake up and look at the new time. This allows tests using the | 
|  | // fake clock to run much faster, if the test is bound by time constraints | 
|  | // (such as a test for a STUN ping timeout). | 
|  | TEST(FakeClock, SettingTimeWakesThreads) { | 
|  | int64_t real_start_time_ms = TimeMillis(); | 
|  |  | 
|  | FakeClock clock; | 
|  | SetClockForTesting(&clock); | 
|  |  | 
|  | Thread worker; | 
|  | worker.Start(); | 
|  |  | 
|  | // Post an event that won't be executed for 10 seconds. | 
|  | Event message_handler_dispatched(false, false); | 
|  | auto functor = [&message_handler_dispatched] { | 
|  | message_handler_dispatched.Set(); | 
|  | }; | 
|  | FunctorMessageHandler<void, decltype(functor)> handler(functor); | 
|  | worker.PostDelayed(RTC_FROM_HERE, 60000, &handler); | 
|  |  | 
|  | // Wait for a bit for the worker thread to be started and enter its socket | 
|  | // select(). Otherwise this test would be trivial since the worker thread | 
|  | // would process the event as soon as it was started. | 
|  | Thread::Current()->SleepMs(1000); | 
|  |  | 
|  | // Advance the fake clock, expecting the worker thread to wake up | 
|  | // and dispatch the message instantly. | 
|  | clock.AdvanceTime(TimeDelta::FromSeconds(60u)); | 
|  | EXPECT_TRUE(message_handler_dispatched.Wait(0)); | 
|  | worker.Stop(); | 
|  |  | 
|  | SetClockForTesting(nullptr); | 
|  |  | 
|  | // The message should have been dispatched long before the 60 seconds fully | 
|  | // elapsed (just a sanity check). | 
|  | int64_t real_end_time_ms = TimeMillis(); | 
|  | EXPECT_LT(real_end_time_ms - real_start_time_ms, 10000); | 
|  | } | 
|  |  | 
|  | }  // namespace rtc |