blob: fe3cdfa3fc2b6c4e55ef0d61debb37d22ae1df5f [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string.h>
#include <list>
#include "gtest/gtest.h"
#include "modules/video_coding/main/source/jitter_buffer.h"
#include "modules/video_coding/main/source/media_opt_util.h"
#include "modules/video_coding/main/source/packet.h"
#include "webrtc/system_wrappers/interface/clock.h"
namespace webrtc {
enum { kDefaultFrameRate = 25u };
enum { kDefaultFramePeriodMs = 1000u / kDefaultFrameRate };
const unsigned int kDefaultBitrateKbps = 1000;
const unsigned int kFrameSize = (kDefaultBitrateKbps + kDefaultFrameRate * 4) /
(kDefaultFrameRate * 8);
const unsigned int kMaxPacketSize = 1500;
class StreamGenerator {
public:
StreamGenerator(uint16_t start_seq_num, uint32_t start_timestamp,
int64_t current_time)
: packets_(),
sequence_number_(start_seq_num),
timestamp_(start_timestamp),
start_time_(current_time) {}
void Init(uint16_t start_seq_num, uint32_t start_timestamp,
int64_t current_time) {
packets_.clear();
sequence_number_ = start_seq_num;
timestamp_ = start_timestamp;
start_time_ = current_time;
memset(&packet_buffer, 0, sizeof(packet_buffer));
}
void GenerateFrame(FrameType type, int num_media_packets,
int num_empty_packets, int64_t current_time) {
timestamp_ += 90 * (current_time - start_time_);
// Move the sequence number counter if all packets from the previous frame
// wasn't collected.
sequence_number_ += packets_.size();
packets_.clear();
for (int i = 0; i < num_media_packets; ++i) {
const int packet_size = (kFrameSize + num_media_packets / 2) /
num_media_packets;
packets_.push_back(GeneratePacket(sequence_number_,
timestamp_,
packet_size,
(i == 0),
(i == num_media_packets - 1),
type));
++sequence_number_;
}
for (int i = 0; i < num_empty_packets; ++i) {
packets_.push_back(GeneratePacket(sequence_number_,
timestamp_,
0,
false,
false,
kFrameEmpty));
++sequence_number_;
}
}
VCMPacket GeneratePacket(uint16_t sequence_number,
uint32_t timestamp,
unsigned int size,
bool first_packet,
bool marker_bit,
FrameType type) {
EXPECT_LT(size, kMaxPacketSize);
VCMPacket packet;
packet.seqNum = sequence_number;
packet.timestamp = timestamp;
packet.frameType = type;
packet.isFirstPacket = first_packet;
packet.markerBit = marker_bit;
packet.sizeBytes = size;
packet.dataPtr = packet_buffer;
if (packet.isFirstPacket)
packet.completeNALU = kNaluStart;
else if (packet.markerBit)
packet.completeNALU = kNaluEnd;
else
packet.completeNALU = kNaluIncomplete;
return packet;
}
bool PopPacket(VCMPacket* packet, int index) {
std::list<VCMPacket>::iterator it = GetPacketIterator(index);
if (it == packets_.end())
return false;
if (packet)
*packet = (*it);
packets_.erase(it);
return true;
}
bool GetPacket(VCMPacket* packet, int index) {
std::list<VCMPacket>::iterator it = GetPacketIterator(index);
if (it == packets_.end())
return false;
if (packet)
*packet = (*it);
return true;
}
bool NextPacket(VCMPacket* packet) {
if (packets_.empty())
return false;
if (packet != NULL)
*packet = packets_.front();
packets_.pop_front();
return true;
}
uint16_t NextSequenceNumber() const {
if (packets_.empty())
return sequence_number_;
return packets_.front().seqNum;
}
int PacketsRemaining() const {
return packets_.size();
}
private:
std::list<VCMPacket>::iterator GetPacketIterator(int index) {
std::list<VCMPacket>::iterator it = packets_.begin();
for (int i = 0; i < index; ++i) {
++it;
if (it == packets_.end()) break;
}
return it;
}
std::list<VCMPacket> packets_;
uint16_t sequence_number_;
uint32_t timestamp_;
int64_t start_time_;
uint8_t packet_buffer[kMaxPacketSize];
DISALLOW_COPY_AND_ASSIGN(StreamGenerator);
};
class TestRunningJitterBuffer : public ::testing::Test {
protected:
enum { kDataBufferSize = 10 };
virtual void SetUp() {
clock_.reset(new SimulatedClock(0));
max_nack_list_size_ = 150;
oldest_packet_to_nack_ = 250;
jitter_buffer_ = new VCMJitterBuffer(clock_.get(), -1, -1, true);
stream_generator = new StreamGenerator(0, 0, clock_->TimeInMilliseconds());
jitter_buffer_->Start();
jitter_buffer_->SetNackSettings(max_nack_list_size_,
oldest_packet_to_nack_);
memset(data_buffer_, 0, kDataBufferSize);
}
virtual void TearDown() {
jitter_buffer_->Stop();
delete stream_generator;
delete jitter_buffer_;
}
VCMFrameBufferEnum InsertPacketAndPop(int index) {
VCMPacket packet;
VCMEncodedFrame* frame;
packet.dataPtr = data_buffer_;
bool packet_available = stream_generator->PopPacket(&packet, index);
EXPECT_TRUE(packet_available);
if (!packet_available)
return kStateError; // Return here to avoid crashes below.
EXPECT_EQ(VCM_OK, jitter_buffer_->GetFrame(packet, frame));
return jitter_buffer_->InsertPacket(frame, packet);
}
VCMFrameBufferEnum InsertPacket(int index) {
VCMPacket packet;
VCMEncodedFrame* frame;
packet.dataPtr = data_buffer_;
bool packet_available = stream_generator->GetPacket(&packet, index);
EXPECT_TRUE(packet_available);
if (!packet_available)
return kStateError; // Return here to avoid crashes below.
EXPECT_EQ(VCM_OK, jitter_buffer_->GetFrame(packet, frame));
return jitter_buffer_->InsertPacket(frame, packet);
}
VCMFrameBufferEnum InsertFrame(FrameType frame_type) {
stream_generator->GenerateFrame(frame_type,
(frame_type != kFrameEmpty) ? 1 : 0,
(frame_type == kFrameEmpty) ? 1 : 0,
clock_->TimeInMilliseconds());
VCMFrameBufferEnum ret = InsertPacketAndPop(0);
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
return ret;
}
VCMFrameBufferEnum InsertFrames(int num_frames, FrameType frame_type) {
VCMFrameBufferEnum ret_for_all = kNoError;
for (int i = 0; i < num_frames; ++i) {
VCMFrameBufferEnum ret = InsertFrame(frame_type);
if (ret < kNoError) {
ret_for_all = ret;
} else if (ret_for_all >= kNoError) {
ret_for_all = ret;
}
}
return ret_for_all;
}
void DropFrame(int num_packets) {
stream_generator->GenerateFrame(kVideoFrameDelta, num_packets, 0,
clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
}
bool DecodeCompleteFrame() {
VCMEncodedFrame* frame = jitter_buffer_->GetCompleteFrameForDecoding(0);
bool ret = (frame != NULL);
jitter_buffer_->ReleaseFrame(frame);
return ret;
}
bool DecodeFrame() {
VCMEncodedFrame* frame = jitter_buffer_->GetFrameForDecoding();
bool ret = (frame != NULL);
jitter_buffer_->ReleaseFrame(frame);
return ret;
}
VCMJitterBuffer* jitter_buffer_;
StreamGenerator* stream_generator;
scoped_ptr<SimulatedClock> clock_;
size_t max_nack_list_size_;
int oldest_packet_to_nack_;
uint8_t data_buffer_[kDataBufferSize];
};
class TestJitterBufferNack : public TestRunningJitterBuffer {
protected:
virtual void SetUp() {
TestRunningJitterBuffer::SetUp();
jitter_buffer_->SetNackMode(kNack, -1, -1);
}
virtual void TearDown() {
TestRunningJitterBuffer::TearDown();
}
};
TEST_F(TestRunningJitterBuffer, TestFull) {
// Insert a key frame and decode it.
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeCompleteFrame());
DropFrame(1);
// Fill the jitter buffer.
EXPECT_GE(InsertFrames(kMaxNumberOfFrames, kVideoFrameDelta), kNoError);
// Make sure we can't decode these frames.
EXPECT_FALSE(DecodeCompleteFrame());
// This frame will make the jitter buffer recycle frames until a key frame.
// Since none is found it will have to wait until the next key frame before
// decoding.
EXPECT_GE(InsertFrame(kVideoFrameDelta), kNoError);
EXPECT_FALSE(DecodeCompleteFrame());
}
TEST_F(TestRunningJitterBuffer, TestEmptyPackets) {
// Make sure a frame can get complete even though empty packets are missing.
stream_generator->GenerateFrame(kVideoFrameKey, 3, 3,
clock_->TimeInMilliseconds());
bool request_key_frame = false;
EXPECT_EQ(kFirstPacket, InsertPacketAndPop(4));
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(kIncomplete, InsertPacketAndPop(4));
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
}
TEST_F(TestRunningJitterBuffer, JitterEstimateMode) {
bool request_key_frame = false;
// Default value (should be in kLastEstimate mode).
InsertFrame(kVideoFrameKey);
EXPECT_FALSE(request_key_frame);
InsertFrame(kVideoFrameDelta);
EXPECT_FALSE(request_key_frame);
EXPECT_GT(20u, jitter_buffer_->EstimatedJitterMs());
// Set kMaxEstimate with a 2 seconds initial delay.
jitter_buffer_->SetMaxJitterEstimate(2000u);
EXPECT_EQ(2000u, jitter_buffer_->EstimatedJitterMs());
InsertFrame(kVideoFrameDelta);
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(2000u, jitter_buffer_->EstimatedJitterMs());
// Jitter cannot decrease.
InsertFrames(2, kVideoFrameDelta);
EXPECT_FALSE(request_key_frame);
uint32_t je1 = jitter_buffer_->EstimatedJitterMs();
InsertFrames(2, kVideoFrameDelta);
EXPECT_FALSE(request_key_frame);
EXPECT_GE(je1, jitter_buffer_->EstimatedJitterMs());
}
TEST_F(TestRunningJitterBuffer, StatisticsTest) {
uint32_t num_delta_frames = 0;
uint32_t num_key_frames = 0;
jitter_buffer_->FrameStatistics(&num_delta_frames, &num_key_frames);
EXPECT_EQ(0u, num_delta_frames);
EXPECT_EQ(0u, num_key_frames);
uint32_t framerate = 0;
uint32_t bitrate = 0;
jitter_buffer_->IncomingRateStatistics(&framerate, &bitrate);
EXPECT_EQ(0u, framerate);
EXPECT_EQ(0u, bitrate);
// Insert a couple of key and delta frames.
InsertFrame(kVideoFrameKey);
InsertFrame(kVideoFrameDelta);
InsertFrame(kVideoFrameDelta);
InsertFrame(kVideoFrameKey);
InsertFrame(kVideoFrameDelta);
// Decode some of them to make sure the statistics doesn't depend on frames
// being decoded.
EXPECT_TRUE(DecodeCompleteFrame());
EXPECT_TRUE(DecodeCompleteFrame());
jitter_buffer_->FrameStatistics(&num_delta_frames, &num_key_frames);
EXPECT_EQ(3u, num_delta_frames);
EXPECT_EQ(2u, num_key_frames);
// Insert 20 more frames to get estimates of bitrate and framerate over
// 1 second.
for (int i = 0; i < 20; ++i) {
InsertFrame(kVideoFrameDelta);
}
jitter_buffer_->IncomingRateStatistics(&framerate, &bitrate);
// TODO(holmer): The current implementation returns the average of the last
// two framerate calculations, which is why it takes two calls to reach the
// actual framerate. This should be fixed.
EXPECT_EQ(kDefaultFrameRate / 2u, framerate);
EXPECT_EQ(kDefaultBitrateKbps, bitrate);
// Insert 25 more frames to get estimates of bitrate and framerate over
// 2 seconds.
for (int i = 0; i < 25; ++i) {
InsertFrame(kVideoFrameDelta);
}
jitter_buffer_->IncomingRateStatistics(&framerate, &bitrate);
EXPECT_EQ(kDefaultFrameRate, framerate);
EXPECT_EQ(kDefaultBitrateKbps, bitrate);
}
TEST_F(TestJitterBufferNack, TestEmptyPackets) {
// Make sure empty packets doesn't clog the jitter buffer.
jitter_buffer_->SetNackMode(kNackHybrid, media_optimization::kLowRttNackMs,
-1);
EXPECT_GE(InsertFrames(kMaxNumberOfFrames, kFrameEmpty), kNoError);
InsertFrame(kVideoFrameKey);
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, TestNackTooOldPackets) {
// Insert a key frame and decode it.
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeCompleteFrame());
// Drop one frame and insert |kNackHistoryLength| to trigger NACKing a too
// old packet.
DropFrame(1);
// Insert a frame which should trigger a recycle until the next key frame.
EXPECT_EQ(kFlushIndicator, InsertFrames(oldest_packet_to_nack_,
kVideoFrameDelta));
EXPECT_FALSE(DecodeCompleteFrame());
uint16_t nack_list_length = max_nack_list_size_;
bool request_key_frame = false;
uint16_t* nack_list = jitter_buffer_->GetNackList(&nack_list_length,
&request_key_frame);
// Verify that the jitter buffer requests a key frame.
EXPECT_TRUE(request_key_frame);
EXPECT_TRUE(nack_list == NULL);
EXPECT_EQ(0, nack_list_length);
EXPECT_GE(InsertFrame(kVideoFrameDelta), kNoError);
// Waiting for a key frame.
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_FALSE(DecodeFrame());
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
// The next complete continuous frame isn't a key frame, but we're waiting
// for one.
EXPECT_FALSE(DecodeCompleteFrame());
// Skipping ahead to the key frame.
EXPECT_TRUE(DecodeFrame());
}
TEST_F(TestJitterBufferNack, TestNackLargeJitterBuffer) {
// Insert a key frame and decode it.
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeCompleteFrame());
// Insert a frame which should trigger a recycle until the next key frame.
EXPECT_GE(InsertFrames(oldest_packet_to_nack_, kVideoFrameDelta), kNoError);
uint16_t nack_list_length = max_nack_list_size_;
bool request_key_frame = false;
jitter_buffer_->GetNackList(&nack_list_length, &request_key_frame);
// Verify that the jitter buffer does not request a key frame.
EXPECT_FALSE(request_key_frame);
// Verify that no packets are NACKed.
EXPECT_EQ(0, nack_list_length);
// Verify that we can decode the next frame.
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, TestNackListFull) {
// Insert a key frame and decode it.
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeCompleteFrame());
// Generate and drop |kNackHistoryLength| packets to fill the NACK list.
DropFrame(max_nack_list_size_);
// Insert a frame which should trigger a recycle until the next key frame.
EXPECT_EQ(kFlushIndicator, InsertFrame(kVideoFrameDelta));
EXPECT_FALSE(DecodeCompleteFrame());
uint16_t nack_list_length = max_nack_list_size_;
bool request_key_frame = false;
jitter_buffer_->GetNackList(&nack_list_length, &request_key_frame);
// Verify that the jitter buffer requests a key frame.
EXPECT_TRUE(request_key_frame);
EXPECT_GE(InsertFrame(kVideoFrameDelta), kNoError);
// Waiting for a key frame.
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_FALSE(DecodeFrame());
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
// The next complete continuous frame isn't a key frame, but we're waiting
// for one.
EXPECT_FALSE(DecodeCompleteFrame());
// Skipping ahead to the key frame.
EXPECT_TRUE(DecodeFrame());
}
TEST_F(TestJitterBufferNack, TestNackBeforeDecode) {
DropFrame(10);
// Insert a frame and try to generate a NACK list. Shouldn't get one.
EXPECT_GE(InsertFrame(kVideoFrameDelta), kNoError);
uint16_t nack_list_size = 0;
bool request_key_frame = false;
uint16_t* list = jitter_buffer_->GetNackList(&nack_list_size,
&request_key_frame);
// No list generated, and a key frame request is signaled.
EXPECT_TRUE(list == NULL);
EXPECT_EQ(0, nack_list_size);
EXPECT_TRUE(request_key_frame);
}
TEST_F(TestJitterBufferNack, TestNormalOperation) {
EXPECT_EQ(kNack, jitter_buffer_->nack_mode());
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeFrame());
// ----------------------------------------------------------------
// | 1 | 2 | .. | 8 | 9 | x | 11 | 12 | .. | 19 | x | 21 | .. | 100 |
// ----------------------------------------------------------------
stream_generator->GenerateFrame(kVideoFrameKey, 100, 0,
clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
EXPECT_EQ(kFirstPacket, InsertPacketAndPop(0));
// Verify that the frame is incomplete.
EXPECT_FALSE(DecodeCompleteFrame());
while (stream_generator->PacketsRemaining() > 1) {
if (stream_generator->NextSequenceNumber() % 10 != 0) {
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
} else {
stream_generator->NextPacket(NULL); // Drop packet
}
}
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_EQ(0, stream_generator->PacketsRemaining());
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_FALSE(DecodeFrame());
uint16_t nack_list_size = 0;
bool request_key_frame = false;
uint16_t* list = jitter_buffer_->GetNackList(&nack_list_size,
&request_key_frame);
// Verify the NACK list.
const int kExpectedNackSize = 9;
ASSERT_EQ(kExpectedNackSize, nack_list_size);
for (int i = 0; i < nack_list_size; ++i)
EXPECT_EQ((1 + i) * 10, list[i]);
}
TEST_F(TestJitterBufferNack, TestNormalOperationWrap) {
bool request_key_frame = false;
// ------- ------------------------------------------------------------
// | 65532 | | 65533 | 65534 | 65535 | x | 1 | .. | 9 | x | 11 |.....| 96 |
// ------- ------------------------------------------------------------
stream_generator->Init(65532, 0, clock_->TimeInMilliseconds());
InsertFrame(kVideoFrameKey);
EXPECT_FALSE(request_key_frame);
EXPECT_TRUE(DecodeCompleteFrame());
stream_generator->GenerateFrame(kVideoFrameDelta, 100, 0,
clock_->TimeInMilliseconds());
EXPECT_EQ(kFirstPacket, InsertPacketAndPop(0));
while (stream_generator->PacketsRemaining() > 1) {
if (stream_generator->NextSequenceNumber() % 10 != 0) {
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
} else {
stream_generator->NextPacket(NULL); // Drop packet
}
}
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(0, stream_generator->PacketsRemaining());
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_FALSE(DecodeCompleteFrame());
uint16_t nack_list_size = 0;
bool extended = false;
uint16_t* list = jitter_buffer_->GetNackList(&nack_list_size, &extended);
// Verify the NACK list.
const int kExpectedNackSize = 10;
ASSERT_EQ(kExpectedNackSize, nack_list_size);
for (int i = 0; i < nack_list_size; ++i)
EXPECT_EQ(i * 10, list[i]);
}
} // namespace webrtc