blob: e56a977f28c9536b5902a47152e52b864221156d [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/rtp_rtcp/source/rtp_format_vp8.h"
#include <assert.h> // assert
#include <string.h> // memcpy
#include <limits>
#include <utility>
#include <vector>
#include "webrtc/modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "webrtc/rtc_base/logging.h"
namespace webrtc {
namespace {
int ParseVP8PictureID(RTPVideoHeaderVP8* vp8,
const uint8_t** data,
size_t* data_length,
size_t* parsed_bytes) {
assert(vp8 != NULL);
if (*data_length == 0)
return -1;
vp8->pictureId = (**data & 0x7F);
if (**data & 0x80) {
(*data)++;
(*parsed_bytes)++;
if (--(*data_length) == 0)
return -1;
// PictureId is 15 bits
vp8->pictureId = (vp8->pictureId << 8) + **data;
}
(*data)++;
(*parsed_bytes)++;
(*data_length)--;
return 0;
}
int ParseVP8Tl0PicIdx(RTPVideoHeaderVP8* vp8,
const uint8_t** data,
size_t* data_length,
size_t* parsed_bytes) {
assert(vp8 != NULL);
if (*data_length == 0)
return -1;
vp8->tl0PicIdx = **data;
(*data)++;
(*parsed_bytes)++;
(*data_length)--;
return 0;
}
int ParseVP8TIDAndKeyIdx(RTPVideoHeaderVP8* vp8,
const uint8_t** data,
size_t* data_length,
size_t* parsed_bytes,
bool has_tid,
bool has_key_idx) {
assert(vp8 != NULL);
if (*data_length == 0)
return -1;
if (has_tid) {
vp8->temporalIdx = ((**data >> 6) & 0x03);
vp8->layerSync = (**data & 0x20) ? true : false; // Y bit
}
if (has_key_idx) {
vp8->keyIdx = (**data & 0x1F);
}
(*data)++;
(*parsed_bytes)++;
(*data_length)--;
return 0;
}
int ParseVP8Extension(RTPVideoHeaderVP8* vp8,
const uint8_t* data,
size_t data_length) {
assert(vp8 != NULL);
assert(data_length > 0);
size_t parsed_bytes = 0;
// Optional X field is present.
bool has_picture_id = (*data & 0x80) ? true : false; // I bit
bool has_tl0_pic_idx = (*data & 0x40) ? true : false; // L bit
bool has_tid = (*data & 0x20) ? true : false; // T bit
bool has_key_idx = (*data & 0x10) ? true : false; // K bit
// Advance data and decrease remaining payload size.
data++;
parsed_bytes++;
data_length--;
if (has_picture_id) {
if (ParseVP8PictureID(vp8, &data, &data_length, &parsed_bytes) != 0) {
return -1;
}
}
if (has_tl0_pic_idx) {
if (ParseVP8Tl0PicIdx(vp8, &data, &data_length, &parsed_bytes) != 0) {
return -1;
}
}
if (has_tid || has_key_idx) {
if (ParseVP8TIDAndKeyIdx(
vp8, &data, &data_length, &parsed_bytes, has_tid, has_key_idx) !=
0) {
return -1;
}
}
return static_cast<int>(parsed_bytes);
}
int ParseVP8FrameSize(RtpDepacketizer::ParsedPayload* parsed_payload,
const uint8_t* data,
size_t data_length) {
assert(parsed_payload != NULL);
if (parsed_payload->frame_type != kVideoFrameKey) {
// Included in payload header for I-frames.
return 0;
}
if (data_length < 10) {
// For an I-frame we should always have the uncompressed VP8 header
// in the beginning of the partition.
return -1;
}
parsed_payload->type.Video.width = ((data[7] << 8) + data[6]) & 0x3FFF;
parsed_payload->type.Video.height = ((data[9] << 8) + data[8]) & 0x3FFF;
return 0;
}
} // namespace
RtpPacketizerVp8::RtpPacketizerVp8(const RTPVideoHeaderVP8& hdr_info,
size_t max_payload_len,
size_t last_packet_reduction_len,
VP8PacketizerMode mode)
: payload_data_(NULL),
payload_size_(0),
vp8_fixed_payload_descriptor_bytes_(1),
mode_(mode),
hdr_info_(hdr_info),
num_partitions_(0),
max_payload_len_(max_payload_len),
last_packet_reduction_len_(last_packet_reduction_len) {}
RtpPacketizerVp8::RtpPacketizerVp8(const RTPVideoHeaderVP8& hdr_info,
size_t max_payload_len,
size_t last_packet_reduction_len)
: payload_data_(NULL),
payload_size_(0),
part_info_(),
vp8_fixed_payload_descriptor_bytes_(1),
mode_(kEqualSize),
hdr_info_(hdr_info),
num_partitions_(0),
max_payload_len_(max_payload_len),
last_packet_reduction_len_(last_packet_reduction_len) {}
RtpPacketizerVp8::~RtpPacketizerVp8() {
}
size_t RtpPacketizerVp8::SetPayloadData(
const uint8_t* payload_data,
size_t payload_size,
const RTPFragmentationHeader* fragmentation) {
payload_data_ = payload_data;
payload_size_ = payload_size;
if (fragmentation) {
part_info_.CopyFrom(*fragmentation);
num_partitions_ = fragmentation->fragmentationVectorSize;
} else {
part_info_.VerifyAndAllocateFragmentationHeader(1);
part_info_.fragmentationLength[0] = payload_size;
part_info_.fragmentationOffset[0] = 0;
num_partitions_ = part_info_.fragmentationVectorSize;
}
if (GeneratePackets() < 0) {
return 0;
}
return packets_.size();
}
bool RtpPacketizerVp8::NextPacket(RtpPacketToSend* packet) {
RTC_DCHECK(packet);
if (packets_.empty()) {
return false;
}
InfoStruct packet_info = packets_.front();
packets_.pop();
uint8_t* buffer = packet->AllocatePayload(
packets_.empty() ? max_payload_len_ - last_packet_reduction_len_
: max_payload_len_);
int bytes = WriteHeaderAndPayload(packet_info, buffer, max_payload_len_);
if (bytes < 0) {
return false;
}
packet->SetPayloadSize(bytes);
packet->SetMarker(packets_.empty());
return true;
}
std::string RtpPacketizerVp8::ToString() {
return "RtpPacketizerVp8";
}
int RtpPacketizerVp8::GeneratePackets() {
if (max_payload_len_ < vp8_fixed_payload_descriptor_bytes_ +
PayloadDescriptorExtraLength() + 1 +
last_packet_reduction_len_) {
// The provided payload length is not long enough for the payload
// descriptor and one payload byte in the last packet.
// Return an error.
return -1;
}
size_t per_packet_capacity =
max_payload_len_ -
(vp8_fixed_payload_descriptor_bytes_ + PayloadDescriptorExtraLength());
if (mode_ == kEqualSize) {
GeneratePacketsSplitPayloadBalanced(0, payload_size_, per_packet_capacity,
true, 0);
return 0;
}
size_t part_idx = 0;
while (part_idx < num_partitions_) {
size_t current_packet_capacity = per_packet_capacity;
bool last_partition = (part_idx + 1) == num_partitions_;
if (last_partition)
current_packet_capacity -= last_packet_reduction_len_;
// Check if the next partition fits in to single packet with some space
// left to aggregate some partitions together.
if (mode_ == kAggregate &&
part_info_.fragmentationLength[part_idx] < current_packet_capacity) {
part_idx =
GeneratePacketsAggregatePartitions(part_idx, per_packet_capacity);
} else {
GeneratePacketsSplitPayloadBalanced(
part_info_.fragmentationOffset[part_idx],
part_info_.fragmentationLength[part_idx], per_packet_capacity,
last_partition, part_idx);
++part_idx;
}
}
return 0;
}
void RtpPacketizerVp8::GeneratePacketsSplitPayloadBalanced(size_t payload_start,
size_t payload_len,
size_t capacity,
bool last_partition,
size_t part_idx) {
// Last packet of the last partition is smaller. Pretend that it's the same
// size, but we must write more payload to it.
size_t total_bytes = payload_len;
if (last_partition)
total_bytes += last_packet_reduction_len_;
// Integer divisions with rounding up.
size_t num_packets_left = (total_bytes + capacity - 1) / capacity;
size_t bytes_per_packet = total_bytes / num_packets_left;
size_t num_larger_packets = total_bytes % num_packets_left;
size_t remaining_data = payload_len;
while (remaining_data > 0) {
// Last num_larger_packets are 1 byte wider than the rest. Increase
// per-packet payload size when needed.
if (num_packets_left == num_larger_packets)
++bytes_per_packet;
size_t current_packet_bytes = bytes_per_packet;
if (current_packet_bytes > remaining_data) {
current_packet_bytes = remaining_data;
}
// This is not the last packet in the whole payload, but there's no data
// left for the last packet. Leave at least one byte for the last packet.
if (num_packets_left == 2 && current_packet_bytes == remaining_data &&
last_partition) {
--current_packet_bytes;
}
QueuePacket(payload_start + payload_len - remaining_data,
current_packet_bytes, part_idx, remaining_data == payload_len);
remaining_data -= current_packet_bytes;
--num_packets_left;
}
}
size_t RtpPacketizerVp8::GeneratePacketsAggregatePartitions(size_t part_idx,
size_t capacity) {
// Bloat the last partition by the reduction of the last packet. As it always
// will be in the last packet we can pretend that the last packet is the same
// size as the rest of the packets. Done temporary to simplify calculations.
part_info_.fragmentationLength[num_partitions_ - 1] +=
last_packet_reduction_len_;
// Current partition should fit into the packet.
RTC_CHECK_LE(part_info_.fragmentationLength[part_idx], capacity);
// Find all partitions, shorter than capacity.
size_t end_part = part_idx + 1;
while (end_part < num_partitions_ &&
part_info_.fragmentationLength[end_part] <= capacity) {
++end_part;
}
size_t total_partitions = end_part - part_idx;
// Aggregate partitions |part_idx|..|end_part-1| to blocks of size at most
// |capacity| minimizing the number of packets and then size of a largest
// block using dynamic programming. |scores[i]| stores best score in the form
// <number of packets, largest packet> for last i partitions. Maximum index is
// |total_partitions|, minimum index is 0, hence the length is
// |total_partitions|+1.
struct PartitionScore {
size_t num_packets = std::numeric_limits<size_t>::max();
size_t largest_packet_len = std::numeric_limits<size_t>::max();
// Compare num_packets first then largest_packet_len
bool operator <(const PartitionScore& other) const {
if (num_packets < other.num_packets) return true;
if (num_packets > other.num_packets) return false;
return largest_packet_len < other.largest_packet_len;
}
};
std::vector<PartitionScore> scores(total_partitions + 1);
// 0 partitions can be split into 0 packets with largest of size 0.
scores[0].num_packets = 0;
scores[0].largest_packet_len = 0;
// best_block_size[i] stores optimal number of partitions to be aggregated
// in the first packet if only last i partitions are considered.
std::vector<size_t> best_block_size(total_partitions + 1, 0);
// Calculate scores and best_block_size iteratively.
for (size_t partitions_left = 0; partitions_left < total_partitions;
++partitions_left) {
// Here scores[paritions_left] is already calculated correctly. Update
// possible score for every possible new_paritions_left > partitions_left by
// aggregating all partitions in between into a single packet.
size_t current_payload_len = 0;
PartitionScore current_score = scores[partitions_left];
// Some next partitions are aggregated into one packet.
current_score.num_packets += 1;
// Calculate new score for last |new_partitions_left| partitions given
// best score for |partitions_left| partitions.
for (size_t new_partitions_left = partitions_left + 1;
new_partitions_left <= total_partitions; ++new_partitions_left) {
current_payload_len +=
part_info_.fragmentationLength[end_part - new_partitions_left];
if (current_payload_len > capacity)
break;
// Update maximum packet size.
if (current_payload_len > current_score.largest_packet_len)
current_score.largest_packet_len = current_payload_len;
// Score with less num_packets is better. If equal, minimum largest packet
// size is better.
if (current_score < scores[new_partitions_left]) {
scores[new_partitions_left] = current_score;
best_block_size[new_partitions_left] =
new_partitions_left - partitions_left;
}
}
}
// Undo temporary change.
part_info_.fragmentationLength[num_partitions_ - 1] -=
last_packet_reduction_len_;
// Restore answer given sizes of aggregated blocks in |best_block_size| for
// each possible left number of partitions.
size_t partitions_left = total_partitions;
while (partitions_left > 0) {
size_t cur_parts = best_block_size[partitions_left];
size_t first_partition = end_part - partitions_left;
size_t start_offset = part_info_.fragmentationOffset[first_partition];
size_t post_last_partition = first_partition + cur_parts;
size_t finish_offset =
(post_last_partition < num_partitions_)
? part_info_.fragmentationOffset[post_last_partition]
: payload_size_;
size_t current_payload_len = finish_offset - start_offset;
QueuePacket(start_offset, current_payload_len, first_partition, true);
// Go to next packet.
partitions_left -= cur_parts;
}
return end_part;
}
void RtpPacketizerVp8::QueuePacket(size_t start_pos,
size_t packet_size,
size_t first_partition_in_packet,
bool start_on_new_fragment) {
// Write info to packet info struct and store in packet info queue.
InfoStruct packet_info;
packet_info.payload_start_pos = start_pos;
packet_info.size = packet_size;
packet_info.first_partition_ix = first_partition_in_packet;
packet_info.first_fragment = start_on_new_fragment;
packets_.push(packet_info);
}
int RtpPacketizerVp8::WriteHeaderAndPayload(const InfoStruct& packet_info,
uint8_t* buffer,
size_t buffer_length) const {
// Write the VP8 payload descriptor.
// 0
// 0 1 2 3 4 5 6 7 8
// +-+-+-+-+-+-+-+-+-+
// |X| |N|S| PART_ID |
// +-+-+-+-+-+-+-+-+-+
// X: |I|L|T|K| | (mandatory if any of the below are used)
// +-+-+-+-+-+-+-+-+-+
// I: |PictureID (8/16b)| (optional)
// +-+-+-+-+-+-+-+-+-+
// L: | TL0PIC_IDX | (optional)
// +-+-+-+-+-+-+-+-+-+
// T/K: |TID:Y| KEYIDX | (optional)
// +-+-+-+-+-+-+-+-+-+
assert(packet_info.size > 0);
buffer[0] = 0;
if (XFieldPresent())
buffer[0] |= kXBit;
if (hdr_info_.nonReference)
buffer[0] |= kNBit;
if (packet_info.first_fragment)
buffer[0] |= kSBit;
buffer[0] |= (packet_info.first_partition_ix & kPartIdField);
const int extension_length = WriteExtensionFields(buffer, buffer_length);
if (extension_length < 0)
return -1;
memcpy(&buffer[vp8_fixed_payload_descriptor_bytes_ + extension_length],
&payload_data_[packet_info.payload_start_pos],
packet_info.size);
// Return total length of written data.
return packet_info.size + vp8_fixed_payload_descriptor_bytes_ +
extension_length;
}
int RtpPacketizerVp8::WriteExtensionFields(uint8_t* buffer,
size_t buffer_length) const {
size_t extension_length = 0;
if (XFieldPresent()) {
uint8_t* x_field = buffer + vp8_fixed_payload_descriptor_bytes_;
*x_field = 0;
extension_length = 1; // One octet for the X field.
if (PictureIdPresent()) {
if (WritePictureIDFields(
x_field, buffer, buffer_length, &extension_length) < 0) {
return -1;
}
}
if (TL0PicIdxFieldPresent()) {
if (WriteTl0PicIdxFields(
x_field, buffer, buffer_length, &extension_length) < 0) {
return -1;
}
}
if (TIDFieldPresent() || KeyIdxFieldPresent()) {
if (WriteTIDAndKeyIdxFields(
x_field, buffer, buffer_length, &extension_length) < 0) {
return -1;
}
}
assert(extension_length == PayloadDescriptorExtraLength());
}
return static_cast<int>(extension_length);
}
int RtpPacketizerVp8::WritePictureIDFields(uint8_t* x_field,
uint8_t* buffer,
size_t buffer_length,
size_t* extension_length) const {
*x_field |= kIBit;
assert(buffer_length >=
vp8_fixed_payload_descriptor_bytes_ + *extension_length);
const int pic_id_length = WritePictureID(
buffer + vp8_fixed_payload_descriptor_bytes_ + *extension_length,
buffer_length - vp8_fixed_payload_descriptor_bytes_ - *extension_length);
if (pic_id_length < 0)
return -1;
*extension_length += pic_id_length;
return 0;
}
int RtpPacketizerVp8::WritePictureID(uint8_t* buffer,
size_t buffer_length) const {
const uint16_t pic_id = static_cast<uint16_t>(hdr_info_.pictureId);
size_t picture_id_len = PictureIdLength();
if (picture_id_len > buffer_length)
return -1;
if (picture_id_len == 2) {
buffer[0] = 0x80 | ((pic_id >> 8) & 0x7F);
buffer[1] = pic_id & 0xFF;
} else if (picture_id_len == 1) {
buffer[0] = pic_id & 0x7F;
}
return static_cast<int>(picture_id_len);
}
int RtpPacketizerVp8::WriteTl0PicIdxFields(uint8_t* x_field,
uint8_t* buffer,
size_t buffer_length,
size_t* extension_length) const {
if (buffer_length <
vp8_fixed_payload_descriptor_bytes_ + *extension_length + 1) {
return -1;
}
*x_field |= kLBit;
buffer[vp8_fixed_payload_descriptor_bytes_ + *extension_length] =
hdr_info_.tl0PicIdx;
++*extension_length;
return 0;
}
int RtpPacketizerVp8::WriteTIDAndKeyIdxFields(uint8_t* x_field,
uint8_t* buffer,
size_t buffer_length,
size_t* extension_length) const {
if (buffer_length <
vp8_fixed_payload_descriptor_bytes_ + *extension_length + 1) {
return -1;
}
uint8_t* data_field =
&buffer[vp8_fixed_payload_descriptor_bytes_ + *extension_length];
*data_field = 0;
if (TIDFieldPresent()) {
*x_field |= kTBit;
assert(hdr_info_.temporalIdx <= 3);
*data_field |= hdr_info_.temporalIdx << 6;
*data_field |= hdr_info_.layerSync ? kYBit : 0;
}
if (KeyIdxFieldPresent()) {
*x_field |= kKBit;
*data_field |= (hdr_info_.keyIdx & kKeyIdxField);
}
++*extension_length;
return 0;
}
size_t RtpPacketizerVp8::PayloadDescriptorExtraLength() const {
size_t length_bytes = PictureIdLength();
if (TL0PicIdxFieldPresent())
++length_bytes;
if (TIDFieldPresent() || KeyIdxFieldPresent())
++length_bytes;
if (length_bytes > 0)
++length_bytes; // Include the extension field.
return length_bytes;
}
size_t RtpPacketizerVp8::PictureIdLength() const {
if (hdr_info_.pictureId == kNoPictureId) {
return 0;
}
return 2;
}
bool RtpPacketizerVp8::XFieldPresent() const {
return (TIDFieldPresent() || TL0PicIdxFieldPresent() || PictureIdPresent() ||
KeyIdxFieldPresent());
}
bool RtpPacketizerVp8::TIDFieldPresent() const {
assert((hdr_info_.layerSync == false) ||
(hdr_info_.temporalIdx != kNoTemporalIdx));
return (hdr_info_.temporalIdx != kNoTemporalIdx);
}
bool RtpPacketizerVp8::KeyIdxFieldPresent() const {
return (hdr_info_.keyIdx != kNoKeyIdx);
}
bool RtpPacketizerVp8::TL0PicIdxFieldPresent() const {
return (hdr_info_.tl0PicIdx != kNoTl0PicIdx);
}
//
// VP8 format:
//
// Payload descriptor
// 0 1 2 3 4 5 6 7
// +-+-+-+-+-+-+-+-+
// |X|R|N|S|PartID | (REQUIRED)
// +-+-+-+-+-+-+-+-+
// X: |I|L|T|K| RSV | (OPTIONAL)
// +-+-+-+-+-+-+-+-+
// I: | PictureID | (OPTIONAL)
// +-+-+-+-+-+-+-+-+
// L: | TL0PICIDX | (OPTIONAL)
// +-+-+-+-+-+-+-+-+
// T/K: |TID:Y| KEYIDX | (OPTIONAL)
// +-+-+-+-+-+-+-+-+
//
// Payload header (considered part of the actual payload, sent to decoder)
// 0 1 2 3 4 5 6 7
// +-+-+-+-+-+-+-+-+
// |Size0|H| VER |P|
// +-+-+-+-+-+-+-+-+
// | ... |
// + +
bool RtpDepacketizerVp8::Parse(ParsedPayload* parsed_payload,
const uint8_t* payload_data,
size_t payload_data_length) {
assert(parsed_payload != NULL);
if (payload_data_length == 0) {
LOG(LS_ERROR) << "Empty payload.";
return false;
}
// Parse mandatory first byte of payload descriptor.
bool extension = (*payload_data & 0x80) ? true : false; // X bit
bool beginning_of_partition = (*payload_data & 0x10) ? true : false; // S bit
int partition_id = (*payload_data & 0x0F); // PartID field
parsed_payload->type.Video.width = 0;
parsed_payload->type.Video.height = 0;
parsed_payload->type.Video.is_first_packet_in_frame =
beginning_of_partition && (partition_id == 0);
parsed_payload->type.Video.simulcastIdx = 0;
parsed_payload->type.Video.codec = kRtpVideoVp8;
parsed_payload->type.Video.codecHeader.VP8.nonReference =
(*payload_data & 0x20) ? true : false; // N bit
parsed_payload->type.Video.codecHeader.VP8.partitionId = partition_id;
parsed_payload->type.Video.codecHeader.VP8.beginningOfPartition =
beginning_of_partition;
parsed_payload->type.Video.codecHeader.VP8.pictureId = kNoPictureId;
parsed_payload->type.Video.codecHeader.VP8.tl0PicIdx = kNoTl0PicIdx;
parsed_payload->type.Video.codecHeader.VP8.temporalIdx = kNoTemporalIdx;
parsed_payload->type.Video.codecHeader.VP8.layerSync = false;
parsed_payload->type.Video.codecHeader.VP8.keyIdx = kNoKeyIdx;
if (partition_id > 8) {
// Weak check for corrupt payload_data: PartID MUST NOT be larger than 8.
return false;
}
// Advance payload_data and decrease remaining payload size.
payload_data++;
if (payload_data_length <= 1) {
LOG(LS_ERROR) << "Error parsing VP8 payload descriptor!";
return false;
}
payload_data_length--;
if (extension) {
const int parsed_bytes =
ParseVP8Extension(&parsed_payload->type.Video.codecHeader.VP8,
payload_data,
payload_data_length);
if (parsed_bytes < 0)
return false;
payload_data += parsed_bytes;
payload_data_length -= parsed_bytes;
if (payload_data_length == 0) {
LOG(LS_ERROR) << "Error parsing VP8 payload descriptor!";
return false;
}
}
// Read P bit from payload header (only at beginning of first partition).
if (beginning_of_partition && partition_id == 0) {
parsed_payload->frame_type =
(*payload_data & 0x01) ? kVideoFrameDelta : kVideoFrameKey;
} else {
parsed_payload->frame_type = kVideoFrameDelta;
}
if (ParseVP8FrameSize(parsed_payload, payload_data, payload_data_length) !=
0) {
return false;
}
parsed_payload->payload = payload_data;
parsed_payload->payload_length = payload_data_length;
return true;
}
} // namespace webrtc