|  | /* | 
|  | *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "webrtc/video_engine/overuse_frame_detector.h" | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <list> | 
|  | #include <map> | 
|  |  | 
|  | #include "webrtc/base/checks.h" | 
|  | #include "webrtc/base/exp_filter.h" | 
|  | #include "webrtc/system_wrappers/interface/clock.h" | 
|  | #include "webrtc/system_wrappers/interface/logging.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | // TODO(mflodman) Test different values for all of these to trigger correctly, | 
|  | // avoid fluctuations etc. | 
|  | namespace { | 
|  | const int64_t kProcessIntervalMs = 5000; | 
|  |  | 
|  | // Weight factor to apply to the standard deviation. | 
|  | const float kWeightFactor = 0.997f; | 
|  | // Weight factor to apply to the average. | 
|  | const float kWeightFactorMean = 0.98f; | 
|  |  | 
|  | // Delay between consecutive rampups. (Used for quick recovery.) | 
|  | const int kQuickRampUpDelayMs = 10 * 1000; | 
|  | // Delay between rampup attempts. Initially uses standard, scales up to max. | 
|  | const int kStandardRampUpDelayMs = 40 * 1000; | 
|  | const int kMaxRampUpDelayMs = 240 * 1000; | 
|  | // Expontential back-off factor, to prevent annoying up-down behaviour. | 
|  | const double kRampUpBackoffFactor = 2.0; | 
|  |  | 
|  | // Max number of overuses detected before always applying the rampup delay. | 
|  | const int kMaxOverusesBeforeApplyRampupDelay = 4; | 
|  |  | 
|  | // The maximum exponent to use in VCMExpFilter. | 
|  | const float kSampleDiffMs = 33.0f; | 
|  | const float kMaxExp = 7.0f; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // TODO(asapersson): Remove this class. Not used. | 
|  | Statistics::Statistics() : | 
|  | sum_(0.0), | 
|  | count_(0), | 
|  | filtered_samples_(new rtc::ExpFilter(kWeightFactorMean)), | 
|  | filtered_variance_(new rtc::ExpFilter(kWeightFactor)) { | 
|  | Reset(); | 
|  | } | 
|  |  | 
|  | void Statistics::SetOptions(const CpuOveruseOptions& options) { | 
|  | options_ = options; | 
|  | } | 
|  |  | 
|  | void Statistics::Reset() { | 
|  | sum_ =  0.0; | 
|  | count_ = 0; | 
|  | filtered_variance_->Reset(kWeightFactor); | 
|  | filtered_variance_->Apply(1.0f, InitialVariance()); | 
|  | } | 
|  |  | 
|  | void Statistics::AddSample(float sample_ms) { | 
|  | sum_ += sample_ms; | 
|  | ++count_; | 
|  |  | 
|  | if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) { | 
|  | // Initialize filtered samples. | 
|  | filtered_samples_->Reset(kWeightFactorMean); | 
|  | filtered_samples_->Apply(1.0f, InitialMean()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | float exp = sample_ms / kSampleDiffMs; | 
|  | exp = std::min(exp, kMaxExp); | 
|  | filtered_samples_->Apply(exp, sample_ms); | 
|  | filtered_variance_->Apply(exp, (sample_ms - filtered_samples_->filtered()) * | 
|  | (sample_ms - filtered_samples_->filtered())); | 
|  | } | 
|  |  | 
|  | float Statistics::InitialMean() const { | 
|  | if (count_ == 0) | 
|  | return 0.0; | 
|  | return sum_ / count_; | 
|  | } | 
|  |  | 
|  | float Statistics::InitialVariance() const { | 
|  | // Start in between the underuse and overuse threshold. | 
|  | float average_stddev = (options_.low_capture_jitter_threshold_ms + | 
|  | options_.high_capture_jitter_threshold_ms) / 2.0f; | 
|  | return average_stddev * average_stddev; | 
|  | } | 
|  |  | 
|  | float Statistics::Mean() const { return filtered_samples_->filtered(); } | 
|  |  | 
|  | float Statistics::StdDev() const { | 
|  | return sqrt(std::max(filtered_variance_->filtered(), 0.0f)); | 
|  | } | 
|  |  | 
|  | uint64_t Statistics::Count() const { return count_; } | 
|  |  | 
|  |  | 
|  | // Class for calculating the average encode time. | 
|  | class OveruseFrameDetector::EncodeTimeAvg { | 
|  | public: | 
|  | EncodeTimeAvg() | 
|  | : kWeightFactor(0.5f), | 
|  | kInitialAvgEncodeTimeMs(5.0f), | 
|  | filtered_encode_time_ms_(new rtc::ExpFilter(kWeightFactor)) { | 
|  | filtered_encode_time_ms_->Apply(1.0f, kInitialAvgEncodeTimeMs); | 
|  | } | 
|  | ~EncodeTimeAvg() {} | 
|  |  | 
|  | void AddSample(float encode_time_ms, int64_t diff_last_sample_ms) { | 
|  | float exp =  diff_last_sample_ms / kSampleDiffMs; | 
|  | exp = std::min(exp, kMaxExp); | 
|  | filtered_encode_time_ms_->Apply(exp, encode_time_ms); | 
|  | } | 
|  |  | 
|  | int Value() const { | 
|  | return static_cast<int>(filtered_encode_time_ms_->filtered() + 0.5); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const float kWeightFactor; | 
|  | const float kInitialAvgEncodeTimeMs; | 
|  | rtc::scoped_ptr<rtc::ExpFilter> filtered_encode_time_ms_; | 
|  | }; | 
|  |  | 
|  | // Class for calculating the processing usage on the send-side (the average | 
|  | // processing time of a frame divided by the average time difference between | 
|  | // captured frames). | 
|  | class OveruseFrameDetector::SendProcessingUsage { | 
|  | public: | 
|  | SendProcessingUsage() | 
|  | : kWeightFactorFrameDiff(0.998f), | 
|  | kWeightFactorProcessing(0.995f), | 
|  | kInitialSampleDiffMs(40.0f), | 
|  | kMaxSampleDiffMs(45.0f), | 
|  | count_(0), | 
|  | filtered_processing_ms_(new rtc::ExpFilter(kWeightFactorProcessing)), | 
|  | filtered_frame_diff_ms_(new rtc::ExpFilter(kWeightFactorFrameDiff)) { | 
|  | Reset(); | 
|  | } | 
|  | ~SendProcessingUsage() {} | 
|  |  | 
|  | void SetOptions(const CpuOveruseOptions& options) { | 
|  | options_ = options; | 
|  | } | 
|  |  | 
|  | void Reset() { | 
|  | count_ = 0; | 
|  | filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff); | 
|  | filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs); | 
|  | filtered_processing_ms_->Reset(kWeightFactorProcessing); | 
|  | filtered_processing_ms_->Apply(1.0f, InitialProcessingMs()); | 
|  | } | 
|  |  | 
|  | void AddCaptureSample(float sample_ms) { | 
|  | float exp = sample_ms / kSampleDiffMs; | 
|  | exp = std::min(exp, kMaxExp); | 
|  | filtered_frame_diff_ms_->Apply(exp, sample_ms); | 
|  | } | 
|  |  | 
|  | void AddSample(float processing_ms, int64_t diff_last_sample_ms) { | 
|  | ++count_; | 
|  | float exp = diff_last_sample_ms / kSampleDiffMs; | 
|  | exp = std::min(exp, kMaxExp); | 
|  | filtered_processing_ms_->Apply(exp, processing_ms); | 
|  | } | 
|  |  | 
|  | int Value() const { | 
|  | if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) { | 
|  | return static_cast<int>(InitialUsageInPercent() + 0.5f); | 
|  | } | 
|  | float frame_diff_ms = std::max(filtered_frame_diff_ms_->filtered(), 1.0f); | 
|  | frame_diff_ms = std::min(frame_diff_ms, kMaxSampleDiffMs); | 
|  | float encode_usage_percent = | 
|  | 100.0f * filtered_processing_ms_->filtered() / frame_diff_ms; | 
|  | return static_cast<int>(encode_usage_percent + 0.5); | 
|  | } | 
|  |  | 
|  | private: | 
|  | float InitialUsageInPercent() const { | 
|  | // Start in between the underuse and overuse threshold. | 
|  | return (options_.low_encode_usage_threshold_percent + | 
|  | options_.high_encode_usage_threshold_percent) / 2.0f; | 
|  | } | 
|  |  | 
|  | float InitialProcessingMs() const { | 
|  | return InitialUsageInPercent() * kInitialSampleDiffMs / 100; | 
|  | } | 
|  |  | 
|  | const float kWeightFactorFrameDiff; | 
|  | const float kWeightFactorProcessing; | 
|  | const float kInitialSampleDiffMs; | 
|  | const float kMaxSampleDiffMs; | 
|  | uint64_t count_; | 
|  | CpuOveruseOptions options_; | 
|  | rtc::scoped_ptr<rtc::ExpFilter> filtered_processing_ms_; | 
|  | rtc::scoped_ptr<rtc::ExpFilter> filtered_frame_diff_ms_; | 
|  | }; | 
|  |  | 
|  | // Class for calculating the processing time of frames. | 
|  | class OveruseFrameDetector::FrameQueue { | 
|  | public: | 
|  | FrameQueue() : last_processing_time_ms_(-1) {} | 
|  | ~FrameQueue() {} | 
|  |  | 
|  | // Called when a frame is captured. | 
|  | // Starts the measuring of the processing time of the frame. | 
|  | void Start(int64_t capture_time, int64_t now) { | 
|  | const size_t kMaxSize = 90;  // Allows for processing time of 1.5s at 60fps. | 
|  | if (frame_times_.size() > kMaxSize) { | 
|  | LOG(LS_WARNING) << "Max size reached, removed oldest frame."; | 
|  | frame_times_.erase(frame_times_.begin()); | 
|  | } | 
|  | if (frame_times_.find(capture_time) != frame_times_.end()) { | 
|  | // Frame should not exist. | 
|  | assert(false); | 
|  | return; | 
|  | } | 
|  | frame_times_[capture_time] = now; | 
|  | } | 
|  |  | 
|  | // Called when the processing of a frame has finished. | 
|  | // Returns the processing time of the frame. | 
|  | int End(int64_t capture_time, int64_t now) { | 
|  | std::map<int64_t, int64_t>::iterator it = frame_times_.find(capture_time); | 
|  | if (it == frame_times_.end()) { | 
|  | return -1; | 
|  | } | 
|  | // Remove any old frames up to current. | 
|  | // Old frames have been skipped by the capture process thread. | 
|  | // TODO(asapersson): Consider measuring time from first frame in list. | 
|  | last_processing_time_ms_ = now - (*it).second; | 
|  | frame_times_.erase(frame_times_.begin(), ++it); | 
|  | return last_processing_time_ms_; | 
|  | } | 
|  |  | 
|  | void Reset() { frame_times_.clear(); } | 
|  | int NumFrames() const { return frame_times_.size(); } | 
|  | int last_processing_time_ms() const { return last_processing_time_ms_; } | 
|  |  | 
|  | private: | 
|  | // Captured frames mapped by the capture time. | 
|  | std::map<int64_t, int64_t> frame_times_; | 
|  | int last_processing_time_ms_; | 
|  | }; | 
|  |  | 
|  | // TODO(asapersson): Remove this class. Not used. | 
|  | // Class for calculating the capture queue delay change. | 
|  | class OveruseFrameDetector::CaptureQueueDelay { | 
|  | public: | 
|  | CaptureQueueDelay() | 
|  | : kWeightFactor(0.5f), | 
|  | delay_ms_(0), | 
|  | filtered_delay_ms_per_s_(new rtc::ExpFilter(kWeightFactor)) { | 
|  | filtered_delay_ms_per_s_->Apply(1.0f, 0.0f); | 
|  | } | 
|  | ~CaptureQueueDelay() {} | 
|  |  | 
|  | void FrameCaptured(int64_t now) { | 
|  | const size_t kMaxSize = 200; | 
|  | if (frames_.size() > kMaxSize) { | 
|  | frames_.pop_front(); | 
|  | } | 
|  | frames_.push_back(now); | 
|  | } | 
|  |  | 
|  | void FrameProcessingStarted(int64_t now) { | 
|  | if (frames_.empty()) { | 
|  | return; | 
|  | } | 
|  | delay_ms_ = now - frames_.front(); | 
|  | frames_.pop_front(); | 
|  | } | 
|  |  | 
|  | void CalculateDelayChange(int64_t diff_last_sample_ms) { | 
|  | if (diff_last_sample_ms <= 0) { | 
|  | return; | 
|  | } | 
|  | float exp = static_cast<float>(diff_last_sample_ms) / kProcessIntervalMs; | 
|  | exp = std::min(exp, kMaxExp); | 
|  | filtered_delay_ms_per_s_->Apply(exp, | 
|  | delay_ms_ * 1000.0f / diff_last_sample_ms); | 
|  | ClearFrames(); | 
|  | } | 
|  |  | 
|  | void ClearFrames() { | 
|  | frames_.clear(); | 
|  | } | 
|  |  | 
|  | int delay_ms() const { | 
|  | return delay_ms_; | 
|  | } | 
|  |  | 
|  | int Value() const { | 
|  | return static_cast<int>(filtered_delay_ms_per_s_->filtered() + 0.5); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const float kWeightFactor; | 
|  | std::list<int64_t> frames_; | 
|  | int delay_ms_; | 
|  | rtc::scoped_ptr<rtc::ExpFilter> filtered_delay_ms_per_s_; | 
|  | }; | 
|  |  | 
|  | OveruseFrameDetector::OveruseFrameDetector( | 
|  | Clock* clock, | 
|  | CpuOveruseMetricsObserver* metrics_observer) | 
|  | : observer_(NULL), | 
|  | metrics_observer_(metrics_observer), | 
|  | clock_(clock), | 
|  | next_process_time_(clock_->TimeInMilliseconds()), | 
|  | num_process_times_(0), | 
|  | last_capture_time_(0), | 
|  | last_overuse_time_(0), | 
|  | checks_above_threshold_(0), | 
|  | num_overuse_detections_(0), | 
|  | last_rampup_time_(0), | 
|  | in_quick_rampup_(false), | 
|  | current_rampup_delay_ms_(kStandardRampUpDelayMs), | 
|  | num_pixels_(0), | 
|  | last_encode_sample_ms_(0), | 
|  | encode_time_(new EncodeTimeAvg()), | 
|  | usage_(new SendProcessingUsage()), | 
|  | frame_queue_(new FrameQueue()), | 
|  | last_sample_time_ms_(0), | 
|  | capture_queue_delay_(new CaptureQueueDelay()) { | 
|  | DCHECK(metrics_observer != nullptr); | 
|  | processing_thread_.DetachFromThread(); | 
|  | } | 
|  |  | 
|  | OveruseFrameDetector::~OveruseFrameDetector() { | 
|  | } | 
|  |  | 
|  | void OveruseFrameDetector::SetObserver(CpuOveruseObserver* observer) { | 
|  | rtc::CritScope cs(&crit_); | 
|  | observer_ = observer; | 
|  | } | 
|  |  | 
|  | void OveruseFrameDetector::SetOptions(const CpuOveruseOptions& options) { | 
|  | assert(options.min_frame_samples > 0); | 
|  | rtc::CritScope cs(&crit_); | 
|  | if (options_.Equals(options)) { | 
|  | return; | 
|  | } | 
|  | options_ = options; | 
|  | capture_deltas_.SetOptions(options); | 
|  | usage_->SetOptions(options); | 
|  | ResetAll(num_pixels_); | 
|  | } | 
|  |  | 
|  | int OveruseFrameDetector::CaptureQueueDelayMsPerS() const { | 
|  | rtc::CritScope cs(&crit_); | 
|  | return capture_queue_delay_->delay_ms(); | 
|  | } | 
|  |  | 
|  | int OveruseFrameDetector::LastProcessingTimeMs() const { | 
|  | rtc::CritScope cs(&crit_); | 
|  | return frame_queue_->last_processing_time_ms(); | 
|  | } | 
|  |  | 
|  | int OveruseFrameDetector::FramesInQueue() const { | 
|  | rtc::CritScope cs(&crit_); | 
|  | return frame_queue_->NumFrames(); | 
|  | } | 
|  |  | 
|  | void OveruseFrameDetector::UpdateCpuOveruseMetrics() { | 
|  | metrics_.capture_jitter_ms = static_cast<int>(capture_deltas_.StdDev() + 0.5); | 
|  | metrics_.avg_encode_time_ms = encode_time_->Value(); | 
|  | metrics_.encode_usage_percent = usage_->Value(); | 
|  | metrics_.capture_queue_delay_ms_per_s = capture_queue_delay_->Value(); | 
|  |  | 
|  | metrics_observer_->CpuOveruseMetricsUpdated(metrics_); | 
|  | } | 
|  |  | 
|  | int64_t OveruseFrameDetector::TimeUntilNextProcess() { | 
|  | DCHECK(processing_thread_.CalledOnValidThread()); | 
|  | return next_process_time_ - clock_->TimeInMilliseconds(); | 
|  | } | 
|  |  | 
|  | bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const { | 
|  | if (num_pixels != num_pixels_) { | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now) const { | 
|  | if (last_capture_time_ == 0) { | 
|  | return false; | 
|  | } | 
|  | return (now - last_capture_time_) > options_.frame_timeout_interval_ms; | 
|  | } | 
|  |  | 
|  | void OveruseFrameDetector::ResetAll(int num_pixels) { | 
|  | num_pixels_ = num_pixels; | 
|  | capture_deltas_.Reset(); | 
|  | usage_->Reset(); | 
|  | frame_queue_->Reset(); | 
|  | capture_queue_delay_->ClearFrames(); | 
|  | last_capture_time_ = 0; | 
|  | num_process_times_ = 0; | 
|  | UpdateCpuOveruseMetrics(); | 
|  | } | 
|  |  | 
|  | void OveruseFrameDetector::FrameCaptured(int width, | 
|  | int height, | 
|  | int64_t capture_time_ms) { | 
|  | rtc::CritScope cs(&crit_); | 
|  |  | 
|  | int64_t now = clock_->TimeInMilliseconds(); | 
|  | if (FrameSizeChanged(width * height) || FrameTimeoutDetected(now)) { | 
|  | ResetAll(width * height); | 
|  | } | 
|  |  | 
|  | if (last_capture_time_ != 0) { | 
|  | capture_deltas_.AddSample(now - last_capture_time_); | 
|  | usage_->AddCaptureSample(now - last_capture_time_); | 
|  | } | 
|  | last_capture_time_ = now; | 
|  |  | 
|  | capture_queue_delay_->FrameCaptured(now); | 
|  |  | 
|  | if (options_.enable_extended_processing_usage) { | 
|  | frame_queue_->Start(capture_time_ms, now); | 
|  | } | 
|  | UpdateCpuOveruseMetrics(); | 
|  | } | 
|  |  | 
|  | void OveruseFrameDetector::FrameProcessingStarted() { | 
|  | rtc::CritScope cs(&crit_); | 
|  | capture_queue_delay_->FrameProcessingStarted(clock_->TimeInMilliseconds()); | 
|  | } | 
|  |  | 
|  | void OveruseFrameDetector::FrameEncoded(int encode_time_ms) { | 
|  | rtc::CritScope cs(&crit_); | 
|  | int64_t now = clock_->TimeInMilliseconds(); | 
|  | if (last_encode_sample_ms_ != 0) { | 
|  | int64_t diff_ms = now - last_encode_sample_ms_; | 
|  | encode_time_->AddSample(encode_time_ms, diff_ms); | 
|  | } | 
|  | last_encode_sample_ms_ = now; | 
|  |  | 
|  | if (!options_.enable_extended_processing_usage) { | 
|  | AddProcessingTime(encode_time_ms); | 
|  | } | 
|  | UpdateCpuOveruseMetrics(); | 
|  | } | 
|  |  | 
|  | void OveruseFrameDetector::FrameSent(int64_t capture_time_ms) { | 
|  | rtc::CritScope cs(&crit_); | 
|  | if (!options_.enable_extended_processing_usage) { | 
|  | return; | 
|  | } | 
|  | int delay_ms = frame_queue_->End(capture_time_ms, | 
|  | clock_->TimeInMilliseconds()); | 
|  | if (delay_ms > 0) { | 
|  | AddProcessingTime(delay_ms); | 
|  | } | 
|  | UpdateCpuOveruseMetrics(); | 
|  | } | 
|  |  | 
|  | void OveruseFrameDetector::AddProcessingTime(int elapsed_ms) { | 
|  | int64_t now = clock_->TimeInMilliseconds(); | 
|  | if (last_sample_time_ms_ != 0) { | 
|  | int64_t diff_ms = now - last_sample_time_ms_; | 
|  | usage_->AddSample(elapsed_ms, diff_ms); | 
|  | } | 
|  | last_sample_time_ms_ = now; | 
|  | } | 
|  |  | 
|  | int32_t OveruseFrameDetector::Process() { | 
|  | DCHECK(processing_thread_.CalledOnValidThread()); | 
|  |  | 
|  | int64_t now = clock_->TimeInMilliseconds(); | 
|  |  | 
|  | // Used to protect against Process() being called too often. | 
|  | if (now < next_process_time_) | 
|  | return 0; | 
|  |  | 
|  | int64_t diff_ms = now - next_process_time_ + kProcessIntervalMs; | 
|  | next_process_time_ = now + kProcessIntervalMs; | 
|  |  | 
|  | rtc::CritScope cs(&crit_); | 
|  | ++num_process_times_; | 
|  |  | 
|  | capture_queue_delay_->CalculateDelayChange(diff_ms); | 
|  | UpdateCpuOveruseMetrics(); | 
|  |  | 
|  | if (num_process_times_ <= options_.min_process_count) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (IsOverusing()) { | 
|  | // If the last thing we did was going up, and now have to back down, we need | 
|  | // to check if this peak was short. If so we should back off to avoid going | 
|  | // back and forth between this load, the system doesn't seem to handle it. | 
|  | bool check_for_backoff = last_rampup_time_ > last_overuse_time_; | 
|  | if (check_for_backoff) { | 
|  | if (now - last_rampup_time_ < kStandardRampUpDelayMs || | 
|  | num_overuse_detections_ > kMaxOverusesBeforeApplyRampupDelay) { | 
|  | // Going up was not ok for very long, back off. | 
|  | current_rampup_delay_ms_ *= kRampUpBackoffFactor; | 
|  | if (current_rampup_delay_ms_ > kMaxRampUpDelayMs) | 
|  | current_rampup_delay_ms_ = kMaxRampUpDelayMs; | 
|  | } else { | 
|  | // Not currently backing off, reset rampup delay. | 
|  | current_rampup_delay_ms_ = kStandardRampUpDelayMs; | 
|  | } | 
|  | } | 
|  |  | 
|  | last_overuse_time_ = now; | 
|  | in_quick_rampup_ = false; | 
|  | checks_above_threshold_ = 0; | 
|  | ++num_overuse_detections_; | 
|  |  | 
|  | if (observer_ != NULL) | 
|  | observer_->OveruseDetected(); | 
|  | } else if (IsUnderusing(now)) { | 
|  | last_rampup_time_ = now; | 
|  | in_quick_rampup_ = true; | 
|  |  | 
|  | if (observer_ != NULL) | 
|  | observer_->NormalUsage(); | 
|  | } | 
|  |  | 
|  | int rampup_delay = | 
|  | in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_; | 
|  | LOG(LS_VERBOSE) << " Frame stats: capture avg: " << capture_deltas_.Mean() | 
|  | << " capture stddev " << capture_deltas_.StdDev() | 
|  | << " encode usage " << usage_->Value() | 
|  | << " overuse detections " << num_overuse_detections_ | 
|  | << " rampup delay " << rampup_delay; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool OveruseFrameDetector::IsOverusing() { | 
|  | bool overusing = false; | 
|  | if (options_.enable_capture_jitter_method) { | 
|  | overusing = capture_deltas_.StdDev() >= | 
|  | options_.high_capture_jitter_threshold_ms; | 
|  | } else if (options_.enable_encode_usage_method) { | 
|  | overusing = usage_->Value() >= options_.high_encode_usage_threshold_percent; | 
|  | } | 
|  |  | 
|  | if (overusing) { | 
|  | ++checks_above_threshold_; | 
|  | } else { | 
|  | checks_above_threshold_ = 0; | 
|  | } | 
|  | return checks_above_threshold_ >= options_.high_threshold_consecutive_count; | 
|  | } | 
|  |  | 
|  | bool OveruseFrameDetector::IsUnderusing(int64_t time_now) { | 
|  | int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_; | 
|  | if (time_now < last_rampup_time_ + delay) | 
|  | return false; | 
|  |  | 
|  | bool underusing = false; | 
|  | if (options_.enable_capture_jitter_method) { | 
|  | underusing = capture_deltas_.StdDev() < | 
|  | options_.low_capture_jitter_threshold_ms; | 
|  | } else if (options_.enable_encode_usage_method) { | 
|  | underusing = usage_->Value() < options_.low_encode_usage_threshold_percent; | 
|  | } | 
|  | return underusing; | 
|  | } | 
|  | }  // namespace webrtc |