|  | /* | 
|  | *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "webrtc/modules/video_coding/receiver.h" | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include <cstdlib> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "webrtc/base/logging.h" | 
|  | #include "webrtc/base/trace_event.h" | 
|  | #include "webrtc/modules/video_coding/encoded_frame.h" | 
|  | #include "webrtc/modules/video_coding/internal_defines.h" | 
|  | #include "webrtc/modules/video_coding/media_opt_util.h" | 
|  | #include "webrtc/system_wrappers/include/clock.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | enum { kMaxReceiverDelayMs = 10000 }; | 
|  |  | 
|  | VCMReceiver::VCMReceiver(VCMTiming* timing, | 
|  | Clock* clock, | 
|  | EventFactory* event_factory) | 
|  | : VCMReceiver::VCMReceiver(timing, | 
|  | clock, | 
|  | event_factory, | 
|  | nullptr,  // NackSender | 
|  | nullptr)  // KeyframeRequestSender | 
|  | {} | 
|  |  | 
|  | VCMReceiver::VCMReceiver(VCMTiming* timing, | 
|  | Clock* clock, | 
|  | EventFactory* event_factory, | 
|  | NackSender* nack_sender, | 
|  | KeyFrameRequestSender* keyframe_request_sender) | 
|  | : VCMReceiver( | 
|  | timing, | 
|  | clock, | 
|  | std::unique_ptr<EventWrapper>(event_factory | 
|  | ? event_factory->CreateEvent() | 
|  | : EventWrapper::Create()), | 
|  | std::unique_ptr<EventWrapper>(event_factory | 
|  | ? event_factory->CreateEvent() | 
|  | : EventWrapper::Create()), | 
|  | nack_sender, | 
|  | keyframe_request_sender) {} | 
|  |  | 
|  | VCMReceiver::VCMReceiver(VCMTiming* timing, | 
|  | Clock* clock, | 
|  | std::unique_ptr<EventWrapper> receiver_event, | 
|  | std::unique_ptr<EventWrapper> jitter_buffer_event) | 
|  | : VCMReceiver::VCMReceiver(timing, | 
|  | clock, | 
|  | std::move(receiver_event), | 
|  | std::move(jitter_buffer_event), | 
|  | nullptr,  // NackSender | 
|  | nullptr)  // KeyframeRequestSender | 
|  | {} | 
|  |  | 
|  | VCMReceiver::VCMReceiver(VCMTiming* timing, | 
|  | Clock* clock, | 
|  | std::unique_ptr<EventWrapper> receiver_event, | 
|  | std::unique_ptr<EventWrapper> jitter_buffer_event, | 
|  | NackSender* nack_sender, | 
|  | KeyFrameRequestSender* keyframe_request_sender) | 
|  | : crit_sect_(CriticalSectionWrapper::CreateCriticalSection()), | 
|  | clock_(clock), | 
|  | jitter_buffer_(clock_, | 
|  | std::move(jitter_buffer_event), | 
|  | nack_sender, | 
|  | keyframe_request_sender), | 
|  | timing_(timing), | 
|  | render_wait_event_(std::move(receiver_event)), | 
|  | max_video_delay_ms_(kMaxVideoDelayMs) { | 
|  | Reset(); | 
|  | } | 
|  |  | 
|  | VCMReceiver::~VCMReceiver() { | 
|  | render_wait_event_->Set(); | 
|  | delete crit_sect_; | 
|  | } | 
|  |  | 
|  | void VCMReceiver::Reset() { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | if (!jitter_buffer_.Running()) { | 
|  | jitter_buffer_.Start(); | 
|  | } else { | 
|  | jitter_buffer_.Flush(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VCMReceiver::UpdateRtt(int64_t rtt) { | 
|  | jitter_buffer_.UpdateRtt(rtt); | 
|  | } | 
|  |  | 
|  | int32_t VCMReceiver::InsertPacket(const VCMPacket& packet) { | 
|  | // Insert the packet into the jitter buffer. The packet can either be empty or | 
|  | // contain media at this point. | 
|  | bool retransmitted = false; | 
|  | const VCMFrameBufferEnum ret = | 
|  | jitter_buffer_.InsertPacket(packet, &retransmitted); | 
|  | if (ret == kOldPacket) { | 
|  | return VCM_OK; | 
|  | } else if (ret == kFlushIndicator) { | 
|  | return VCM_FLUSH_INDICATOR; | 
|  | } else if (ret < 0) { | 
|  | return VCM_JITTER_BUFFER_ERROR; | 
|  | } | 
|  | if (ret == kCompleteSession && !retransmitted) { | 
|  | // We don't want to include timestamps which have suffered from | 
|  | // retransmission here, since we compensate with extra retransmission | 
|  | // delay within the jitter estimate. | 
|  | timing_->IncomingTimestamp(packet.timestamp, clock_->TimeInMilliseconds()); | 
|  | } | 
|  | return VCM_OK; | 
|  | } | 
|  |  | 
|  | void VCMReceiver::TriggerDecoderShutdown() { | 
|  | jitter_buffer_.Stop(); | 
|  | render_wait_event_->Set(); | 
|  | } | 
|  |  | 
|  | VCMEncodedFrame* VCMReceiver::FrameForDecoding(uint16_t max_wait_time_ms, | 
|  | bool prefer_late_decoding) { | 
|  | const int64_t start_time_ms = clock_->TimeInMilliseconds(); | 
|  | uint32_t frame_timestamp = 0; | 
|  | int min_playout_delay_ms = -1; | 
|  | int max_playout_delay_ms = -1; | 
|  | int64_t render_time_ms = 0; | 
|  | // Exhaust wait time to get a complete frame for decoding. | 
|  | VCMEncodedFrame* found_frame = | 
|  | jitter_buffer_.NextCompleteFrame(max_wait_time_ms); | 
|  |  | 
|  | if (found_frame) { | 
|  | frame_timestamp = found_frame->TimeStamp(); | 
|  | min_playout_delay_ms = found_frame->EncodedImage().playout_delay_.min_ms; | 
|  | max_playout_delay_ms = found_frame->EncodedImage().playout_delay_.max_ms; | 
|  | } else { | 
|  | if (!jitter_buffer_.NextMaybeIncompleteTimestamp(&frame_timestamp)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (min_playout_delay_ms >= 0) | 
|  | timing_->set_min_playout_delay(min_playout_delay_ms); | 
|  |  | 
|  | if (max_playout_delay_ms >= 0) | 
|  | timing_->set_max_playout_delay(max_playout_delay_ms); | 
|  |  | 
|  | // We have a frame - Set timing and render timestamp. | 
|  | timing_->SetJitterDelay(jitter_buffer_.EstimatedJitterMs()); | 
|  | const int64_t now_ms = clock_->TimeInMilliseconds(); | 
|  | timing_->UpdateCurrentDelay(frame_timestamp); | 
|  | render_time_ms = timing_->RenderTimeMs(frame_timestamp, now_ms); | 
|  | // Check render timing. | 
|  | bool timing_error = false; | 
|  | // Assume that render timing errors are due to changes in the video stream. | 
|  | if (render_time_ms < 0) { | 
|  | timing_error = true; | 
|  | } else if (std::abs(render_time_ms - now_ms) > max_video_delay_ms_) { | 
|  | int frame_delay = static_cast<int>(std::abs(render_time_ms - now_ms)); | 
|  | LOG(LS_WARNING) << "A frame about to be decoded is out of the configured " | 
|  | << "delay bounds (" << frame_delay << " > " | 
|  | << max_video_delay_ms_ | 
|  | << "). Resetting the video jitter buffer."; | 
|  | timing_error = true; | 
|  | } else if (static_cast<int>(timing_->TargetVideoDelay()) > | 
|  | max_video_delay_ms_) { | 
|  | LOG(LS_WARNING) << "The video target delay has grown larger than " | 
|  | << max_video_delay_ms_ << " ms. Resetting jitter buffer."; | 
|  | timing_error = true; | 
|  | } | 
|  |  | 
|  | if (timing_error) { | 
|  | // Timing error => reset timing and flush the jitter buffer. | 
|  | jitter_buffer_.Flush(); | 
|  | timing_->Reset(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (prefer_late_decoding) { | 
|  | // Decode frame as close as possible to the render timestamp. | 
|  | const int32_t available_wait_time = | 
|  | max_wait_time_ms - | 
|  | static_cast<int32_t>(clock_->TimeInMilliseconds() - start_time_ms); | 
|  | uint16_t new_max_wait_time = | 
|  | static_cast<uint16_t>(VCM_MAX(available_wait_time, 0)); | 
|  | uint32_t wait_time_ms = | 
|  | timing_->MaxWaitingTime(render_time_ms, clock_->TimeInMilliseconds()); | 
|  | if (new_max_wait_time < wait_time_ms) { | 
|  | // We're not allowed to wait until the frame is supposed to be rendered, | 
|  | // waiting as long as we're allowed to avoid busy looping, and then return | 
|  | // NULL. Next call to this function might return the frame. | 
|  | render_wait_event_->Wait(new_max_wait_time); | 
|  | return NULL; | 
|  | } | 
|  | // Wait until it's time to render. | 
|  | render_wait_event_->Wait(wait_time_ms); | 
|  | } | 
|  |  | 
|  | // Extract the frame from the jitter buffer and set the render time. | 
|  | VCMEncodedFrame* frame = jitter_buffer_.ExtractAndSetDecode(frame_timestamp); | 
|  | if (frame == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | frame->SetRenderTime(render_time_ms); | 
|  | TRACE_EVENT_ASYNC_STEP1("webrtc", "Video", frame->TimeStamp(), "SetRenderTS", | 
|  | "render_time", frame->RenderTimeMs()); | 
|  | if (!frame->Complete()) { | 
|  | // Update stats for incomplete frames. | 
|  | bool retransmitted = false; | 
|  | const int64_t last_packet_time_ms = | 
|  | jitter_buffer_.LastPacketTime(frame, &retransmitted); | 
|  | if (last_packet_time_ms >= 0 && !retransmitted) { | 
|  | // We don't want to include timestamps which have suffered from | 
|  | // retransmission here, since we compensate with extra retransmission | 
|  | // delay within the jitter estimate. | 
|  | timing_->IncomingTimestamp(frame_timestamp, last_packet_time_ms); | 
|  | } | 
|  | } | 
|  | return frame; | 
|  | } | 
|  |  | 
|  | void VCMReceiver::ReleaseFrame(VCMEncodedFrame* frame) { | 
|  | jitter_buffer_.ReleaseFrame(frame); | 
|  | } | 
|  |  | 
|  | void VCMReceiver::ReceiveStatistics(uint32_t* bitrate, uint32_t* framerate) { | 
|  | assert(bitrate); | 
|  | assert(framerate); | 
|  | jitter_buffer_.IncomingRateStatistics(framerate, bitrate); | 
|  | } | 
|  |  | 
|  | uint32_t VCMReceiver::DiscardedPackets() const { | 
|  | return jitter_buffer_.num_discarded_packets(); | 
|  | } | 
|  |  | 
|  | void VCMReceiver::SetNackMode(VCMNackMode nackMode, | 
|  | int64_t low_rtt_nack_threshold_ms, | 
|  | int64_t high_rtt_nack_threshold_ms) { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | // Default to always having NACK enabled in hybrid mode. | 
|  | jitter_buffer_.SetNackMode(nackMode, low_rtt_nack_threshold_ms, | 
|  | high_rtt_nack_threshold_ms); | 
|  | } | 
|  |  | 
|  | void VCMReceiver::SetNackSettings(size_t max_nack_list_size, | 
|  | int max_packet_age_to_nack, | 
|  | int max_incomplete_time_ms) { | 
|  | jitter_buffer_.SetNackSettings(max_nack_list_size, max_packet_age_to_nack, | 
|  | max_incomplete_time_ms); | 
|  | } | 
|  |  | 
|  | VCMNackMode VCMReceiver::NackMode() const { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | return jitter_buffer_.nack_mode(); | 
|  | } | 
|  |  | 
|  | std::vector<uint16_t> VCMReceiver::NackList(bool* request_key_frame) { | 
|  | return jitter_buffer_.GetNackList(request_key_frame); | 
|  | } | 
|  |  | 
|  | void VCMReceiver::SetDecodeErrorMode(VCMDecodeErrorMode decode_error_mode) { | 
|  | jitter_buffer_.SetDecodeErrorMode(decode_error_mode); | 
|  | } | 
|  |  | 
|  | VCMDecodeErrorMode VCMReceiver::DecodeErrorMode() const { | 
|  | return jitter_buffer_.decode_error_mode(); | 
|  | } | 
|  |  | 
|  | int VCMReceiver::SetMinReceiverDelay(int desired_delay_ms) { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | if (desired_delay_ms < 0 || desired_delay_ms > kMaxReceiverDelayMs) { | 
|  | return -1; | 
|  | } | 
|  | max_video_delay_ms_ = desired_delay_ms + kMaxVideoDelayMs; | 
|  | // Initializing timing to the desired delay. | 
|  | timing_->set_min_playout_delay(desired_delay_ms); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void VCMReceiver::RegisterStatsCallback( | 
|  | VCMReceiveStatisticsCallback* callback) { | 
|  | jitter_buffer_.RegisterStatsCallback(callback); | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |