| /* | 
 |  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | // Modified from the Chromium original: | 
 | // src/media/base/sinc_resampler.cc | 
 |  | 
 | // Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_ | 
 | // and r4_ will move after the first load): | 
 | // | 
 | // |----------------|-----------------------------------------|----------------| | 
 | // | 
 | //                                        request_frames_ | 
 | //                   <---------------------------------------------------------> | 
 | //                                    r0_ (during first load) | 
 | // | 
 | //  kKernelSize / 2   kKernelSize / 2         kKernelSize / 2   kKernelSize / 2 | 
 | // <---------------> <--------------->       <---------------> <---------------> | 
 | //        r1_               r2_                     r3_               r4_ | 
 | // | 
 | //                             block_size_ == r4_ - r2_ | 
 | //                   <---------------------------------------> | 
 | // | 
 | //                                                  request_frames_ | 
 | //                                    <------------------ ... -----------------> | 
 | //                                               r0_ (during second load) | 
 | // | 
 | // On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_ | 
 | // and block_size_ are reinitialized via step (3) in the algorithm below. | 
 | // | 
 | // These new regions remain constant until a Flush() occurs.  While complicated, | 
 | // this allows us to reduce jitter by always requesting the same amount from the | 
 | // provided callback. | 
 | // | 
 | // The algorithm: | 
 | // | 
 | // 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures | 
 | //    there's enough room to read request_frames_ from the callback into region | 
 | //    r0_ (which will move between the first and subsequent passes). | 
 | // | 
 | // 2) Let r1_, r2_ each represent half the kernel centered around r0_: | 
 | // | 
 | //        r0_ = input_buffer_ + kKernelSize / 2 | 
 | //        r1_ = input_buffer_ | 
 | //        r2_ = r0_ | 
 | // | 
 | //    r0_ is always request_frames_ in size.  r1_, r2_ are kKernelSize / 2 in | 
 | //    size.  r1_ must be zero initialized to avoid convolution with garbage (see | 
 | //    step (5) for why). | 
 | // | 
 | // 3) Let r3_, r4_ each represent half the kernel right aligned with the end of | 
 | //    r0_ and choose block_size_ as the distance in frames between r4_ and r2_: | 
 | // | 
 | //        r3_ = r0_ + request_frames_ - kKernelSize | 
 | //        r4_ = r0_ + request_frames_ - kKernelSize / 2 | 
 | //        block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2 | 
 | // | 
 | // 4) Consume request_frames_ frames into r0_. | 
 | // | 
 | // 5) Position kernel centered at start of r2_ and generate output frames until | 
 | //    the kernel is centered at the start of r4_ or we've finished generating | 
 | //    all the output frames. | 
 | // | 
 | // 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_. | 
 | // | 
 | // 7) If we're on the second load, in order to avoid overwriting the frames we | 
 | //    just wrapped from r4_ we need to slide r0_ to the right by the size of | 
 | //    r4_, which is kKernelSize / 2: | 
 | // | 
 | //        r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize | 
 | // | 
 | //    r3_, r4_, and block_size_ then need to be reinitialized, so goto (3). | 
 | // | 
 | // 8) Else, if we're not on the second load, goto (4). | 
 | // | 
 | // Note: we're glossing over how the sub-sample handling works with | 
 | // |virtual_source_idx_|, etc. | 
 |  | 
 | // MSVC++ requires this to be set before any other includes to get M_PI. | 
 | #define _USE_MATH_DEFINES | 
 |  | 
 | #include "webrtc/common_audio/resampler/sinc_resampler.h" | 
 |  | 
 | #include <math.h> | 
 | #include <string.h> | 
 |  | 
 | #include <limits> | 
 |  | 
 | #include "webrtc/base/checks.h" | 
 | #include "webrtc/system_wrappers/include/cpu_features_wrapper.h" | 
 | #include "webrtc/typedefs.h" | 
 |  | 
 | namespace webrtc { | 
 |  | 
 | namespace { | 
 |  | 
 | double SincScaleFactor(double io_ratio) { | 
 |   // |sinc_scale_factor| is basically the normalized cutoff frequency of the | 
 |   // low-pass filter. | 
 |   double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0; | 
 |  | 
 |   // The sinc function is an idealized brick-wall filter, but since we're | 
 |   // windowing it the transition from pass to stop does not happen right away. | 
 |   // So we should adjust the low pass filter cutoff slightly downward to avoid | 
 |   // some aliasing at the very high-end. | 
 |   // TODO(crogers): this value is empirical and to be more exact should vary | 
 |   // depending on kKernelSize. | 
 |   sinc_scale_factor *= 0.9; | 
 |  | 
 |   return sinc_scale_factor; | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | const size_t SincResampler::kKernelSize; | 
 |  | 
 | // If we know the minimum architecture at compile time, avoid CPU detection. | 
 | #if defined(WEBRTC_ARCH_X86_FAMILY) | 
 | #if defined(__SSE2__) | 
 | #define CONVOLVE_FUNC Convolve_SSE | 
 | void SincResampler::InitializeCPUSpecificFeatures() {} | 
 | #else | 
 | // x86 CPU detection required.  Function will be set by | 
 | // InitializeCPUSpecificFeatures(). | 
 | // TODO(dalecurtis): Once Chrome moves to an SSE baseline this can be removed. | 
 | #define CONVOLVE_FUNC convolve_proc_ | 
 |  | 
 | void SincResampler::InitializeCPUSpecificFeatures() { | 
 |   convolve_proc_ = WebRtc_GetCPUInfo(kSSE2) ? Convolve_SSE : Convolve_C; | 
 | } | 
 | #endif | 
 | #elif defined(WEBRTC_HAS_NEON) | 
 | #define CONVOLVE_FUNC Convolve_NEON | 
 | void SincResampler::InitializeCPUSpecificFeatures() {} | 
 | #else | 
 | // Unknown architecture. | 
 | #define CONVOLVE_FUNC Convolve_C | 
 | void SincResampler::InitializeCPUSpecificFeatures() {} | 
 | #endif | 
 |  | 
 | SincResampler::SincResampler(double io_sample_rate_ratio, | 
 |                              size_t request_frames, | 
 |                              SincResamplerCallback* read_cb) | 
 |     : io_sample_rate_ratio_(io_sample_rate_ratio), | 
 |       read_cb_(read_cb), | 
 |       request_frames_(request_frames), | 
 |       input_buffer_size_(request_frames_ + kKernelSize), | 
 |       // Create input buffers with a 16-byte alignment for SSE optimizations. | 
 |       kernel_storage_(static_cast<float*>( | 
 |           AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))), | 
 |       kernel_pre_sinc_storage_(static_cast<float*>( | 
 |           AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))), | 
 |       kernel_window_storage_(static_cast<float*>( | 
 |           AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))), | 
 |       input_buffer_(static_cast<float*>( | 
 |           AlignedMalloc(sizeof(float) * input_buffer_size_, 16))), | 
 | #if defined(WEBRTC_CPU_DETECTION) | 
 |       convolve_proc_(nullptr), | 
 | #endif | 
 |       r1_(input_buffer_.get()), | 
 |       r2_(input_buffer_.get() + kKernelSize / 2) { | 
 | #if defined(WEBRTC_CPU_DETECTION) | 
 |   InitializeCPUSpecificFeatures(); | 
 |   RTC_DCHECK(convolve_proc_); | 
 | #endif | 
 |   RTC_DCHECK_GT(request_frames_, 0); | 
 |   Flush(); | 
 |   RTC_DCHECK_GT(block_size_, kKernelSize); | 
 |  | 
 |   memset(kernel_storage_.get(), 0, | 
 |          sizeof(*kernel_storage_.get()) * kKernelStorageSize); | 
 |   memset(kernel_pre_sinc_storage_.get(), 0, | 
 |          sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize); | 
 |   memset(kernel_window_storage_.get(), 0, | 
 |          sizeof(*kernel_window_storage_.get()) * kKernelStorageSize); | 
 |  | 
 |   InitializeKernel(); | 
 | } | 
 |  | 
 | SincResampler::~SincResampler() {} | 
 |  | 
 | void SincResampler::UpdateRegions(bool second_load) { | 
 |   // Setup various region pointers in the buffer (see diagram above).  If we're | 
 |   // on the second load we need to slide r0_ to the right by kKernelSize / 2. | 
 |   r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2); | 
 |   r3_ = r0_ + request_frames_ - kKernelSize; | 
 |   r4_ = r0_ + request_frames_ - kKernelSize / 2; | 
 |   block_size_ = r4_ - r2_; | 
 |  | 
 |   // r1_ at the beginning of the buffer. | 
 |   RTC_DCHECK_EQ(r1_, input_buffer_.get()); | 
 |   // r1_ left of r2_, r4_ left of r3_ and size correct. | 
 |   RTC_DCHECK_EQ(r2_ - r1_, r4_ - r3_); | 
 |   // r2_ left of r3. | 
 |   RTC_DCHECK_LT(r2_, r3_); | 
 | } | 
 |  | 
 | void SincResampler::InitializeKernel() { | 
 |   // Blackman window parameters. | 
 |   static const double kAlpha = 0.16; | 
 |   static const double kA0 = 0.5 * (1.0 - kAlpha); | 
 |   static const double kA1 = 0.5; | 
 |   static const double kA2 = 0.5 * kAlpha; | 
 |  | 
 |   // Generates a set of windowed sinc() kernels. | 
 |   // We generate a range of sub-sample offsets from 0.0 to 1.0. | 
 |   const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_); | 
 |   for (size_t offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) { | 
 |     const float subsample_offset = | 
 |         static_cast<float>(offset_idx) / kKernelOffsetCount; | 
 |  | 
 |     for (size_t i = 0; i < kKernelSize; ++i) { | 
 |       const size_t idx = i + offset_idx * kKernelSize; | 
 |       const float pre_sinc = static_cast<float>(M_PI * | 
 |           (static_cast<int>(i) - static_cast<int>(kKernelSize / 2) - | 
 |            subsample_offset)); | 
 |       kernel_pre_sinc_storage_[idx] = pre_sinc; | 
 |  | 
 |       // Compute Blackman window, matching the offset of the sinc(). | 
 |       const float x = (i - subsample_offset) / kKernelSize; | 
 |       const float window = static_cast<float>(kA0 - kA1 * cos(2.0 * M_PI * x) + | 
 |           kA2 * cos(4.0 * M_PI * x)); | 
 |       kernel_window_storage_[idx] = window; | 
 |  | 
 |       // Compute the sinc with offset, then window the sinc() function and store | 
 |       // at the correct offset. | 
 |       kernel_storage_[idx] = static_cast<float>(window * | 
 |           ((pre_sinc == 0) ? | 
 |               sinc_scale_factor : | 
 |               (sin(sinc_scale_factor * pre_sinc) / pre_sinc))); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SincResampler::SetRatio(double io_sample_rate_ratio) { | 
 |   if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) < | 
 |       std::numeric_limits<double>::epsilon()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   io_sample_rate_ratio_ = io_sample_rate_ratio; | 
 |  | 
 |   // Optimize reinitialization by reusing values which are independent of | 
 |   // |sinc_scale_factor|.  Provides a 3x speedup. | 
 |   const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_); | 
 |   for (size_t offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) { | 
 |     for (size_t i = 0; i < kKernelSize; ++i) { | 
 |       const size_t idx = i + offset_idx * kKernelSize; | 
 |       const float window = kernel_window_storage_[idx]; | 
 |       const float pre_sinc = kernel_pre_sinc_storage_[idx]; | 
 |  | 
 |       kernel_storage_[idx] = static_cast<float>(window * | 
 |           ((pre_sinc == 0) ? | 
 |               sinc_scale_factor : | 
 |               (sin(sinc_scale_factor * pre_sinc) / pre_sinc))); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SincResampler::Resample(size_t frames, float* destination) { | 
 |   size_t remaining_frames = frames; | 
 |  | 
 |   // Step (1) -- Prime the input buffer at the start of the input stream. | 
 |   if (!buffer_primed_ && remaining_frames) { | 
 |     read_cb_->Run(request_frames_, r0_); | 
 |     buffer_primed_ = true; | 
 |   } | 
 |  | 
 |   // Step (2) -- Resample!  const what we can outside of the loop for speed.  It | 
 |   // actually has an impact on ARM performance.  See inner loop comment below. | 
 |   const double current_io_ratio = io_sample_rate_ratio_; | 
 |   const float* const kernel_ptr = kernel_storage_.get(); | 
 |   while (remaining_frames) { | 
 |     // |i| may be negative if the last Resample() call ended on an iteration | 
 |     // that put |virtual_source_idx_| over the limit. | 
 |     // | 
 |     // Note: The loop construct here can severely impact performance on ARM | 
 |     // or when built with clang.  See https://codereview.chromium.org/18566009/ | 
 |     for (int i = static_cast<int>( | 
 |              ceil((block_size_ - virtual_source_idx_) / current_io_ratio)); | 
 |          i > 0; --i) { | 
 |       RTC_DCHECK_LT(virtual_source_idx_, block_size_); | 
 |  | 
 |       // |virtual_source_idx_| lies in between two kernel offsets so figure out | 
 |       // what they are. | 
 |       const int source_idx = static_cast<int>(virtual_source_idx_); | 
 |       const double subsample_remainder = virtual_source_idx_ - source_idx; | 
 |  | 
 |       const double virtual_offset_idx = | 
 |           subsample_remainder * kKernelOffsetCount; | 
 |       const int offset_idx = static_cast<int>(virtual_offset_idx); | 
 |  | 
 |       // We'll compute "convolutions" for the two kernels which straddle | 
 |       // |virtual_source_idx_|. | 
 |       const float* const k1 = kernel_ptr + offset_idx * kKernelSize; | 
 |       const float* const k2 = k1 + kKernelSize; | 
 |  | 
 |       // Ensure |k1|, |k2| are 16-byte aligned for SIMD usage.  Should always be | 
 |       // true so long as kKernelSize is a multiple of 16. | 
 |       RTC_DCHECK_EQ(0, reinterpret_cast<uintptr_t>(k1) % 16); | 
 |       RTC_DCHECK_EQ(0, reinterpret_cast<uintptr_t>(k2) % 16); | 
 |  | 
 |       // Initialize input pointer based on quantized |virtual_source_idx_|. | 
 |       const float* const input_ptr = r1_ + source_idx; | 
 |  | 
 |       // Figure out how much to weight each kernel's "convolution". | 
 |       const double kernel_interpolation_factor = | 
 |           virtual_offset_idx - offset_idx; | 
 |       *destination++ = CONVOLVE_FUNC( | 
 |           input_ptr, k1, k2, kernel_interpolation_factor); | 
 |  | 
 |       // Advance the virtual index. | 
 |       virtual_source_idx_ += current_io_ratio; | 
 |  | 
 |       if (!--remaining_frames) | 
 |         return; | 
 |     } | 
 |  | 
 |     // Wrap back around to the start. | 
 |     virtual_source_idx_ -= block_size_; | 
 |  | 
 |     // Step (3) -- Copy r3_, r4_ to r1_, r2_. | 
 |     // This wraps the last input frames back to the start of the buffer. | 
 |     memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize); | 
 |  | 
 |     // Step (4) -- Reinitialize regions if necessary. | 
 |     if (r0_ == r2_) | 
 |       UpdateRegions(true); | 
 |  | 
 |     // Step (5) -- Refresh the buffer with more input. | 
 |     read_cb_->Run(request_frames_, r0_); | 
 |   } | 
 | } | 
 |  | 
 | #undef CONVOLVE_FUNC | 
 |  | 
 | size_t SincResampler::ChunkSize() const { | 
 |   return static_cast<size_t>(block_size_ / io_sample_rate_ratio_); | 
 | } | 
 |  | 
 | void SincResampler::Flush() { | 
 |   virtual_source_idx_ = 0; | 
 |   buffer_primed_ = false; | 
 |   memset(input_buffer_.get(), 0, | 
 |          sizeof(*input_buffer_.get()) * input_buffer_size_); | 
 |   UpdateRegions(false); | 
 | } | 
 |  | 
 | float SincResampler::Convolve_C(const float* input_ptr, const float* k1, | 
 |                                 const float* k2, | 
 |                                 double kernel_interpolation_factor) { | 
 |   float sum1 = 0; | 
 |   float sum2 = 0; | 
 |  | 
 |   // Generate a single output sample.  Unrolling this loop hurt performance in | 
 |   // local testing. | 
 |   size_t n = kKernelSize; | 
 |   while (n--) { | 
 |     sum1 += *input_ptr * *k1++; | 
 |     sum2 += *input_ptr++ * *k2++; | 
 |   } | 
 |  | 
 |   // Linearly interpolate the two "convolutions". | 
 |   return static_cast<float>((1.0 - kernel_interpolation_factor) * sum1 + | 
 |       kernel_interpolation_factor * sum2); | 
 | } | 
 |  | 
 | }  // namespace webrtc |