| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/pacing/paced_sender.h" |
| |
| #include <algorithm> |
| #include <map> |
| #include <queue> |
| #include <set> |
| #include <vector> |
| |
| #include "webrtc/modules/include/module_common_types.h" |
| #include "webrtc/modules/pacing/alr_detector.h" |
| #include "webrtc/modules/pacing/bitrate_prober.h" |
| #include "webrtc/modules/pacing/interval_budget.h" |
| #include "webrtc/modules/utility/include/process_thread.h" |
| #include "webrtc/rtc_base/checks.h" |
| #include "webrtc/rtc_base/logging.h" |
| #include "webrtc/system_wrappers/include/clock.h" |
| #include "webrtc/system_wrappers/include/field_trial.h" |
| |
| namespace { |
| // Time limit in milliseconds between packet bursts. |
| const int64_t kMinPacketLimitMs = 5; |
| const int64_t kPausedPacketIntervalMs = 500; |
| |
| // Upper cap on process interval, in case process has not been called in a long |
| // time. |
| const int64_t kMaxIntervalTimeMs = 30; |
| |
| } // namespace |
| |
| // TODO(sprang): Move at least PacketQueue out to separate files, so that we can |
| // more easily test them. |
| |
| namespace webrtc { |
| namespace paced_sender { |
| struct Packet { |
| Packet(RtpPacketSender::Priority priority, |
| uint32_t ssrc, |
| uint16_t seq_number, |
| int64_t capture_time_ms, |
| int64_t enqueue_time_ms, |
| size_t length_in_bytes, |
| bool retransmission, |
| uint64_t enqueue_order) |
| : priority(priority), |
| ssrc(ssrc), |
| sequence_number(seq_number), |
| capture_time_ms(capture_time_ms), |
| enqueue_time_ms(enqueue_time_ms), |
| sum_paused_ms(0), |
| bytes(length_in_bytes), |
| retransmission(retransmission), |
| enqueue_order(enqueue_order) {} |
| |
| RtpPacketSender::Priority priority; |
| uint32_t ssrc; |
| uint16_t sequence_number; |
| int64_t capture_time_ms; // Absolute time of frame capture. |
| int64_t enqueue_time_ms; // Absolute time of pacer queue entry. |
| int64_t sum_paused_ms; // Sum of time spent in queue while pacer is paused. |
| size_t bytes; |
| bool retransmission; |
| uint64_t enqueue_order; |
| std::list<Packet>::iterator this_it; |
| }; |
| |
| // Used by priority queue to sort packets. |
| struct Comparator { |
| bool operator()(const Packet* first, const Packet* second) { |
| // Highest prio = 0. |
| if (first->priority != second->priority) |
| return first->priority > second->priority; |
| |
| // Retransmissions go first. |
| if (second->retransmission != first->retransmission) |
| return second->retransmission; |
| |
| // Older frames have higher prio. |
| if (first->capture_time_ms != second->capture_time_ms) |
| return first->capture_time_ms > second->capture_time_ms; |
| |
| return first->enqueue_order > second->enqueue_order; |
| } |
| }; |
| |
| // Class encapsulating a priority queue with some extensions. |
| class PacketQueue { |
| public: |
| explicit PacketQueue(const Clock* clock) |
| : bytes_(0), |
| clock_(clock), |
| queue_time_sum_(0), |
| time_last_updated_(clock_->TimeInMilliseconds()), |
| paused_(false) {} |
| virtual ~PacketQueue() {} |
| |
| void Push(const Packet& packet) { |
| if (!AddToDupeSet(packet)) |
| return; |
| |
| UpdateQueueTime(packet.enqueue_time_ms); |
| |
| // Store packet in list, use pointers in priority queue for cheaper moves. |
| // Packets have a handle to its own iterator in the list, for easy removal |
| // when popping from queue. |
| packet_list_.push_front(packet); |
| std::list<Packet>::iterator it = packet_list_.begin(); |
| it->this_it = it; // Handle for direct removal from list. |
| prio_queue_.push(&(*it)); // Pointer into list. |
| bytes_ += packet.bytes; |
| } |
| |
| const Packet& BeginPop() { |
| const Packet& packet = *prio_queue_.top(); |
| prio_queue_.pop(); |
| return packet; |
| } |
| |
| void CancelPop(const Packet& packet) { prio_queue_.push(&(*packet.this_it)); } |
| |
| void FinalizePop(const Packet& packet) { |
| RemoveFromDupeSet(packet); |
| bytes_ -= packet.bytes; |
| int64_t packet_queue_time_ms = time_last_updated_ - packet.enqueue_time_ms; |
| RTC_DCHECK_LE(packet.sum_paused_ms, packet_queue_time_ms); |
| packet_queue_time_ms -= packet.sum_paused_ms; |
| RTC_DCHECK_LE(packet_queue_time_ms, queue_time_sum_); |
| queue_time_sum_ -= packet_queue_time_ms; |
| packet_list_.erase(packet.this_it); |
| RTC_DCHECK_EQ(packet_list_.size(), prio_queue_.size()); |
| if (packet_list_.empty()) |
| RTC_DCHECK_EQ(0, queue_time_sum_); |
| } |
| |
| bool Empty() const { return prio_queue_.empty(); } |
| |
| size_t SizeInPackets() const { return prio_queue_.size(); } |
| |
| uint64_t SizeInBytes() const { return bytes_; } |
| |
| int64_t OldestEnqueueTimeMs() const { |
| auto it = packet_list_.rbegin(); |
| if (it == packet_list_.rend()) |
| return 0; |
| return it->enqueue_time_ms; |
| } |
| |
| void UpdateQueueTime(int64_t timestamp_ms) { |
| RTC_DCHECK_GE(timestamp_ms, time_last_updated_); |
| if (timestamp_ms == time_last_updated_) |
| return; |
| |
| int64_t delta_ms = timestamp_ms - time_last_updated_; |
| |
| if (paused_) { |
| // Increase per-packet accumulators of time spent in queue while paused, |
| // so that we can disregard that when subtracting main accumulator when |
| // popping packet from the queue. |
| for (auto& it : packet_list_) { |
| it.sum_paused_ms += delta_ms; |
| } |
| } else { |
| // Use packet packet_list_.size() not prio_queue_.size() here, as there |
| // might be an outstanding element popped from prio_queue_ currently in |
| // the SendPacket() call, while packet_list_ will always be correct. |
| queue_time_sum_ += delta_ms * packet_list_.size(); |
| } |
| time_last_updated_ = timestamp_ms; |
| } |
| |
| void SetPauseState(bool paused, int64_t timestamp_ms) { |
| if (paused_ == paused) |
| return; |
| UpdateQueueTime(timestamp_ms); |
| paused_ = paused; |
| } |
| |
| int64_t AverageQueueTimeMs() const { |
| if (prio_queue_.empty()) |
| return 0; |
| return queue_time_sum_ / packet_list_.size(); |
| } |
| |
| private: |
| // Try to add a packet to the set of ssrc/seqno identifiers currently in the |
| // queue. Return true if inserted, false if this is a duplicate. |
| bool AddToDupeSet(const Packet& packet) { |
| SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc); |
| if (it == dupe_map_.end()) { |
| // First for this ssrc, just insert. |
| dupe_map_[packet.ssrc].insert(packet.sequence_number); |
| return true; |
| } |
| |
| // Insert returns a pair, where second is a bool set to true if new element. |
| return it->second.insert(packet.sequence_number).second; |
| } |
| |
| void RemoveFromDupeSet(const Packet& packet) { |
| SsrcSeqNoMap::iterator it = dupe_map_.find(packet.ssrc); |
| RTC_DCHECK(it != dupe_map_.end()); |
| it->second.erase(packet.sequence_number); |
| if (it->second.empty()) { |
| dupe_map_.erase(it); |
| } |
| } |
| |
| // List of packets, in the order the were enqueued. Since dequeueing may |
| // occur out of order, use list instead of vector. |
| std::list<Packet> packet_list_; |
| // Priority queue of the packets, sorted according to Comparator. |
| // Use pointers into list, to avoid moving whole struct within heap. |
| std::priority_queue<Packet*, std::vector<Packet*>, Comparator> prio_queue_; |
| // Total number of bytes in the queue. |
| uint64_t bytes_; |
| // Map<ssrc, std::set<seq_no> >, for checking duplicates. |
| typedef std::map<uint32_t, std::set<uint16_t> > SsrcSeqNoMap; |
| SsrcSeqNoMap dupe_map_; |
| const Clock* const clock_; |
| int64_t queue_time_sum_; |
| int64_t time_last_updated_; |
| bool paused_; |
| }; |
| |
| } // namespace paced_sender |
| |
| const int64_t PacedSender::kMaxQueueLengthMs = 2000; |
| const float PacedSender::kDefaultPaceMultiplier = 2.5f; |
| |
| PacedSender::PacedSender(const Clock* clock, |
| PacketSender* packet_sender, |
| RtcEventLog* event_log) |
| : clock_(clock), |
| packet_sender_(packet_sender), |
| alr_detector_(new AlrDetector()), |
| paused_(false), |
| media_budget_(new IntervalBudget(0)), |
| padding_budget_(new IntervalBudget(0)), |
| prober_(new BitrateProber(event_log)), |
| probing_send_failure_(false), |
| estimated_bitrate_bps_(0), |
| min_send_bitrate_kbps_(0u), |
| max_padding_bitrate_kbps_(0u), |
| pacing_bitrate_kbps_(0), |
| time_last_update_us_(clock->TimeInMicroseconds()), |
| first_sent_packet_ms_(-1), |
| packets_(new paced_sender::PacketQueue(clock)), |
| packet_counter_(0), |
| pacing_factor_(kDefaultPaceMultiplier), |
| queue_time_limit(kMaxQueueLengthMs) { |
| UpdateBudgetWithElapsedTime(kMinPacketLimitMs); |
| } |
| |
| PacedSender::~PacedSender() {} |
| |
| void PacedSender::CreateProbeCluster(int bitrate_bps) { |
| rtc::CritScope cs(&critsect_); |
| prober_->CreateProbeCluster(bitrate_bps, clock_->TimeInMilliseconds()); |
| } |
| |
| void PacedSender::Pause() { |
| { |
| rtc::CritScope cs(&critsect_); |
| if (!paused_) |
| LOG(LS_INFO) << "PacedSender paused."; |
| paused_ = true; |
| packets_->SetPauseState(true, clock_->TimeInMilliseconds()); |
| } |
| // Tell the process thread to call our TimeUntilNextProcess() method to get |
| // a new (longer) estimate for when to call Process(). |
| if (process_thread_) |
| process_thread_->WakeUp(this); |
| } |
| |
| void PacedSender::Resume() { |
| { |
| rtc::CritScope cs(&critsect_); |
| if (paused_) |
| LOG(LS_INFO) << "PacedSender resumed."; |
| paused_ = false; |
| packets_->SetPauseState(false, clock_->TimeInMilliseconds()); |
| } |
| // Tell the process thread to call our TimeUntilNextProcess() method to |
| // refresh the estimate for when to call Process(). |
| if (process_thread_) |
| process_thread_->WakeUp(this); |
| } |
| |
| void PacedSender::SetProbingEnabled(bool enabled) { |
| RTC_CHECK_EQ(0, packet_counter_); |
| rtc::CritScope cs(&critsect_); |
| prober_->SetEnabled(enabled); |
| } |
| |
| void PacedSender::SetEstimatedBitrate(uint32_t bitrate_bps) { |
| if (bitrate_bps == 0) |
| LOG(LS_ERROR) << "PacedSender is not designed to handle 0 bitrate."; |
| rtc::CritScope cs(&critsect_); |
| estimated_bitrate_bps_ = bitrate_bps; |
| padding_budget_->set_target_rate_kbps( |
| std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_)); |
| pacing_bitrate_kbps_ = |
| std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) * |
| pacing_factor_; |
| alr_detector_->SetEstimatedBitrate(bitrate_bps); |
| } |
| |
| void PacedSender::SetSendBitrateLimits(int min_send_bitrate_bps, |
| int padding_bitrate) { |
| rtc::CritScope cs(&critsect_); |
| min_send_bitrate_kbps_ = min_send_bitrate_bps / 1000; |
| pacing_bitrate_kbps_ = |
| std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) * |
| pacing_factor_; |
| max_padding_bitrate_kbps_ = padding_bitrate / 1000; |
| padding_budget_->set_target_rate_kbps( |
| std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_)); |
| } |
| |
| void PacedSender::InsertPacket(RtpPacketSender::Priority priority, |
| uint32_t ssrc, |
| uint16_t sequence_number, |
| int64_t capture_time_ms, |
| size_t bytes, |
| bool retransmission) { |
| rtc::CritScope cs(&critsect_); |
| RTC_DCHECK(estimated_bitrate_bps_ > 0) |
| << "SetEstimatedBitrate must be called before InsertPacket."; |
| |
| int64_t now_ms = clock_->TimeInMilliseconds(); |
| prober_->OnIncomingPacket(bytes); |
| |
| if (capture_time_ms < 0) |
| capture_time_ms = now_ms; |
| |
| packets_->Push(paced_sender::Packet(priority, ssrc, sequence_number, |
| capture_time_ms, now_ms, bytes, |
| retransmission, packet_counter_++)); |
| } |
| |
| int64_t PacedSender::ExpectedQueueTimeMs() const { |
| rtc::CritScope cs(&critsect_); |
| RTC_DCHECK_GT(pacing_bitrate_kbps_, 0); |
| return static_cast<int64_t>(packets_->SizeInBytes() * 8 / |
| pacing_bitrate_kbps_); |
| } |
| |
| rtc::Optional<int64_t> PacedSender::GetApplicationLimitedRegionStartTime() |
| const { |
| rtc::CritScope cs(&critsect_); |
| return alr_detector_->GetApplicationLimitedRegionStartTime(); |
| } |
| |
| size_t PacedSender::QueueSizePackets() const { |
| rtc::CritScope cs(&critsect_); |
| return packets_->SizeInPackets(); |
| } |
| |
| int64_t PacedSender::FirstSentPacketTimeMs() const { |
| rtc::CritScope cs(&critsect_); |
| return first_sent_packet_ms_; |
| } |
| |
| int64_t PacedSender::QueueInMs() const { |
| rtc::CritScope cs(&critsect_); |
| |
| int64_t oldest_packet = packets_->OldestEnqueueTimeMs(); |
| if (oldest_packet == 0) |
| return 0; |
| |
| return clock_->TimeInMilliseconds() - oldest_packet; |
| } |
| |
| int64_t PacedSender::AverageQueueTimeMs() { |
| rtc::CritScope cs(&critsect_); |
| packets_->UpdateQueueTime(clock_->TimeInMilliseconds()); |
| return packets_->AverageQueueTimeMs(); |
| } |
| |
| int64_t PacedSender::TimeUntilNextProcess() { |
| rtc::CritScope cs(&critsect_); |
| int64_t elapsed_time_us = clock_->TimeInMicroseconds() - time_last_update_us_; |
| int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000; |
| // When paused we wake up every 500 ms to send a padding packet to ensure |
| // we won't get stuck in the paused state due to no feedback being received. |
| if (paused_) |
| return std::max<int64_t>(kPausedPacketIntervalMs - elapsed_time_ms, 0); |
| |
| if (prober_->IsProbing()) { |
| int64_t ret = prober_->TimeUntilNextProbe(clock_->TimeInMilliseconds()); |
| if (ret > 0 || (ret == 0 && !probing_send_failure_)) |
| return ret; |
| } |
| return std::max<int64_t>(kMinPacketLimitMs - elapsed_time_ms, 0); |
| } |
| |
| void PacedSender::Process() { |
| int64_t now_us = clock_->TimeInMicroseconds(); |
| rtc::CritScope cs(&critsect_); |
| int64_t elapsed_time_ms = std::min( |
| kMaxIntervalTimeMs, (now_us - time_last_update_us_ + 500) / 1000); |
| int target_bitrate_kbps = pacing_bitrate_kbps_; |
| |
| if (paused_) { |
| PacedPacketInfo pacing_info; |
| time_last_update_us_ = now_us; |
| // We can not send padding unless a normal packet has first been sent. If we |
| // do, timestamps get messed up. |
| if (packet_counter_ == 0) |
| return; |
| size_t bytes_sent = SendPadding(1, pacing_info); |
| alr_detector_->OnBytesSent(bytes_sent, elapsed_time_ms); |
| return; |
| } |
| |
| if (elapsed_time_ms > 0) { |
| size_t queue_size_bytes = packets_->SizeInBytes(); |
| if (queue_size_bytes > 0) { |
| // Assuming equal size packets and input/output rate, the average packet |
| // has avg_time_left_ms left to get queue_size_bytes out of the queue, if |
| // time constraint shall be met. Determine bitrate needed for that. |
| packets_->UpdateQueueTime(clock_->TimeInMilliseconds()); |
| int64_t avg_time_left_ms = std::max<int64_t>( |
| 1, queue_time_limit - packets_->AverageQueueTimeMs()); |
| int min_bitrate_needed_kbps = |
| static_cast<int>(queue_size_bytes * 8 / avg_time_left_ms); |
| if (min_bitrate_needed_kbps > target_bitrate_kbps) |
| target_bitrate_kbps = min_bitrate_needed_kbps; |
| } |
| |
| media_budget_->set_target_rate_kbps(target_bitrate_kbps); |
| UpdateBudgetWithElapsedTime(elapsed_time_ms); |
| } |
| |
| time_last_update_us_ = now_us; |
| |
| bool is_probing = prober_->IsProbing(); |
| PacedPacketInfo pacing_info; |
| size_t bytes_sent = 0; |
| size_t recommended_probe_size = 0; |
| if (is_probing) { |
| pacing_info = prober_->CurrentCluster(); |
| recommended_probe_size = prober_->RecommendedMinProbeSize(); |
| } |
| while (!packets_->Empty()) { |
| // Since we need to release the lock in order to send, we first pop the |
| // element from the priority queue but keep it in storage, so that we can |
| // reinsert it if send fails. |
| const paced_sender::Packet& packet = packets_->BeginPop(); |
| |
| if (SendPacket(packet, pacing_info)) { |
| // Send succeeded, remove it from the queue. |
| if (first_sent_packet_ms_ == -1) |
| first_sent_packet_ms_ = clock_->TimeInMilliseconds(); |
| bytes_sent += packet.bytes; |
| packets_->FinalizePop(packet); |
| if (is_probing && bytes_sent > recommended_probe_size) |
| break; |
| } else { |
| // Send failed, put it back into the queue. |
| packets_->CancelPop(packet); |
| break; |
| } |
| } |
| |
| if (packets_->Empty()) { |
| // We can not send padding unless a normal packet has first been sent. If we |
| // do, timestamps get messed up. |
| if (packet_counter_ > 0) { |
| int padding_needed = |
| static_cast<int>(is_probing ? (recommended_probe_size - bytes_sent) |
| : padding_budget_->bytes_remaining()); |
| if (padding_needed > 0) |
| bytes_sent += SendPadding(padding_needed, pacing_info); |
| } |
| } |
| if (is_probing) { |
| probing_send_failure_ = bytes_sent == 0; |
| if (!probing_send_failure_) |
| prober_->ProbeSent(clock_->TimeInMilliseconds(), bytes_sent); |
| } |
| alr_detector_->OnBytesSent(bytes_sent, elapsed_time_ms); |
| } |
| |
| void PacedSender::ProcessThreadAttached(ProcessThread* process_thread) { |
| LOG(LS_INFO) << "ProcessThreadAttached 0x" << std::hex << process_thread; |
| process_thread_ = process_thread; |
| } |
| |
| bool PacedSender::SendPacket(const paced_sender::Packet& packet, |
| const PacedPacketInfo& pacing_info) { |
| RTC_DCHECK(!paused_); |
| if (media_budget_->bytes_remaining() == 0 && |
| pacing_info.probe_cluster_id == PacedPacketInfo::kNotAProbe) { |
| return false; |
| } |
| |
| critsect_.Leave(); |
| const bool success = packet_sender_->TimeToSendPacket( |
| packet.ssrc, packet.sequence_number, packet.capture_time_ms, |
| packet.retransmission, pacing_info); |
| critsect_.Enter(); |
| |
| if (success) { |
| // TODO(holmer): High priority packets should only be accounted for if we |
| // are allocating bandwidth for audio. |
| if (packet.priority != kHighPriority) { |
| // Update media bytes sent. |
| // TODO(eladalon): TimeToSendPacket() can also return |true| in some |
| // situations where nothing actually ended up being sent to the network, |
| // and we probably don't want to update the budget in such cases. |
| // https://bugs.chromium.org/p/webrtc/issues/detail?id=8052 |
| UpdateBudgetWithBytesSent(packet.bytes); |
| } |
| } |
| |
| return success; |
| } |
| |
| size_t PacedSender::SendPadding(size_t padding_needed, |
| const PacedPacketInfo& pacing_info) { |
| RTC_DCHECK_GT(packet_counter_, 0); |
| critsect_.Leave(); |
| size_t bytes_sent = |
| packet_sender_->TimeToSendPadding(padding_needed, pacing_info); |
| critsect_.Enter(); |
| |
| if (bytes_sent > 0) { |
| UpdateBudgetWithBytesSent(bytes_sent); |
| } |
| return bytes_sent; |
| } |
| |
| void PacedSender::UpdateBudgetWithElapsedTime(int64_t delta_time_ms) { |
| media_budget_->IncreaseBudget(delta_time_ms); |
| padding_budget_->IncreaseBudget(delta_time_ms); |
| } |
| |
| void PacedSender::UpdateBudgetWithBytesSent(size_t bytes_sent) { |
| media_budget_->UseBudget(bytes_sent); |
| padding_budget_->UseBudget(bytes_sent); |
| } |
| |
| void PacedSender::SetPacingFactor(float pacing_factor) { |
| rtc::CritScope cs(&critsect_); |
| pacing_factor_ = pacing_factor; |
| } |
| |
| void PacedSender::SetQueueTimeLimit(int limit_ms) { |
| rtc::CritScope cs(&critsect_); |
| queue_time_limit = limit_ms; |
| } |
| |
| } // namespace webrtc |