| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_TRANSIENT_TRANSIENT_DETECTOR_H_ |
| #define WEBRTC_MODULES_AUDIO_PROCESSING_TRANSIENT_TRANSIENT_DETECTOR_H_ |
| |
| #include <deque> |
| #include <memory> |
| |
| #include "webrtc/modules/audio_processing/transient/moving_moments.h" |
| #include "webrtc/modules/audio_processing/transient/wpd_tree.h" |
| |
| namespace webrtc { |
| |
| // This is an implementation of the transient detector described in "Causal |
| // Wavelet based transient detector". |
| // Calculates the log-likelihood of a transient to happen on a signal at any |
| // given time based on the previous samples; it uses a WPD tree to analyze the |
| // signal. It preserves its state, so it can be multiple-called. |
| class TransientDetector { |
| public: |
| // TODO(chadan): The only supported wavelet is Daubechies 8 using a WPD tree |
| // of 3 levels. Make an overloaded constructor to allow different wavelets and |
| // depths of the tree. When needed. |
| |
| // Creates a wavelet based transient detector. |
| TransientDetector(int sample_rate_hz); |
| |
| ~TransientDetector(); |
| |
| // Calculates the log-likelihood of the existence of a transient in |data|. |
| // |data_length| has to be equal to |samples_per_chunk_|. |
| // Returns a value between 0 and 1, as a non linear representation of this |
| // likelihood. |
| // Returns a negative value on error. |
| float Detect(const float* data, |
| size_t data_length, |
| const float* reference_data, |
| size_t reference_length); |
| |
| bool using_reference() { return using_reference_; } |
| |
| private: |
| float ReferenceDetectionValue(const float* data, size_t length); |
| |
| static const size_t kLevels = 3; |
| static const size_t kLeaves = 1 << kLevels; |
| |
| size_t samples_per_chunk_; |
| |
| std::unique_ptr<WPDTree> wpd_tree_; |
| size_t tree_leaves_data_length_; |
| |
| // A MovingMoments object is needed for each leaf in the WPD tree. |
| std::unique_ptr<MovingMoments> moving_moments_[kLeaves]; |
| |
| std::unique_ptr<float[]> first_moments_; |
| std::unique_ptr<float[]> second_moments_; |
| |
| // Stores the last calculated moments from the previous detection. |
| float last_first_moment_[kLeaves]; |
| float last_second_moment_[kLeaves]; |
| |
| // We keep track of the previous results from the previous chunks, so it can |
| // be used to effectively give results according to the |transient_length|. |
| std::deque<float> previous_results_; |
| |
| // Number of chunks that are going to return only zeros at the beginning of |
| // the detection. It helps to avoid infs and nans due to the lack of |
| // information. |
| int chunks_at_startup_left_to_delete_; |
| |
| float reference_energy_; |
| |
| bool using_reference_; |
| }; |
| |
| } // namespace webrtc |
| |
| #endif // WEBRTC_MODULES_AUDIO_PROCESSING_TRANSIENT_TRANSIENT_DETECTOR_H_ |