blob: 656bfab3e1a7c8f8ff41546426074eaa3451a74b [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm> // max
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/call.h"
#include "webrtc/common_video/interface/i420_video_frame.h"
#include "webrtc/frame_callback.h"
#include "webrtc/modules/rtp_rtcp/interface/rtp_header_parser.h"
#include "webrtc/modules/rtp_rtcp/interface/rtp_rtcp.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_sender.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_utility.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/event_wrapper.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
#include "webrtc/system_wrappers/interface/sleep.h"
#include "webrtc/system_wrappers/interface/thread_wrapper.h"
#include "webrtc/test/direct_transport.h"
#include "webrtc/test/configurable_frame_size_encoder.h"
#include "webrtc/test/encoder_settings.h"
#include "webrtc/test/fake_encoder.h"
#include "webrtc/test/frame_generator_capturer.h"
#include "webrtc/test/null_transport.h"
#include "webrtc/test/rtp_rtcp_observer.h"
#include "webrtc/test/testsupport/perf_test.h"
#include "webrtc/video/transport_adapter.h"
#include "webrtc/video_send_stream.h"
namespace webrtc {
enum VideoFormat { kGeneric, kVP8, };
class VideoSendStreamTest : public ::testing::Test {
public:
VideoSendStreamTest()
: send_stream_(NULL), fake_encoder_(Clock::GetRealTimeClock()) {}
protected:
void RunSendTest(Call* call,
const VideoSendStream::Config& config,
test::RtpRtcpObserver* observer) {
send_stream_ = call->CreateVideoSendStream(config);
scoped_ptr<test::FrameGeneratorCapturer> frame_generator_capturer(
test::FrameGeneratorCapturer::Create(
send_stream_->Input(), 320, 240, 30, Clock::GetRealTimeClock()));
send_stream_->StartSending();
frame_generator_capturer->Start();
EXPECT_EQ(kEventSignaled, observer->Wait());
observer->StopSending();
frame_generator_capturer->Stop();
send_stream_->StopSending();
call->DestroyVideoSendStream(send_stream_);
}
VideoSendStream::Config GetSendTestConfig(Call* call, size_t num_streams) {
assert(num_streams <= kNumSendSsrcs);
VideoSendStream::Config config = call->GetDefaultSendConfig();
config.encoder_settings = test::CreateEncoderSettings(
&fake_encoder_, "FAKE", kFakeSendPayloadType, num_streams);
config.encoder_settings.encoder = &fake_encoder_;
config.encoder_settings.payload_type = kFakeSendPayloadType;
for (size_t i = 0; i < num_streams; ++i)
config.rtp.ssrcs.push_back(kSendSsrcs[i]);
config.pacing = true;
return config;
}
void TestNackRetransmission(uint32_t retransmit_ssrc,
uint8_t retransmit_payload_type,
bool enable_pacing);
void TestPacketFragmentationSize(VideoFormat format, bool with_fec);
void SendsSetSsrcs(size_t num_ssrcs, bool send_single_ssrc_first);
enum { kNumSendSsrcs = 3 };
static const uint8_t kSendPayloadType;
static const uint8_t kSendRtxPayloadType;
static const uint8_t kFakeSendPayloadType;
static const uint32_t kSendSsrc;
static const uint32_t kSendRtxSsrc;
static const uint32_t kSendSsrcs[kNumSendSsrcs];
VideoSendStream* send_stream_;
test::FakeEncoder fake_encoder_;
};
const uint8_t VideoSendStreamTest::kSendPayloadType = 100;
const uint8_t VideoSendStreamTest::kFakeSendPayloadType = 125;
const uint8_t VideoSendStreamTest::kSendRtxPayloadType = 98;
const uint32_t VideoSendStreamTest::kSendRtxSsrc = 0xBADCAFE;
const uint32_t VideoSendStreamTest::kSendSsrcs[kNumSendSsrcs] = {
0xC0FFED, 0xC0FFEE, 0xC0FFEF};
const uint32_t VideoSendStreamTest::kSendSsrc =
VideoSendStreamTest::kSendSsrcs[0];
void VideoSendStreamTest::SendsSetSsrcs(size_t num_ssrcs,
bool send_single_ssrc_first) {
class SendSsrcObserver : public test::RtpRtcpObserver {
public:
SendSsrcObserver(const uint32_t* ssrcs,
size_t num_ssrcs,
bool send_single_ssrc_first)
: RtpRtcpObserver(30 * 1000),
ssrcs_to_observe_(num_ssrcs),
expect_single_ssrc_(send_single_ssrc_first) {
for (size_t i = 0; i < num_ssrcs; ++i)
valid_ssrcs_[ssrcs[i]] = true;
}
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, static_cast<int>(length), &header));
// TODO(pbos): Reenable this part of the test when #1695 is resolved and
// all SSRCs are allocated on startup. This test was observed
// to fail on TSan as the codec gets set before the SSRCs are
// set up and some frames are sent on a random-generated SSRC
// before the correct SSRC gets set.
// EXPECT_TRUE(valid_ssrcs_[header.ssrc])
// << "Received unknown SSRC: " << header.ssrc;
//
// if (!valid_ssrcs_[header.ssrc])
// observation_complete_->Set();
if (!is_observed_[header.ssrc]) {
is_observed_[header.ssrc] = true;
--ssrcs_to_observe_;
if (expect_single_ssrc_) {
expect_single_ssrc_ = false;
observation_complete_->Set();
}
}
if (ssrcs_to_observe_ == 0)
observation_complete_->Set();
return SEND_PACKET;
}
private:
std::map<uint32_t, bool> valid_ssrcs_;
std::map<uint32_t, bool> is_observed_;
size_t ssrcs_to_observe_;
bool expect_single_ssrc_;
} observer(kSendSsrcs, num_ssrcs, send_single_ssrc_first);
Call::Config call_config(observer.SendTransport());
scoped_ptr<Call> call(Call::Create(call_config));
VideoSendStream::Config send_config =
GetSendTestConfig(call.get(), num_ssrcs);
if (num_ssrcs > 1) {
// Set low simulcast bitrates to not have to wait for bandwidth ramp-up.
std::vector<VideoStream>* streams = &send_config.encoder_settings.streams;
for (size_t i = 0; i < streams->size(); ++i) {
(*streams)[i].min_bitrate_bps = 10000;
(*streams)[i].target_bitrate_bps = 10000;
(*streams)[i].max_bitrate_bps = 10000;
}
}
std::vector<VideoStream> all_streams = send_config.encoder_settings.streams;
if (send_single_ssrc_first)
send_config.encoder_settings.streams.resize(1);
send_stream_ = call->CreateVideoSendStream(send_config);
scoped_ptr<test::FrameGeneratorCapturer> frame_generator_capturer(
test::FrameGeneratorCapturer::Create(
send_stream_->Input(), 320, 240, 30, Clock::GetRealTimeClock()));
send_stream_->StartSending();
frame_generator_capturer->Start();
EXPECT_EQ(kEventSignaled, observer.Wait())
<< "Timed out while waiting for "
<< (send_single_ssrc_first ? "first SSRC." : "SSRCs.");
if (send_single_ssrc_first) {
// Set full simulcast and continue with the rest of the SSRCs.
send_stream_->ReconfigureVideoEncoder(all_streams, NULL);
EXPECT_EQ(kEventSignaled, observer.Wait())
<< "Timed out while waiting on additional SSRCs.";
}
observer.StopSending();
frame_generator_capturer->Stop();
send_stream_->StopSending();
call->DestroyVideoSendStream(send_stream_);
}
TEST_F(VideoSendStreamTest, CanStartStartedStream) {
test::NullTransport transport;
Call::Config call_config(&transport);
scoped_ptr<Call> call(Call::Create(call_config));
VideoSendStream::Config config = GetSendTestConfig(call.get(), 1);
VideoSendStream* stream = call->CreateVideoSendStream(config);
stream->StartSending();
stream->StartSending();
call->DestroyVideoSendStream(stream);
}
TEST_F(VideoSendStreamTest, CanStopStoppedStream) {
test::NullTransport transport;
Call::Config call_config(&transport);
scoped_ptr<Call> call(Call::Create(call_config));
VideoSendStream::Config config = GetSendTestConfig(call.get(), 1);
VideoSendStream* stream = call->CreateVideoSendStream(config);
stream->StopSending();
stream->StopSending();
call->DestroyVideoSendStream(stream);
}
TEST_F(VideoSendStreamTest, SendsSetSsrc) { SendsSetSsrcs(1, false); }
TEST_F(VideoSendStreamTest, DISABLED_SendsSetSimulcastSsrcs) {
SendsSetSsrcs(kNumSendSsrcs, false);
}
TEST_F(VideoSendStreamTest, DISABLED_CanSwitchToUseAllSsrcs) {
SendsSetSsrcs(kNumSendSsrcs, true);
}
TEST_F(VideoSendStreamTest, SupportsCName) {
static std::string kCName = "PjQatC14dGfbVwGPUOA9IH7RlsFDbWl4AhXEiDsBizo=";
class CNameObserver : public test::RtpRtcpObserver {
public:
CNameObserver() : RtpRtcpObserver(30 * 1000) {}
virtual Action OnSendRtcp(const uint8_t* packet, size_t length) OVERRIDE {
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
while (packet_type != RTCPUtility::kRtcpNotValidCode) {
if (packet_type == RTCPUtility::kRtcpSdesChunkCode) {
EXPECT_EQ(parser.Packet().CName.CName, kCName);
observation_complete_->Set();
}
packet_type = parser.Iterate();
}
return SEND_PACKET;
}
} observer;
Call::Config call_config(observer.SendTransport());
scoped_ptr<Call> call(Call::Create(call_config));
VideoSendStream::Config send_config = GetSendTestConfig(call.get(), 1);
send_config.rtp.c_name = kCName;
RunSendTest(call.get(), send_config, &observer);
}
TEST_F(VideoSendStreamTest, SupportsAbsoluteSendTime) {
static const uint8_t kAbsSendTimeExtensionId = 13;
class AbsoluteSendTimeObserver : public test::RtpRtcpObserver {
public:
AbsoluteSendTimeObserver() : RtpRtcpObserver(30 * 1000) {
EXPECT_TRUE(parser_->RegisterRtpHeaderExtension(
kRtpExtensionAbsoluteSendTime, kAbsSendTimeExtensionId));
}
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, static_cast<int>(length), &header));
EXPECT_FALSE(header.extension.hasTransmissionTimeOffset);
EXPECT_TRUE(header.extension.hasAbsoluteSendTime);
EXPECT_EQ(header.extension.transmissionTimeOffset, 0);
EXPECT_GT(header.extension.absoluteSendTime, 0u);
observation_complete_->Set();
return SEND_PACKET;
}
} observer;
Call::Config call_config(observer.SendTransport());
scoped_ptr<Call> call(Call::Create(call_config));
VideoSendStream::Config send_config = GetSendTestConfig(call.get(), 1);
send_config.rtp.extensions.push_back(
RtpExtension(RtpExtension::kAbsSendTime, kAbsSendTimeExtensionId));
RunSendTest(call.get(), send_config, &observer);
}
TEST_F(VideoSendStreamTest, SupportsTransmissionTimeOffset) {
static const uint8_t kTOffsetExtensionId = 13;
class DelayedEncoder : public test::FakeEncoder {
public:
explicit DelayedEncoder(Clock* clock) : test::FakeEncoder(clock) {}
virtual int32_t Encode(const I420VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<VideoFrameType>* frame_types)
OVERRIDE {
// A delay needs to be introduced to assure that we get a timestamp
// offset.
SleepMs(5);
return FakeEncoder::Encode(input_image, codec_specific_info, frame_types);
}
} encoder(Clock::GetRealTimeClock());
class TransmissionTimeOffsetObserver : public test::RtpRtcpObserver {
public:
TransmissionTimeOffsetObserver() : RtpRtcpObserver(30 * 1000) {
EXPECT_TRUE(parser_->RegisterRtpHeaderExtension(
kRtpExtensionTransmissionTimeOffset, kTOffsetExtensionId));
}
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, static_cast<int>(length), &header));
EXPECT_TRUE(header.extension.hasTransmissionTimeOffset);
EXPECT_FALSE(header.extension.hasAbsoluteSendTime);
EXPECT_GT(header.extension.transmissionTimeOffset, 0);
EXPECT_EQ(header.extension.absoluteSendTime, 0u);
observation_complete_->Set();
return SEND_PACKET;
}
} observer;
Call::Config call_config(observer.SendTransport());
scoped_ptr<Call> call(Call::Create(call_config));
VideoSendStream::Config send_config = GetSendTestConfig(call.get(), 1);
send_config.encoder_settings.encoder = &encoder;
send_config.rtp.extensions.push_back(
RtpExtension(RtpExtension::kTOffset, kTOffsetExtensionId));
RunSendTest(call.get(), send_config, &observer);
}
class FakeReceiveStatistics : public NullReceiveStatistics {
public:
FakeReceiveStatistics(uint32_t send_ssrc,
uint32_t last_sequence_number,
uint32_t cumulative_lost,
uint8_t fraction_lost)
: lossy_stats_(new LossyStatistician(last_sequence_number,
cumulative_lost,
fraction_lost)) {
stats_map_[send_ssrc] = lossy_stats_.get();
}
virtual StatisticianMap GetActiveStatisticians() const OVERRIDE {
return stats_map_;
}
virtual StreamStatistician* GetStatistician(uint32_t ssrc) const OVERRIDE {
return lossy_stats_.get();
}
private:
class LossyStatistician : public StreamStatistician {
public:
LossyStatistician(uint32_t extended_max_sequence_number,
uint32_t cumulative_lost,
uint8_t fraction_lost) {
stats_.fraction_lost = fraction_lost;
stats_.cumulative_lost = cumulative_lost;
stats_.extended_max_sequence_number = extended_max_sequence_number;
}
virtual bool GetStatistics(RtcpStatistics* statistics,
bool reset) OVERRIDE {
*statistics = stats_;
return true;
}
virtual void GetDataCounters(uint32_t* bytes_received,
uint32_t* packets_received) const OVERRIDE {
*bytes_received = 0;
*packets_received = 0;
}
virtual uint32_t BitrateReceived() const OVERRIDE { return 0; }
virtual void ResetStatistics() OVERRIDE {}
virtual bool IsRetransmitOfOldPacket(const RTPHeader& header,
int min_rtt) const OVERRIDE {
return false;
}
virtual bool IsPacketInOrder(uint16_t sequence_number) const OVERRIDE {
return true;
}
RtcpStatistics stats_;
};
scoped_ptr<LossyStatistician> lossy_stats_;
StatisticianMap stats_map_;
};
TEST_F(VideoSendStreamTest, SwapsI420VideoFrames) {
static const size_t kWidth = 320;
static const size_t kHeight = 240;
test::NullTransport transport;
Call::Config call_config(&transport);
scoped_ptr<Call> call(Call::Create(call_config));
VideoSendStream::Config send_config = GetSendTestConfig(call.get(), 1);
VideoSendStream* video_send_stream = call->CreateVideoSendStream(send_config);
video_send_stream->StartSending();
I420VideoFrame frame;
frame.CreateEmptyFrame(
kWidth, kHeight, kWidth, (kWidth + 1) / 2, (kWidth + 1) / 2);
uint8_t* old_y_buffer = frame.buffer(kYPlane);
video_send_stream->Input()->SwapFrame(&frame);
EXPECT_NE(frame.buffer(kYPlane), old_y_buffer);
call->DestroyVideoSendStream(video_send_stream);
}
TEST_F(VideoSendStreamTest, SupportsFec) {
static const int kRedPayloadType = 118;
static const int kUlpfecPayloadType = 119;
class FecObserver : public test::RtpRtcpObserver {
public:
FecObserver()
: RtpRtcpObserver(30 * 1000),
transport_adapter_(SendTransport()),
send_count_(0),
received_media_(false),
received_fec_(false) {
transport_adapter_.Enable();
}
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, static_cast<int>(length), &header));
// Send lossy receive reports to trigger FEC enabling.
if (send_count_++ % 2 != 0) {
// Receive statistics reporting having lost 50% of the packets.
FakeReceiveStatistics lossy_receive_stats(
kSendSsrc, header.sequenceNumber, send_count_ / 2, 127);
RTCPSender rtcp_sender(
0, false, Clock::GetRealTimeClock(), &lossy_receive_stats);
EXPECT_EQ(0, rtcp_sender.RegisterSendTransport(&transport_adapter_));
rtcp_sender.SetRTCPStatus(kRtcpNonCompound);
rtcp_sender.SetRemoteSSRC(kSendSsrc);
RTCPSender::FeedbackState feedback_state;
EXPECT_EQ(0, rtcp_sender.SendRTCP(feedback_state, kRtcpRr));
}
EXPECT_EQ(kRedPayloadType, header.payloadType);
uint8_t encapsulated_payload_type = packet[header.headerLength];
if (encapsulated_payload_type == kUlpfecPayloadType) {
received_fec_ = true;
} else {
received_media_ = true;
}
if (received_media_ && received_fec_)
observation_complete_->Set();
return SEND_PACKET;
}
private:
internal::TransportAdapter transport_adapter_;
int send_count_;
bool received_media_;
bool received_fec_;
} observer;
Call::Config call_config(observer.SendTransport());
scoped_ptr<Call> call(Call::Create(call_config));
observer.SetReceivers(call->Receiver(), NULL);
VideoSendStream::Config send_config = GetSendTestConfig(call.get(), 1);
send_config.rtp.fec.red_payload_type = kRedPayloadType;
send_config.rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
RunSendTest(call.get(), send_config, &observer);
}
void VideoSendStreamTest::TestNackRetransmission(
uint32_t retransmit_ssrc,
uint8_t retransmit_payload_type,
bool enable_pacing) {
class NackObserver : public test::RtpRtcpObserver {
public:
explicit NackObserver(uint32_t retransmit_ssrc,
uint8_t retransmit_payload_type)
: RtpRtcpObserver(30 * 1000),
transport_adapter_(SendTransport()),
send_count_(0),
retransmit_ssrc_(retransmit_ssrc),
retransmit_payload_type_(retransmit_payload_type),
nacked_sequence_number_(-1) {
transport_adapter_.Enable();
}
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, static_cast<int>(length), &header));
// Nack second packet after receiving the third one.
if (++send_count_ == 3) {
uint16_t nack_sequence_number = header.sequenceNumber - 1;
nacked_sequence_number_ = nack_sequence_number;
NullReceiveStatistics null_stats;
RTCPSender rtcp_sender(
0, false, Clock::GetRealTimeClock(), &null_stats);
EXPECT_EQ(0, rtcp_sender.RegisterSendTransport(&transport_adapter_));
rtcp_sender.SetRTCPStatus(kRtcpNonCompound);
rtcp_sender.SetRemoteSSRC(kSendSsrc);
RTCPSender::FeedbackState feedback_state;
EXPECT_EQ(0,
rtcp_sender.SendRTCP(
feedback_state, kRtcpNack, 1, &nack_sequence_number));
}
uint16_t sequence_number = header.sequenceNumber;
if (header.ssrc == retransmit_ssrc_ && retransmit_ssrc_ != kSendSsrc) {
// Not kSendSsrc, assume correct RTX packet. Extract sequence number.
const uint8_t* rtx_header = packet + header.headerLength;
sequence_number = (rtx_header[0] << 8) + rtx_header[1];
}
if (sequence_number == nacked_sequence_number_) {
EXPECT_EQ(retransmit_ssrc_, header.ssrc);
EXPECT_EQ(retransmit_payload_type_, header.payloadType);
observation_complete_->Set();
}
return SEND_PACKET;
}
private:
internal::TransportAdapter transport_adapter_;
int send_count_;
uint32_t retransmit_ssrc_;
uint8_t retransmit_payload_type_;
int nacked_sequence_number_;
} observer(retransmit_ssrc, retransmit_payload_type);
Call::Config call_config(observer.SendTransport());
scoped_ptr<Call> call(Call::Create(call_config));
observer.SetReceivers(call->Receiver(), NULL);
VideoSendStream::Config send_config = GetSendTestConfig(call.get(), 1);
send_config.rtp.nack.rtp_history_ms = 1000;
send_config.rtp.rtx.payload_type = retransmit_payload_type;
send_config.pacing = enable_pacing;
if (retransmit_ssrc != kSendSsrc)
send_config.rtp.rtx.ssrcs.push_back(retransmit_ssrc);
RunSendTest(call.get(), send_config, &observer);
}
TEST_F(VideoSendStreamTest, RetransmitsNack) {
// Normal NACKs should use the send SSRC.
TestNackRetransmission(kSendSsrc, kFakeSendPayloadType, false);
}
TEST_F(VideoSendStreamTest, RetransmitsNackOverRtx) {
// NACKs over RTX should use a separate SSRC.
TestNackRetransmission(kSendRtxSsrc, kSendRtxPayloadType, false);
}
TEST_F(VideoSendStreamTest, RetransmitsNackOverRtxWithPacing) {
// NACKs over RTX should use a separate SSRC.
TestNackRetransmission(kSendRtxSsrc, kSendRtxPayloadType, true);
}
void VideoSendStreamTest::TestPacketFragmentationSize(VideoFormat format,
bool with_fec) {
static const int kRedPayloadType = 118;
static const int kUlpfecPayloadType = 119;
// Observer that verifies that the expected number of packets and bytes
// arrive for each frame size, from start_size to stop_size.
class FrameFragmentationObserver : public test::RtpRtcpObserver,
public EncodedFrameObserver {
public:
FrameFragmentationObserver(uint32_t max_packet_size,
uint32_t start_size,
uint32_t stop_size,
test::ConfigurableFrameSizeEncoder* encoder,
bool test_generic_packetization,
bool use_fec)
: RtpRtcpObserver(120 * 1000), // Timeout after two minutes.
transport_adapter_(SendTransport()),
encoder_(encoder),
max_packet_size_(max_packet_size),
stop_size_(stop_size),
test_generic_packetization_(test_generic_packetization),
use_fec_(use_fec),
packet_count_(0),
accumulated_size_(0),
accumulated_payload_(0),
fec_packet_received_(false),
current_size_rtp_(start_size),
current_size_frame_(start_size) {
// Fragmentation required, this test doesn't make sense without it.
assert(stop_size > max_packet_size);
transport_adapter_.Enable();
}
virtual Action OnSendRtp(const uint8_t* packet, size_t size) OVERRIDE {
uint32_t length = static_cast<int>(size);
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
EXPECT_LE(length, max_packet_size_);
if (use_fec_) {
uint8_t payload_type = packet[header.headerLength];
bool is_fec = header.payloadType == kRedPayloadType &&
payload_type == kUlpfecPayloadType;
if (is_fec) {
fec_packet_received_ = true;
return SEND_PACKET;
}
}
accumulated_size_ += length;
if (use_fec_)
TriggerLossReport(header);
if (test_generic_packetization_) {
uint32_t overhead = header.headerLength + header.paddingLength +
(1 /* Generic header */);
if (use_fec_)
overhead += 1; // RED for FEC header.
accumulated_payload_ += length - overhead;
}
// Marker bit set indicates last packet of a frame.
if (header.markerBit) {
if (use_fec_ && accumulated_payload_ == current_size_rtp_ - 1) {
// With FEC enabled, frame size is incremented asynchronously, so
// "old" frames one byte too small may arrive. Accept, but don't
// increase expected frame size.
accumulated_size_ = 0;
accumulated_payload_ = 0;
return SEND_PACKET;
}
EXPECT_GE(accumulated_size_, current_size_rtp_);
if (test_generic_packetization_) {
EXPECT_EQ(current_size_rtp_, accumulated_payload_);
}
// Last packet of frame; reset counters.
accumulated_size_ = 0;
accumulated_payload_ = 0;
if (current_size_rtp_ == stop_size_) {
// Done! (Don't increase size again, might arrive more @ stop_size).
observation_complete_->Set();
} else {
// Increase next expected frame size. If testing with FEC, make sure
// a FEC packet has been received for this frame size before
// proceeding, to make sure that redundancy packets don't exceed
// size limit.
if (!use_fec_) {
++current_size_rtp_;
} else if (fec_packet_received_) {
fec_packet_received_ = false;
++current_size_rtp_;
++current_size_frame_;
}
}
}
return SEND_PACKET;
}
void TriggerLossReport(const RTPHeader& header) {
// Send lossy receive reports to trigger FEC enabling.
if (packet_count_++ % 2 != 0) {
// Receive statistics reporting having lost 50% of the packets.
FakeReceiveStatistics lossy_receive_stats(
kSendSsrc, header.sequenceNumber, packet_count_ / 2, 127);
RTCPSender rtcp_sender(
0, false, Clock::GetRealTimeClock(), &lossy_receive_stats);
EXPECT_EQ(0, rtcp_sender.RegisterSendTransport(&transport_adapter_));
rtcp_sender.SetRTCPStatus(kRtcpNonCompound);
rtcp_sender.SetRemoteSSRC(kSendSsrc);
RTCPSender::FeedbackState feedback_state;
EXPECT_EQ(0, rtcp_sender.SendRTCP(feedback_state, kRtcpRr));
}
}
virtual void EncodedFrameCallback(const EncodedFrame& encoded_frame) {
// Increase frame size for next encoded frame, in the context of the
// encoder thread.
if (!use_fec_ &&
current_size_frame_.Value() < static_cast<int32_t>(stop_size_)) {
++current_size_frame_;
}
encoder_->SetFrameSize(current_size_frame_.Value());
}
private:
internal::TransportAdapter transport_adapter_;
test::ConfigurableFrameSizeEncoder* const encoder_;
const uint32_t max_packet_size_;
const uint32_t stop_size_;
const bool test_generic_packetization_;
const bool use_fec_;
uint32_t packet_count_;
uint32_t accumulated_size_;
uint32_t accumulated_payload_;
bool fec_packet_received_;
uint32_t current_size_rtp_;
Atomic32 current_size_frame_;
};
// Use a fake encoder to output a frame of every size in the range [90, 290],
// for each size making sure that the exact number of payload bytes received
// is correct and that packets are fragmented to respect max packet size.
static const uint32_t kMaxPacketSize = 128;
static const uint32_t start = 90;
static const uint32_t stop = 290;
// Don't auto increment if FEC is used; continue sending frame size until
// a FEC packet has been received.
test::ConfigurableFrameSizeEncoder encoder(stop);
encoder.SetFrameSize(start);
FrameFragmentationObserver observer(
kMaxPacketSize, start, stop, &encoder, format == kGeneric, with_fec);
Call::Config call_config(observer.SendTransport());
scoped_ptr<Call> call(Call::Create(call_config));
observer.SetReceivers(call->Receiver(), NULL);
VideoSendStream::Config send_config = GetSendTestConfig(call.get(), 1);
if (with_fec) {
send_config.rtp.fec.red_payload_type = kRedPayloadType;
send_config.rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
}
if (format == kVP8)
send_config.encoder_settings.payload_name = "VP8";
send_config.pacing = false;
send_config.encoder_settings.encoder = &encoder;
send_config.rtp.max_packet_size = kMaxPacketSize;
send_config.post_encode_callback = &observer;
// Add an extension header, to make the RTP header larger than the base
// length of 12 bytes.
static const uint8_t kAbsSendTimeExtensionId = 13;
send_config.rtp.extensions.push_back(
RtpExtension(RtpExtension::kAbsSendTime, kAbsSendTimeExtensionId));
RunSendTest(call.get(), send_config, &observer);
}
// TODO(sprang): Is there any way of speeding up these tests?
TEST_F(VideoSendStreamTest, FragmentsGenericAccordingToMaxPacketSize) {
TestPacketFragmentationSize(kGeneric, false);
}
TEST_F(VideoSendStreamTest, FragmentsGenericAccordingToMaxPacketSizeWithFec) {
TestPacketFragmentationSize(kGeneric, true);
}
TEST_F(VideoSendStreamTest, FragmentsVp8AccordingToMaxPacketSize) {
TestPacketFragmentationSize(kVP8, false);
}
TEST_F(VideoSendStreamTest, FragmentsVp8AccordingToMaxPacketSizeWithFec) {
TestPacketFragmentationSize(kVP8, true);
}
// The test will go through a number of phases.
// 1. Start sending packets.
// 2. As soon as the RTP stream has been detected, signal a low REMB value to
// suspend the stream.
// 3. Wait until |kSuspendTimeFrames| have been captured without seeing any RTP
// packets.
// 4. Signal a high REMB and then wait for the RTP stream to start again.
// When the stream is detected again, and the stats show that the stream
// is no longer suspended, the test ends.
TEST_F(VideoSendStreamTest, SuspendBelowMinBitrate) {
static const int kSuspendTimeFrames = 60; // Suspend for 2 seconds @ 30 fps.
class RembObserver : public test::RtpRtcpObserver, public I420FrameCallback {
public:
RembObserver(VideoSendStream** send_stream_ptr)
: RtpRtcpObserver(30 * 1000), // Timeout after 30 seconds.
transport_adapter_(&transport_),
clock_(Clock::GetRealTimeClock()),
test_state_(kBeforeSuspend),
rtp_count_(0),
last_sequence_number_(0),
suspended_frame_count_(0),
low_remb_bps_(0),
high_remb_bps_(0),
crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
send_stream_ptr_(send_stream_ptr) {
transport_adapter_.Enable();
}
void SetReceiver(PacketReceiver* receiver) {
transport_.SetReceiver(receiver);
}
virtual Action OnSendRtcp(const uint8_t* packet, size_t length) OVERRIDE {
// Receive statistics reporting having lost 0% of the packets.
// This is needed for the send-side bitrate controller to work properly.
CriticalSectionScoped lock(crit_sect_.get());
SendRtcpFeedback(0); // REMB is only sent if value is > 0.
return SEND_PACKET;
}
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
CriticalSectionScoped lock(crit_sect_.get());
++rtp_count_;
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, static_cast<int>(length), &header));
last_sequence_number_ = header.sequenceNumber;
if (test_state_ == kBeforeSuspend) {
// The stream has started. Try to suspend it.
SendRtcpFeedback(low_remb_bps_);
test_state_ = kDuringSuspend;
} else if (test_state_ == kDuringSuspend) {
if (header.paddingLength == 0) {
// Received non-padding packet during suspension period. Reset the
// counter.
suspended_frame_count_ = 0;
}
} else if (test_state_ == kWaitingForPacket) {
if (header.paddingLength == 0) {
// Non-padding packet observed. Test is almost complete. Will just
// have to wait for the stats to change.
test_state_ = kWaitingForStats;
}
} else if (test_state_ == kWaitingForStats) {
assert(*send_stream_ptr_);
VideoSendStream::Stats stats = (*send_stream_ptr_)->GetStats();
if (stats.suspended == false) {
// Stats flipped to false. Test is complete.
observation_complete_->Set();
}
}
return SEND_PACKET;
}
// This method implements the I420FrameCallback.
void FrameCallback(I420VideoFrame* video_frame) OVERRIDE {
CriticalSectionScoped lock(crit_sect_.get());
if (test_state_ == kDuringSuspend &&
++suspended_frame_count_ > kSuspendTimeFrames) {
assert(*send_stream_ptr_);
VideoSendStream::Stats stats = (*send_stream_ptr_)->GetStats();
EXPECT_TRUE(stats.suspended);
SendRtcpFeedback(high_remb_bps_);
test_state_ = kWaitingForPacket;
}
}
void set_low_remb_bps(int value) { low_remb_bps_ = value; }
void set_high_remb_bps(int value) { high_remb_bps_ = value; }
void Stop() { transport_.StopSending(); }
private:
enum TestState {
kBeforeSuspend,
kDuringSuspend,
kWaitingForPacket,
kWaitingForStats
};
virtual void SendRtcpFeedback(int remb_value) {
FakeReceiveStatistics receive_stats(
kSendSsrc, last_sequence_number_, rtp_count_, 0);
RTCPSender rtcp_sender(0, false, clock_, &receive_stats);
EXPECT_EQ(0, rtcp_sender.RegisterSendTransport(&transport_adapter_));
rtcp_sender.SetRTCPStatus(kRtcpNonCompound);
rtcp_sender.SetRemoteSSRC(kSendSsrc);
if (remb_value > 0) {
rtcp_sender.SetREMBStatus(true);
rtcp_sender.SetREMBData(remb_value, 0, NULL);
}
RTCPSender::FeedbackState feedback_state;
EXPECT_EQ(0, rtcp_sender.SendRTCP(feedback_state, kRtcpRr));
}
internal::TransportAdapter transport_adapter_;
test::DirectTransport transport_;
Clock* clock_;
TestState test_state_;
int rtp_count_;
int last_sequence_number_;
int suspended_frame_count_;
int low_remb_bps_;
int high_remb_bps_;
scoped_ptr<CriticalSectionWrapper> crit_sect_;
VideoSendStream** send_stream_ptr_;
} observer(&send_stream_);
// Note that |send_stream_| is created in RunSendTest(), called below. This
// is why a pointer to |send_stream_| must be provided here.
Call::Config call_config(observer.SendTransport());
scoped_ptr<Call> call(Call::Create(call_config));
observer.SetReceiver(call->Receiver());
VideoSendStream::Config send_config = GetSendTestConfig(call.get(), 1);
send_config.rtp.nack.rtp_history_ms = 1000;
send_config.pre_encode_callback = &observer;
send_config.suspend_below_min_bitrate = true;
int min_bitrate_bps = send_config.encoder_settings.streams[0].min_bitrate_bps;
observer.set_low_remb_bps(min_bitrate_bps - 10000);
int threshold_window = std::max(min_bitrate_bps / 10, 10000);
ASSERT_GT(send_config.encoder_settings.streams[0].max_bitrate_bps,
min_bitrate_bps + threshold_window + 5000);
observer.set_high_remb_bps(min_bitrate_bps + threshold_window + 5000);
RunSendTest(call.get(), send_config, &observer);
observer.Stop();
}
TEST_F(VideoSendStreamTest, NoPaddingWhenVideoIsMuted) {
class PacketObserver : public test::RtpRtcpObserver {
public:
PacketObserver()
: RtpRtcpObserver(30 * 1000), // Timeout after 30 seconds.
clock_(Clock::GetRealTimeClock()),
last_packet_time_ms_(-1),
transport_adapter_(ReceiveTransport()),
capturer_(NULL),
crit_sect_(CriticalSectionWrapper::CreateCriticalSection()) {
transport_adapter_.Enable();
}
void SetCapturer(test::FrameGeneratorCapturer* capturer) {
capturer_ = capturer;
}
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
CriticalSectionScoped lock(crit_sect_.get());
last_packet_time_ms_ = clock_->TimeInMilliseconds();
capturer_->Stop();
return SEND_PACKET;
}
virtual Action OnSendRtcp(const uint8_t* packet, size_t length) OVERRIDE {
CriticalSectionScoped lock(crit_sect_.get());
const int kVideoMutedThresholdMs = 10000;
if (last_packet_time_ms_ > 0 &&
clock_->TimeInMilliseconds() - last_packet_time_ms_ >
kVideoMutedThresholdMs)
observation_complete_->Set();
// Receive statistics reporting having lost 50% of the packets.
FakeReceiveStatistics receive_stats(kSendSsrcs[0], 1, 1, 0);
RTCPSender rtcp_sender(
0, false, Clock::GetRealTimeClock(), &receive_stats);
EXPECT_EQ(0, rtcp_sender.RegisterSendTransport(&transport_adapter_));
rtcp_sender.SetRTCPStatus(kRtcpNonCompound);
rtcp_sender.SetRemoteSSRC(kSendSsrcs[0]);
RTCPSender::FeedbackState feedback_state;
EXPECT_EQ(0, rtcp_sender.SendRTCP(feedback_state, kRtcpRr));
return SEND_PACKET;
}
private:
Clock* clock_;
int64_t last_packet_time_ms_;
internal::TransportAdapter transport_adapter_;
test::FrameGeneratorCapturer* capturer_;
scoped_ptr<CriticalSectionWrapper> crit_sect_;
} observer;
Call::Config call_config(observer.SendTransport());
scoped_ptr<Call> call(Call::Create(call_config));
observer.SetReceivers(call->Receiver(), call->Receiver());
VideoSendStream::Config send_config = GetSendTestConfig(call.get(), 3);
send_stream_ = call->CreateVideoSendStream(send_config);
scoped_ptr<test::FrameGeneratorCapturer> frame_generator_capturer(
test::FrameGeneratorCapturer::Create(
send_stream_->Input(), 320, 240, 30, Clock::GetRealTimeClock()));
observer.SetCapturer(frame_generator_capturer.get());
send_stream_->StartSending();
frame_generator_capturer->Start();
EXPECT_EQ(kEventSignaled, observer.Wait())
<< "Timed out while waiting for RTP packets to stop being sent.";
observer.StopSending();
frame_generator_capturer->Stop();
send_stream_->StopSending();
call->DestroyVideoSendStream(send_stream_);
}
TEST_F(VideoSendStreamTest, ProducesStats) {
static const std::string kCName =
"PjQatC14dGfbVwGPUOA9IH7RlsFDbWl4AhXEiDsBizo=";
static const uint32_t kTimeoutMs = 30 * 1000;
class StatsObserver : public test::RtpRtcpObserver {
public:
StatsObserver()
: RtpRtcpObserver(kTimeoutMs),
stream_(NULL),
event_(EventWrapper::Create()) {}
virtual Action OnSendRtcp(const uint8_t* packet, size_t length) OVERRIDE {
event_->Set();
return SEND_PACKET;
}
bool WaitForFilledStats() {
Clock* clock = Clock::GetRealTimeClock();
int64_t now = clock->TimeInMilliseconds();
int64_t stop_time = now + kTimeoutMs;
while (now < stop_time) {
int64_t time_left = stop_time - now;
if (time_left > 0 && event_->Wait(time_left) == kEventSignaled &&
CheckStats()) {
return true;
}
now = clock->TimeInMilliseconds();
}
return false;
}
bool CheckStats() {
VideoSendStream::Stats stats = stream_->GetStats();
// Check that all applicable data sources have been used.
if (stats.input_frame_rate > 0 && stats.encode_frame_rate > 0 &&
stats.avg_delay_ms > 0 && stats.c_name == kCName &&
!stats.substreams.empty()) {
uint32_t ssrc = stats.substreams.begin()->first;
EXPECT_NE(
config_.rtp.ssrcs.end(),
std::find(
config_.rtp.ssrcs.begin(), config_.rtp.ssrcs.end(), ssrc));
// Check for data populated by various sources. RTCP excluded as this
// data is received from remote side. Tested in call tests instead.
const StreamStats& entry = stats.substreams[ssrc];
if (entry.key_frames > 0u && entry.bitrate_bps > 0 &&
entry.rtp_stats.packets > 0u) {
return true;
}
}
return false;
}
void SetConfig(const VideoSendStream::Config& config) { config_ = config; }
void SetSendStream(VideoSendStream* stream) { stream_ = stream; }
VideoSendStream* stream_;
VideoSendStream::Config config_;
scoped_ptr<EventWrapper> event_;
} observer;
Call::Config call_config(observer.SendTransport());
scoped_ptr<Call> call(Call::Create(call_config));
VideoSendStream::Config send_config = GetSendTestConfig(call.get(), 1);
send_config.rtp.c_name = kCName;
observer.SetConfig(send_config);
send_stream_ = call->CreateVideoSendStream(send_config);
observer.SetSendStream(send_stream_);
scoped_ptr<test::FrameGeneratorCapturer> frame_generator_capturer(
test::FrameGeneratorCapturer::Create(
send_stream_->Input(), 320, 240, 30, Clock::GetRealTimeClock()));
send_stream_->StartSending();
frame_generator_capturer->Start();
EXPECT_TRUE(observer.WaitForFilledStats())
<< "Timed out waiting for filled statistics.";
observer.StopSending();
frame_generator_capturer->Stop();
send_stream_->StopSending();
call->DestroyVideoSendStream(send_stream_);
}
// This test first observes "high" bitrate use at which point it sends a REMB to
// indicate that it should be lowered significantly. The test then observes that
// the bitrate observed is sinking well below the min-transmit-bitrate threshold
// to verify that the min-transmit bitrate respects incoming REMB.
//
// Note that the test starts at "high" bitrate and does not ramp up to "higher"
// bitrate since no receiver block or remb is sent in the initial phase.
TEST_F(VideoSendStreamTest, MinTransmitBitrateRespectsRemb) {
static const int kMinTransmitBitrateBps = 400000;
static const int kHighBitrateBps = 150000;
static const int kRembBitrateBps = 80000;
static const int kRembRespectedBitrateBps = 100000;
class BitrateObserver: public test::RtpRtcpObserver, public PacketReceiver {
public:
BitrateObserver()
: RtpRtcpObserver(30 * 1000),
feedback_transport_(ReceiveTransport()),
send_stream_(NULL),
bitrate_capped_(false) {
RtpRtcp::Configuration config;
feedback_transport_.Enable();
config.outgoing_transport = &feedback_transport_;
rtp_rtcp_.reset(RtpRtcp::CreateRtpRtcp(config));
rtp_rtcp_->SetREMBStatus(true);
rtp_rtcp_->SetRTCPStatus(kRtcpNonCompound);
}
void SetSendStream(VideoSendStream* send_stream) {
send_stream_ = send_stream;
}
private:
virtual bool DeliverPacket(const uint8_t* packet, size_t length) {
if (RtpHeaderParser::IsRtcp(packet, static_cast<int>(length)))
return true;
RTPHeader header;
if (!parser_->Parse(packet, static_cast<int>(length), &header))
return true;
assert(send_stream_ != NULL);
VideoSendStream::Stats stats = send_stream_->GetStats();
if (!stats.substreams.empty()) {
EXPECT_EQ(1u, stats.substreams.size());
int bitrate_bps = stats.substreams.begin()->second.bitrate_bps;
test::PrintResult(
"bitrate_stats_",
"min_transmit_bitrate_low_remb",
"bitrate_bps",
static_cast<size_t>(bitrate_bps),
"bps",
false);
if (bitrate_bps > kHighBitrateBps) {
rtp_rtcp_->SetREMBData(kRembBitrateBps, 1, &header.ssrc);
rtp_rtcp_->Process();
bitrate_capped_ = true;
} else if (bitrate_capped_ &&
bitrate_bps < kRembRespectedBitrateBps) {
observation_complete_->Set();
}
}
return true;
}
scoped_ptr<RtpRtcp> rtp_rtcp_;
internal::TransportAdapter feedback_transport_;
VideoSendStream* send_stream_;
bool bitrate_capped_;
} observer;
Call::Config call_config(observer.SendTransport());
scoped_ptr<Call> call(Call::Create(call_config));
observer.SetReceivers(&observer, call->Receiver());
VideoSendStream::Config send_config = GetSendTestConfig(call.get(), 1);
send_config.rtp.min_transmit_bitrate_bps = kMinTransmitBitrateBps;
send_stream_ = call->CreateVideoSendStream(send_config);
observer.SetSendStream(send_stream_);
scoped_ptr<test::FrameGeneratorCapturer> frame_generator_capturer(
test::FrameGeneratorCapturer::Create(
send_stream_->Input(), 320, 240, 30, Clock::GetRealTimeClock()));
send_stream_->StartSending();
frame_generator_capturer->Start();
EXPECT_EQ(kEventSignaled, observer.Wait())
<< "Timeout while waiting for low bitrate stats after REMB.";
observer.StopSending();
frame_generator_capturer->Stop();
send_stream_->StopSending();
call->DestroyVideoSendStream(send_stream_);
}
} // namespace webrtc