|  | /* | 
|  | *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  | #include "webrtc/modules/video_coding/main/source/jitter_buffer.h" | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <utility> | 
|  |  | 
|  | #include "webrtc/modules/video_coding/main/interface/video_coding.h" | 
|  | #include "webrtc/modules/video_coding/main/source/frame_buffer.h" | 
|  | #include "webrtc/modules/video_coding/main/source/inter_frame_delay.h" | 
|  | #include "webrtc/modules/video_coding/main/source/internal_defines.h" | 
|  | #include "webrtc/modules/video_coding/main/source/jitter_buffer_common.h" | 
|  | #include "webrtc/modules/video_coding/main/source/jitter_estimator.h" | 
|  | #include "webrtc/modules/video_coding/main/source/packet.h" | 
|  | #include "webrtc/system_wrappers/interface/clock.h" | 
|  | #include "webrtc/system_wrappers/interface/critical_section_wrapper.h" | 
|  | #include "webrtc/system_wrappers/interface/event_wrapper.h" | 
|  | #include "webrtc/system_wrappers/interface/logging.h" | 
|  | #include "webrtc/system_wrappers/interface/metrics.h" | 
|  | #include "webrtc/system_wrappers/interface/trace_event.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | // Use this rtt if no value has been reported. | 
|  | static const uint32_t kDefaultRtt = 200; | 
|  |  | 
|  | typedef std::pair<uint32_t, VCMFrameBuffer*> FrameListPair; | 
|  |  | 
|  | bool IsKeyFrame(FrameListPair pair) { | 
|  | return pair.second->FrameType() == kVideoFrameKey; | 
|  | } | 
|  |  | 
|  | bool HasNonEmptyState(FrameListPair pair) { | 
|  | return pair.second->GetState() != kStateEmpty; | 
|  | } | 
|  |  | 
|  | void FrameList::InsertFrame(VCMFrameBuffer* frame) { | 
|  | insert(rbegin().base(), FrameListPair(frame->TimeStamp(), frame)); | 
|  | } | 
|  |  | 
|  | VCMFrameBuffer* FrameList::FindFrame(uint32_t timestamp) const { | 
|  | FrameList::const_iterator it = find(timestamp); | 
|  | if (it == end()) | 
|  | return NULL; | 
|  | return it->second; | 
|  | } | 
|  |  | 
|  | VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) { | 
|  | FrameList::iterator it = find(timestamp); | 
|  | if (it == end()) | 
|  | return NULL; | 
|  | VCMFrameBuffer* frame = it->second; | 
|  | erase(it); | 
|  | return frame; | 
|  | } | 
|  |  | 
|  | VCMFrameBuffer* FrameList::Front() const { | 
|  | return begin()->second; | 
|  | } | 
|  |  | 
|  | VCMFrameBuffer* FrameList::Back() const { | 
|  | return rbegin()->second; | 
|  | } | 
|  |  | 
|  | int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it, | 
|  | UnorderedFrameList* free_frames) { | 
|  | int drop_count = 0; | 
|  | FrameList::iterator it = begin(); | 
|  | while (!empty()) { | 
|  | // Throw at least one frame. | 
|  | it->second->Reset(); | 
|  | free_frames->push_back(it->second); | 
|  | erase(it++); | 
|  | ++drop_count; | 
|  | if (it != end() && it->second->FrameType() == kVideoFrameKey) { | 
|  | *key_frame_it = it; | 
|  | return drop_count; | 
|  | } | 
|  | } | 
|  | *key_frame_it = end(); | 
|  | return drop_count; | 
|  | } | 
|  |  | 
|  | int FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state, | 
|  | UnorderedFrameList* free_frames) { | 
|  | int drop_count = 0; | 
|  | while (!empty()) { | 
|  | VCMFrameBuffer* oldest_frame = Front(); | 
|  | bool remove_frame = false; | 
|  | if (oldest_frame->GetState() == kStateEmpty && size() > 1) { | 
|  | // This frame is empty, try to update the last decoded state and drop it | 
|  | // if successful. | 
|  | remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame); | 
|  | } else { | 
|  | remove_frame = decoding_state->IsOldFrame(oldest_frame); | 
|  | } | 
|  | if (!remove_frame) { | 
|  | break; | 
|  | } | 
|  | free_frames->push_back(oldest_frame); | 
|  | ++drop_count; | 
|  | TRACE_EVENT_INSTANT1("webrtc", "JB::OldOrEmptyFrameDropped", "timestamp", | 
|  | oldest_frame->TimeStamp()); | 
|  | erase(begin()); | 
|  | } | 
|  | return drop_count; | 
|  | } | 
|  |  | 
|  | void FrameList::Reset(UnorderedFrameList* free_frames) { | 
|  | while (!empty()) { | 
|  | begin()->second->Reset(); | 
|  | free_frames->push_back(begin()->second); | 
|  | erase(begin()); | 
|  | } | 
|  | } | 
|  |  | 
|  | VCMJitterBuffer::VCMJitterBuffer(Clock* clock, EventFactory* event_factory) | 
|  | : clock_(clock), | 
|  | running_(false), | 
|  | crit_sect_(CriticalSectionWrapper::CreateCriticalSection()), | 
|  | frame_event_(event_factory->CreateEvent()), | 
|  | packet_event_(event_factory->CreateEvent()), | 
|  | max_number_of_frames_(kStartNumberOfFrames), | 
|  | frame_buffers_(), | 
|  | free_frames_(), | 
|  | decodable_frames_(), | 
|  | incomplete_frames_(), | 
|  | last_decoded_state_(), | 
|  | first_packet_since_reset_(true), | 
|  | incoming_frame_rate_(0), | 
|  | incoming_frame_count_(0), | 
|  | time_last_incoming_frame_count_(0), | 
|  | incoming_bit_count_(0), | 
|  | incoming_bit_rate_(0), | 
|  | drop_count_(0), | 
|  | num_consecutive_old_frames_(0), | 
|  | num_consecutive_old_packets_(0), | 
|  | num_packets_(0), | 
|  | num_duplicated_packets_(0), | 
|  | num_discarded_packets_(0), | 
|  | jitter_estimate_(clock), | 
|  | inter_frame_delay_(clock_->TimeInMilliseconds()), | 
|  | rtt_ms_(kDefaultRtt), | 
|  | nack_mode_(kNoNack), | 
|  | low_rtt_nack_threshold_ms_(-1), | 
|  | high_rtt_nack_threshold_ms_(-1), | 
|  | missing_sequence_numbers_(SequenceNumberLessThan()), | 
|  | nack_seq_nums_(), | 
|  | max_nack_list_size_(0), | 
|  | max_packet_age_to_nack_(0), | 
|  | max_incomplete_time_ms_(0), | 
|  | decode_error_mode_(kNoErrors), | 
|  | average_packets_per_frame_(0.0f), | 
|  | frame_counter_(0) { | 
|  | memset(frame_buffers_, 0, sizeof(frame_buffers_)); | 
|  |  | 
|  | for (int i = 0; i < kStartNumberOfFrames; i++) { | 
|  | frame_buffers_[i] = new VCMFrameBuffer(); | 
|  | free_frames_.push_back(frame_buffers_[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | VCMJitterBuffer::~VCMJitterBuffer() { | 
|  | Stop(); | 
|  | for (int i = 0; i < kMaxNumberOfFrames; i++) { | 
|  | if (frame_buffers_[i]) { | 
|  | delete frame_buffers_[i]; | 
|  | } | 
|  | } | 
|  | delete crit_sect_; | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::CopyFrom(const VCMJitterBuffer& rhs) { | 
|  | if (this != &rhs) { | 
|  | crit_sect_->Enter(); | 
|  | rhs.crit_sect_->Enter(); | 
|  | running_ = rhs.running_; | 
|  | max_number_of_frames_ = rhs.max_number_of_frames_; | 
|  | incoming_frame_rate_ = rhs.incoming_frame_rate_; | 
|  | incoming_frame_count_ = rhs.incoming_frame_count_; | 
|  | time_last_incoming_frame_count_ = rhs.time_last_incoming_frame_count_; | 
|  | incoming_bit_count_ = rhs.incoming_bit_count_; | 
|  | incoming_bit_rate_ = rhs.incoming_bit_rate_; | 
|  | drop_count_ = rhs.drop_count_; | 
|  | num_consecutive_old_frames_ = rhs.num_consecutive_old_frames_; | 
|  | num_consecutive_old_packets_ = rhs.num_consecutive_old_packets_; | 
|  | num_packets_ = rhs.num_packets_; | 
|  | num_duplicated_packets_ = rhs.num_duplicated_packets_; | 
|  | num_discarded_packets_ = rhs.num_discarded_packets_; | 
|  | jitter_estimate_ = rhs.jitter_estimate_; | 
|  | inter_frame_delay_ = rhs.inter_frame_delay_; | 
|  | waiting_for_completion_ = rhs.waiting_for_completion_; | 
|  | rtt_ms_ = rhs.rtt_ms_; | 
|  | first_packet_since_reset_ = rhs.first_packet_since_reset_; | 
|  | last_decoded_state_ =  rhs.last_decoded_state_; | 
|  | decode_error_mode_ = rhs.decode_error_mode_; | 
|  | assert(max_nack_list_size_ == rhs.max_nack_list_size_); | 
|  | assert(max_packet_age_to_nack_ == rhs.max_packet_age_to_nack_); | 
|  | assert(max_incomplete_time_ms_ == rhs.max_incomplete_time_ms_); | 
|  | receive_statistics_ = rhs.receive_statistics_; | 
|  | nack_seq_nums_.resize(rhs.nack_seq_nums_.size()); | 
|  | missing_sequence_numbers_ = rhs.missing_sequence_numbers_; | 
|  | latest_received_sequence_number_ = rhs.latest_received_sequence_number_; | 
|  | average_packets_per_frame_ = rhs.average_packets_per_frame_; | 
|  | for (int i = 0; i < kMaxNumberOfFrames; i++) { | 
|  | if (frame_buffers_[i] != NULL) { | 
|  | delete frame_buffers_[i]; | 
|  | frame_buffers_[i] = NULL; | 
|  | } | 
|  | } | 
|  | free_frames_.clear(); | 
|  | decodable_frames_.clear(); | 
|  | incomplete_frames_.clear(); | 
|  | int i = 0; | 
|  | for (UnorderedFrameList::const_iterator it = rhs.free_frames_.begin(); | 
|  | it != rhs.free_frames_.end(); ++it, ++i) { | 
|  | frame_buffers_[i] = new VCMFrameBuffer; | 
|  | free_frames_.push_back(frame_buffers_[i]); | 
|  | } | 
|  | CopyFrames(&decodable_frames_, rhs.decodable_frames_, &i); | 
|  | CopyFrames(&incomplete_frames_, rhs.incomplete_frames_, &i); | 
|  | rhs.crit_sect_->Leave(); | 
|  | crit_sect_->Leave(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::CopyFrames(FrameList* to_list, | 
|  | const FrameList& from_list, int* index) { | 
|  | to_list->clear(); | 
|  | for (FrameList::const_iterator it = from_list.begin(); | 
|  | it != from_list.end(); ++it, ++*index) { | 
|  | frame_buffers_[*index] = new VCMFrameBuffer(*it->second); | 
|  | to_list->InsertFrame(frame_buffers_[*index]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::UpdateHistograms() { | 
|  | if (num_packets_ > 0) { | 
|  | RTC_HISTOGRAM_PERCENTAGE("WebRTC.Video.DiscardedPacketsInPercent", | 
|  | num_discarded_packets_ * 100 / num_packets_); | 
|  | RTC_HISTOGRAM_PERCENTAGE("WebRTC.Video.DuplicatedPacketsInPercent", | 
|  | num_duplicated_packets_ * 100 / num_packets_); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::Start() { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | running_ = true; | 
|  | incoming_frame_count_ = 0; | 
|  | incoming_frame_rate_ = 0; | 
|  | incoming_bit_count_ = 0; | 
|  | incoming_bit_rate_ = 0; | 
|  | time_last_incoming_frame_count_ = clock_->TimeInMilliseconds(); | 
|  | receive_statistics_.clear(); | 
|  |  | 
|  | num_consecutive_old_frames_ = 0; | 
|  | num_consecutive_old_packets_ = 0; | 
|  | num_packets_ = 0; | 
|  | num_duplicated_packets_ = 0; | 
|  | num_discarded_packets_ = 0; | 
|  |  | 
|  | // Start in a non-signaled state. | 
|  | frame_event_->Reset(); | 
|  | packet_event_->Reset(); | 
|  | waiting_for_completion_.frame_size = 0; | 
|  | waiting_for_completion_.timestamp = 0; | 
|  | waiting_for_completion_.latest_packet_time = -1; | 
|  | first_packet_since_reset_ = true; | 
|  | rtt_ms_ = kDefaultRtt; | 
|  | last_decoded_state_.Reset(); | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::Stop() { | 
|  | crit_sect_->Enter(); | 
|  | UpdateHistograms(); | 
|  | running_ = false; | 
|  | last_decoded_state_.Reset(); | 
|  | free_frames_.clear(); | 
|  | decodable_frames_.clear(); | 
|  | incomplete_frames_.clear(); | 
|  | // Make sure all frames are reset and free. | 
|  | for (int i = 0; i < kMaxNumberOfFrames; i++) { | 
|  | if (frame_buffers_[i] != NULL) { | 
|  | static_cast<VCMFrameBuffer*>(frame_buffers_[i])->Reset(); | 
|  | free_frames_.push_back(frame_buffers_[i]); | 
|  | } | 
|  | } | 
|  | crit_sect_->Leave(); | 
|  | // Make sure we wake up any threads waiting on these events. | 
|  | frame_event_->Set(); | 
|  | packet_event_->Set(); | 
|  | } | 
|  |  | 
|  | bool VCMJitterBuffer::Running() const { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | return running_; | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::Flush() { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | decodable_frames_.Reset(&free_frames_); | 
|  | incomplete_frames_.Reset(&free_frames_); | 
|  | last_decoded_state_.Reset();  // TODO(mikhal): sync reset. | 
|  | frame_event_->Reset(); | 
|  | packet_event_->Reset(); | 
|  | num_consecutive_old_frames_ = 0; | 
|  | num_consecutive_old_packets_ = 0; | 
|  | // Also reset the jitter and delay estimates | 
|  | jitter_estimate_.Reset(); | 
|  | inter_frame_delay_.Reset(clock_->TimeInMilliseconds()); | 
|  | waiting_for_completion_.frame_size = 0; | 
|  | waiting_for_completion_.timestamp = 0; | 
|  | waiting_for_completion_.latest_packet_time = -1; | 
|  | first_packet_since_reset_ = true; | 
|  | missing_sequence_numbers_.clear(); | 
|  | } | 
|  |  | 
|  | // Get received key and delta frames | 
|  | std::map<FrameType, uint32_t> VCMJitterBuffer::FrameStatistics() const { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | return receive_statistics_; | 
|  | } | 
|  |  | 
|  | int VCMJitterBuffer::num_packets() const { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | return num_packets_; | 
|  | } | 
|  |  | 
|  | int VCMJitterBuffer::num_duplicated_packets() const { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | return num_duplicated_packets_; | 
|  | } | 
|  |  | 
|  | int VCMJitterBuffer::num_discarded_packets() const { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | return num_discarded_packets_; | 
|  | } | 
|  |  | 
|  | // Calculate framerate and bitrate. | 
|  | void VCMJitterBuffer::IncomingRateStatistics(unsigned int* framerate, | 
|  | unsigned int* bitrate) { | 
|  | assert(framerate); | 
|  | assert(bitrate); | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | const int64_t now = clock_->TimeInMilliseconds(); | 
|  | int64_t diff = now - time_last_incoming_frame_count_; | 
|  | if (diff < 1000 && incoming_frame_rate_ > 0 && incoming_bit_rate_ > 0) { | 
|  | // Make sure we report something even though less than | 
|  | // 1 second has passed since last update. | 
|  | *framerate = incoming_frame_rate_; | 
|  | *bitrate = incoming_bit_rate_; | 
|  | } else if (incoming_frame_count_ != 0) { | 
|  | // We have received frame(s) since last call to this function | 
|  |  | 
|  | // Prepare calculations | 
|  | if (diff <= 0) { | 
|  | diff = 1; | 
|  | } | 
|  | // we add 0.5f for rounding | 
|  | float rate = 0.5f + ((incoming_frame_count_ * 1000.0f) / diff); | 
|  | if (rate < 1.0f) { | 
|  | rate = 1.0f; | 
|  | } | 
|  |  | 
|  | // Calculate frame rate | 
|  | // Let r be rate. | 
|  | // r(0) = 1000*framecount/delta_time. | 
|  | // (I.e. frames per second since last calculation.) | 
|  | // frame_rate = r(0)/2 + r(-1)/2 | 
|  | // (I.e. fr/s average this and the previous calculation.) | 
|  | *framerate = (incoming_frame_rate_ + static_cast<unsigned int>(rate)) / 2; | 
|  | incoming_frame_rate_ = static_cast<unsigned int>(rate); | 
|  |  | 
|  | // Calculate bit rate | 
|  | if (incoming_bit_count_ == 0) { | 
|  | *bitrate = 0; | 
|  | } else { | 
|  | *bitrate = 10 * ((100 * incoming_bit_count_) / | 
|  | static_cast<unsigned int>(diff)); | 
|  | } | 
|  | incoming_bit_rate_ = *bitrate; | 
|  |  | 
|  | // Reset count | 
|  | incoming_frame_count_ = 0; | 
|  | incoming_bit_count_ = 0; | 
|  | time_last_incoming_frame_count_ = now; | 
|  |  | 
|  | } else { | 
|  | // No frames since last call | 
|  | time_last_incoming_frame_count_ = clock_->TimeInMilliseconds(); | 
|  | *framerate = 0; | 
|  | *bitrate = 0; | 
|  | incoming_frame_rate_ = 0; | 
|  | incoming_bit_rate_ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Answers the question: | 
|  | // Will the packet sequence be complete if the next frame is grabbed for | 
|  | // decoding right now? That is, have we lost a frame between the last decoded | 
|  | // frame and the next, or is the next | 
|  | // frame missing one or more packets? | 
|  | bool VCMJitterBuffer::CompleteSequenceWithNextFrame() { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | // Finding oldest frame ready for decoder, check sequence number and size | 
|  | CleanUpOldOrEmptyFrames(); | 
|  | if (!decodable_frames_.empty()) { | 
|  | if (decodable_frames_.Front()->GetState() == kStateComplete) { | 
|  | return true; | 
|  | } | 
|  | } else if (incomplete_frames_.size() <= 1) { | 
|  | // Frame not ready to be decoded. | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns immediately or a |max_wait_time_ms| ms event hang waiting for a | 
|  | // complete frame, |max_wait_time_ms| decided by caller. | 
|  | bool VCMJitterBuffer::NextCompleteTimestamp( | 
|  | uint32_t max_wait_time_ms, uint32_t* timestamp) { | 
|  | crit_sect_->Enter(); | 
|  | if (!running_) { | 
|  | crit_sect_->Leave(); | 
|  | return false; | 
|  | } | 
|  | CleanUpOldOrEmptyFrames(); | 
|  |  | 
|  | if (decodable_frames_.empty() || | 
|  | decodable_frames_.Front()->GetState() != kStateComplete) { | 
|  | const int64_t end_wait_time_ms = clock_->TimeInMilliseconds() + | 
|  | max_wait_time_ms; | 
|  | int64_t wait_time_ms = max_wait_time_ms; | 
|  | while (wait_time_ms > 0) { | 
|  | crit_sect_->Leave(); | 
|  | const EventTypeWrapper ret = | 
|  | frame_event_->Wait(static_cast<uint32_t>(wait_time_ms)); | 
|  | crit_sect_->Enter(); | 
|  | if (ret == kEventSignaled) { | 
|  | // Are we shutting down the jitter buffer? | 
|  | if (!running_) { | 
|  | crit_sect_->Leave(); | 
|  | return false; | 
|  | } | 
|  | // Finding oldest frame ready for decoder. | 
|  | CleanUpOldOrEmptyFrames(); | 
|  | if (decodable_frames_.empty() || | 
|  | decodable_frames_.Front()->GetState() != kStateComplete) { | 
|  | wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds(); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Inside |crit_sect_|. | 
|  | } else { | 
|  | // We already have a frame, reset the event. | 
|  | frame_event_->Reset(); | 
|  | } | 
|  | if (decodable_frames_.empty() || | 
|  | decodable_frames_.Front()->GetState() != kStateComplete) { | 
|  | crit_sect_->Leave(); | 
|  | return false; | 
|  | } | 
|  | *timestamp = decodable_frames_.Front()->TimeStamp(); | 
|  | crit_sect_->Leave(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VCMJitterBuffer::NextMaybeIncompleteTimestamp(uint32_t* timestamp) { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | if (!running_) { | 
|  | return false; | 
|  | } | 
|  | if (decode_error_mode_ == kNoErrors) { | 
|  | // No point to continue, as we are not decoding with errors. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CleanUpOldOrEmptyFrames(); | 
|  |  | 
|  | if (decodable_frames_.empty()) { | 
|  | return false; | 
|  | } | 
|  | VCMFrameBuffer* oldest_frame = decodable_frames_.Front(); | 
|  | // If we have exactly one frame in the buffer, release it only if it is | 
|  | // complete. We know decodable_frames_ is  not empty due to the previous | 
|  | // check. | 
|  | if (decodable_frames_.size() == 1 && incomplete_frames_.empty() | 
|  | && oldest_frame->GetState() != kStateComplete) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *timestamp = oldest_frame->TimeStamp(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | if (!running_) { | 
|  | return NULL; | 
|  | } | 
|  | // Extract the frame with the desired timestamp. | 
|  | VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp); | 
|  | bool continuous = true; | 
|  | if (!frame) { | 
|  | frame = incomplete_frames_.PopFrame(timestamp); | 
|  | if (frame) | 
|  | continuous = last_decoded_state_.ContinuousFrame(frame); | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  | TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", timestamp, "Extract"); | 
|  | // Frame pulled out from jitter buffer, update the jitter estimate. | 
|  | const bool retransmitted = (frame->GetNackCount() > 0); | 
|  | if (retransmitted) { | 
|  | jitter_estimate_.FrameNacked(); | 
|  | } else if (frame->Length() > 0) { | 
|  | // Ignore retransmitted and empty frames. | 
|  | if (waiting_for_completion_.latest_packet_time >= 0) { | 
|  | UpdateJitterEstimate(waiting_for_completion_, true); | 
|  | } | 
|  | if (frame->GetState() == kStateComplete) { | 
|  | UpdateJitterEstimate(*frame, false); | 
|  | } else { | 
|  | // Wait for this one to get complete. | 
|  | waiting_for_completion_.frame_size = frame->Length(); | 
|  | waiting_for_completion_.latest_packet_time = | 
|  | frame->LatestPacketTimeMs(); | 
|  | waiting_for_completion_.timestamp = frame->TimeStamp(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The state must be changed to decoding before cleaning up zero sized | 
|  | // frames to avoid empty frames being cleaned up and then given to the | 
|  | // decoder. Propagates the missing_frame bit. | 
|  | frame->PrepareForDecode(continuous); | 
|  |  | 
|  | // We have a frame - update the last decoded state and nack list. | 
|  | last_decoded_state_.SetState(frame); | 
|  | DropPacketsFromNackList(last_decoded_state_.sequence_num()); | 
|  |  | 
|  | if ((*frame).IsSessionComplete()) | 
|  | UpdateAveragePacketsPerFrame(frame->NumPackets()); | 
|  |  | 
|  | return frame; | 
|  | } | 
|  |  | 
|  | // Release frame when done with decoding. Should never be used to release | 
|  | // frames from within the jitter buffer. | 
|  | void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame); | 
|  | if (frame_buffer) { | 
|  | free_frames_.push_back(frame_buffer); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Gets frame to use for this timestamp. If no match, get empty frame. | 
|  | VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet, | 
|  | VCMFrameBuffer** frame) { | 
|  | ++num_packets_; | 
|  | // Does this packet belong to an old frame? | 
|  | if (last_decoded_state_.IsOldPacket(&packet)) { | 
|  | // Account only for media packets. | 
|  | if (packet.sizeBytes > 0) { | 
|  | num_discarded_packets_++; | 
|  | num_consecutive_old_packets_++; | 
|  | } | 
|  | // Update last decoded sequence number if the packet arrived late and | 
|  | // belongs to a frame with a timestamp equal to the last decoded | 
|  | // timestamp. | 
|  | last_decoded_state_.UpdateOldPacket(&packet); | 
|  | DropPacketsFromNackList(last_decoded_state_.sequence_num()); | 
|  |  | 
|  | if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) { | 
|  | LOG(LS_WARNING) << num_consecutive_old_packets_ << " consecutive old " | 
|  | "packets received. Flushing the jitter buffer."; | 
|  | Flush(); | 
|  | return kFlushIndicator; | 
|  | } | 
|  | return kOldPacket; | 
|  | } | 
|  | num_consecutive_old_packets_ = 0; | 
|  |  | 
|  | *frame = incomplete_frames_.FindFrame(packet.timestamp); | 
|  | if (*frame) | 
|  | return kNoError; | 
|  | *frame = decodable_frames_.FindFrame(packet.timestamp); | 
|  | if (*frame) | 
|  | return kNoError; | 
|  |  | 
|  | // No match, return empty frame. | 
|  | *frame = GetEmptyFrame(); | 
|  | VCMFrameBufferEnum ret = kNoError; | 
|  | if (!*frame) { | 
|  | // No free frame! Try to reclaim some... | 
|  | LOG(LS_WARNING) << "Unable to get empty frame; Recycling."; | 
|  | bool found_key_frame = RecycleFramesUntilKeyFrame(); | 
|  | *frame = GetEmptyFrame(); | 
|  | assert(*frame); | 
|  | if (!found_key_frame) { | 
|  | ret = kFlushIndicator; | 
|  | } | 
|  | } | 
|  | (*frame)->Reset(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame, | 
|  | bool* retransmitted) const { | 
|  | assert(retransmitted); | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | const VCMFrameBuffer* frame_buffer = | 
|  | static_cast<const VCMFrameBuffer*>(frame); | 
|  | *retransmitted = (frame_buffer->GetNackCount() > 0); | 
|  | return frame_buffer->LatestPacketTimeMs(); | 
|  | } | 
|  |  | 
|  | VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet, | 
|  | bool* retransmitted) { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  |  | 
|  | VCMFrameBuffer* frame = NULL; | 
|  | const VCMFrameBufferEnum error = GetFrame(packet, &frame); | 
|  | if (error != kNoError && frame == NULL) { | 
|  | return error; | 
|  | } | 
|  | int64_t now_ms = clock_->TimeInMilliseconds(); | 
|  | // We are keeping track of the first and latest seq numbers, and | 
|  | // the number of wraps to be able to calculate how many packets we expect. | 
|  | if (first_packet_since_reset_) { | 
|  | // Now it's time to start estimating jitter | 
|  | // reset the delay estimate. | 
|  | inter_frame_delay_.Reset(now_ms); | 
|  | } | 
|  | if (last_decoded_state_.IsOldPacket(&packet)) { | 
|  | // This packet belongs to an old, already decoded frame, we want to update | 
|  | // the last decoded sequence number. | 
|  | last_decoded_state_.UpdateOldPacket(&packet); | 
|  | drop_count_++; | 
|  | // Flush if this happens consistently. | 
|  | num_consecutive_old_frames_++; | 
|  | if (num_consecutive_old_frames_ > kMaxConsecutiveOldFrames) { | 
|  | LOG(LS_WARNING) << num_consecutive_old_packets_ << " consecutive old " | 
|  | "frames received. Flushing the jitter buffer."; | 
|  | Flush(); | 
|  | return kFlushIndicator; | 
|  | } | 
|  | return kNoError; | 
|  | } | 
|  |  | 
|  | num_consecutive_old_frames_ = 0; | 
|  |  | 
|  | // Empty packets may bias the jitter estimate (lacking size component), | 
|  | // therefore don't let empty packet trigger the following updates: | 
|  | if (packet.frameType != kFrameEmpty) { | 
|  | if (waiting_for_completion_.timestamp == packet.timestamp) { | 
|  | // This can get bad if we have a lot of duplicate packets, | 
|  | // we will then count some packet multiple times. | 
|  | waiting_for_completion_.frame_size += packet.sizeBytes; | 
|  | waiting_for_completion_.latest_packet_time = now_ms; | 
|  | } else if (waiting_for_completion_.latest_packet_time >= 0 && | 
|  | waiting_for_completion_.latest_packet_time + 2000 <= now_ms) { | 
|  | // A packet should never be more than two seconds late | 
|  | UpdateJitterEstimate(waiting_for_completion_, true); | 
|  | waiting_for_completion_.latest_packet_time = -1; | 
|  | waiting_for_completion_.frame_size = 0; | 
|  | waiting_for_completion_.timestamp = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | VCMFrameBufferStateEnum previous_state = frame->GetState(); | 
|  | // Insert packet. | 
|  | // Check for first packet. High sequence number will be -1 if neither an empty | 
|  | // packet nor a media packet has been inserted. | 
|  | bool first = (frame->GetHighSeqNum() == -1); | 
|  | FrameData frame_data; | 
|  | frame_data.rtt_ms = rtt_ms_; | 
|  | frame_data.rolling_average_packets_per_frame = average_packets_per_frame_; | 
|  | VCMFrameBufferEnum buffer_return = frame->InsertPacket(packet, | 
|  | now_ms, | 
|  | decode_error_mode_, | 
|  | frame_data); | 
|  | if (!frame->GetCountedFrame()) { | 
|  | TRACE_EVENT_ASYNC_BEGIN1("webrtc", "Video", frame->TimeStamp(), | 
|  | "timestamp", frame->TimeStamp()); | 
|  | } | 
|  |  | 
|  | if (buffer_return > 0) { | 
|  | incoming_bit_count_ += packet.sizeBytes << 3; | 
|  | if (first_packet_since_reset_) { | 
|  | latest_received_sequence_number_ = packet.seqNum; | 
|  | first_packet_since_reset_ = false; | 
|  | } else { | 
|  | if (IsPacketRetransmitted(packet)) { | 
|  | frame->IncrementNackCount(); | 
|  | } | 
|  | if (!UpdateNackList(packet.seqNum) && | 
|  | packet.frameType != kVideoFrameKey) { | 
|  | buffer_return = kFlushIndicator; | 
|  | } | 
|  | latest_received_sequence_number_ = LatestSequenceNumber( | 
|  | latest_received_sequence_number_, packet.seqNum); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Is the frame already in the decodable list? | 
|  | bool update_decodable_list = (previous_state != kStateDecodable && | 
|  | previous_state != kStateComplete); | 
|  | bool continuous = IsContinuous(*frame); | 
|  | switch (buffer_return) { | 
|  | case kGeneralError: | 
|  | case kTimeStampError: | 
|  | case kSizeError: { | 
|  | // This frame will be cleaned up later from the frame list. | 
|  | frame->Reset(); | 
|  | break; | 
|  | } | 
|  | case kCompleteSession: { | 
|  | if (update_decodable_list) { | 
|  | CountFrame(*frame); | 
|  | frame->SetCountedFrame(true); | 
|  | if (continuous) { | 
|  | // Signal that we have a complete session. | 
|  | frame_event_->Set(); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Note: There is no break here - continuing to kDecodableSession. | 
|  | case kDecodableSession: { | 
|  | *retransmitted = (frame->GetNackCount() > 0); | 
|  | // Signal that we have a received packet. | 
|  | packet_event_->Set(); | 
|  | if (!update_decodable_list) { | 
|  | break; | 
|  | } | 
|  | if (continuous) { | 
|  | if (!first) { | 
|  | incomplete_frames_.PopFrame(packet.timestamp); | 
|  | } | 
|  | decodable_frames_.InsertFrame(frame); | 
|  | FindAndInsertContinuousFrames(*frame); | 
|  | } else if (first) { | 
|  | incomplete_frames_.InsertFrame(frame); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case kIncomplete: { | 
|  | // No point in storing empty continuous frames. | 
|  | if (frame->GetState() == kStateEmpty && | 
|  | last_decoded_state_.UpdateEmptyFrame(frame)) { | 
|  | free_frames_.push_back(frame); | 
|  | frame->Reset(); | 
|  | frame = NULL; | 
|  | return kNoError; | 
|  | } else if (first) { | 
|  | incomplete_frames_.InsertFrame(frame); | 
|  | } | 
|  | // Signal that we have received a packet. | 
|  | packet_event_->Set(); | 
|  | break; | 
|  | } | 
|  | case kNoError: | 
|  | case kOutOfBoundsPacket: | 
|  | case kDuplicatePacket: { | 
|  | ++num_duplicated_packets_; | 
|  | break; | 
|  | } | 
|  | case kFlushIndicator: | 
|  | return kFlushIndicator; | 
|  | default: { | 
|  | assert(false && "JitterBuffer::InsertPacket: Undefined value"); | 
|  | } | 
|  | } | 
|  | return buffer_return; | 
|  | } | 
|  |  | 
|  | bool VCMJitterBuffer::IsContinuousInState(const VCMFrameBuffer& frame, | 
|  | const VCMDecodingState& decoding_state) const { | 
|  | if (decode_error_mode_ == kWithErrors) | 
|  | return true; | 
|  | // Is this frame (complete or decodable) and continuous? | 
|  | // kStateDecodable will never be set when decode_error_mode_ is false | 
|  | // as SessionInfo determines this state based on the error mode (and frame | 
|  | // completeness). | 
|  | if ((frame.GetState() == kStateComplete || | 
|  | frame.GetState() == kStateDecodable) && | 
|  | decoding_state.ContinuousFrame(&frame)) { | 
|  | return true; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const { | 
|  | if (IsContinuousInState(frame, last_decoded_state_)) { | 
|  | return true; | 
|  | } | 
|  | VCMDecodingState decoding_state; | 
|  | decoding_state.CopyFrom(last_decoded_state_); | 
|  | for (FrameList::const_iterator it = decodable_frames_.begin(); | 
|  | it != decodable_frames_.end(); ++it)  { | 
|  | VCMFrameBuffer* decodable_frame = it->second; | 
|  | if (IsNewerTimestamp(decodable_frame->TimeStamp(), frame.TimeStamp())) { | 
|  | break; | 
|  | } | 
|  | decoding_state.SetState(decodable_frame); | 
|  | if (IsContinuousInState(frame, decoding_state)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::FindAndInsertContinuousFrames( | 
|  | const VCMFrameBuffer& new_frame) { | 
|  | VCMDecodingState decoding_state; | 
|  | decoding_state.CopyFrom(last_decoded_state_); | 
|  | decoding_state.SetState(&new_frame); | 
|  | // When temporal layers are available, we search for a complete or decodable | 
|  | // frame until we hit one of the following: | 
|  | // 1. Continuous base or sync layer. | 
|  | // 2. The end of the list was reached. | 
|  | for (FrameList::iterator it = incomplete_frames_.begin(); | 
|  | it != incomplete_frames_.end();)  { | 
|  | VCMFrameBuffer* frame = it->second; | 
|  | if (IsNewerTimestamp(new_frame.TimeStamp(), frame->TimeStamp())) { | 
|  | ++it; | 
|  | continue; | 
|  | } | 
|  | if (IsContinuousInState(*frame, decoding_state)) { | 
|  | decodable_frames_.InsertFrame(frame); | 
|  | incomplete_frames_.erase(it++); | 
|  | decoding_state.SetState(frame); | 
|  | } else if (frame->TemporalId() <= 0) { | 
|  | break; | 
|  | } else { | 
|  | ++it; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t VCMJitterBuffer::EstimatedJitterMs() { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | // Compute RTT multiplier for estimation. | 
|  | // low_rtt_nackThresholdMs_ == -1 means no FEC. | 
|  | double rtt_mult = 1.0f; | 
|  | if (low_rtt_nack_threshold_ms_ >= 0 && | 
|  | static_cast<int>(rtt_ms_) >= low_rtt_nack_threshold_ms_) { | 
|  | // For RTTs above low_rtt_nack_threshold_ms_ we don't apply extra delay | 
|  | // when waiting for retransmissions. | 
|  | rtt_mult = 0.0f; | 
|  | } | 
|  | return jitter_estimate_.GetJitterEstimate(rtt_mult); | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::UpdateRtt(uint32_t rtt_ms) { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | rtt_ms_ = rtt_ms; | 
|  | jitter_estimate_.UpdateRtt(rtt_ms); | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::SetNackMode(VCMNackMode mode, | 
|  | int low_rtt_nack_threshold_ms, | 
|  | int high_rtt_nack_threshold_ms) { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | nack_mode_ = mode; | 
|  | if (mode == kNoNack) { | 
|  | missing_sequence_numbers_.clear(); | 
|  | } | 
|  | assert(low_rtt_nack_threshold_ms >= -1 && high_rtt_nack_threshold_ms >= -1); | 
|  | assert(high_rtt_nack_threshold_ms == -1 || | 
|  | low_rtt_nack_threshold_ms <= high_rtt_nack_threshold_ms); | 
|  | assert(low_rtt_nack_threshold_ms > -1 || high_rtt_nack_threshold_ms == -1); | 
|  | low_rtt_nack_threshold_ms_ = low_rtt_nack_threshold_ms; | 
|  | high_rtt_nack_threshold_ms_ = high_rtt_nack_threshold_ms; | 
|  | // Don't set a high start rtt if high_rtt_nack_threshold_ms_ is used, to not | 
|  | // disable NACK in hybrid mode. | 
|  | if (rtt_ms_ == kDefaultRtt && high_rtt_nack_threshold_ms_ != -1) { | 
|  | rtt_ms_ = 0; | 
|  | } | 
|  | if (!WaitForRetransmissions()) { | 
|  | jitter_estimate_.ResetNackCount(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size, | 
|  | int max_packet_age_to_nack, | 
|  | int max_incomplete_time_ms) { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | assert(max_packet_age_to_nack >= 0); | 
|  | assert(max_incomplete_time_ms_ >= 0); | 
|  | max_nack_list_size_ = max_nack_list_size; | 
|  | max_packet_age_to_nack_ = max_packet_age_to_nack; | 
|  | max_incomplete_time_ms_ = max_incomplete_time_ms; | 
|  | nack_seq_nums_.resize(max_nack_list_size_); | 
|  | } | 
|  |  | 
|  | VCMNackMode VCMJitterBuffer::nack_mode() const { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | return nack_mode_; | 
|  | } | 
|  |  | 
|  | int VCMJitterBuffer::NonContinuousOrIncompleteDuration() { | 
|  | if (incomplete_frames_.empty()) { | 
|  | return 0; | 
|  | } | 
|  | uint32_t start_timestamp = incomplete_frames_.Front()->TimeStamp(); | 
|  | if (!decodable_frames_.empty()) { | 
|  | start_timestamp = decodable_frames_.Back()->TimeStamp(); | 
|  | } | 
|  | return incomplete_frames_.Back()->TimeStamp() - start_timestamp; | 
|  | } | 
|  |  | 
|  | uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber( | 
|  | const VCMFrameBuffer& frame) const { | 
|  | assert(frame.GetLowSeqNum() >= 0); | 
|  | if (frame.HaveFirstPacket()) | 
|  | return frame.GetLowSeqNum(); | 
|  |  | 
|  | // This estimate is not accurate if more than one packet with lower sequence | 
|  | // number is lost. | 
|  | return frame.GetLowSeqNum() - 1; | 
|  | } | 
|  |  | 
|  | uint16_t* VCMJitterBuffer::GetNackList(uint16_t* nack_list_size, | 
|  | bool* request_key_frame) { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | *request_key_frame = false; | 
|  | if (nack_mode_ == kNoNack) { | 
|  | *nack_list_size = 0; | 
|  | return NULL; | 
|  | } | 
|  | if (last_decoded_state_.in_initial_state()) { | 
|  | VCMFrameBuffer* next_frame =  NextFrame(); | 
|  | const bool first_frame_is_key = next_frame && | 
|  | next_frame->FrameType() == kVideoFrameKey && | 
|  | next_frame->HaveFirstPacket(); | 
|  | if (!first_frame_is_key) { | 
|  | bool have_non_empty_frame = decodable_frames_.end() != find_if( | 
|  | decodable_frames_.begin(), decodable_frames_.end(), | 
|  | HasNonEmptyState); | 
|  | if (!have_non_empty_frame) { | 
|  | have_non_empty_frame = incomplete_frames_.end() != find_if( | 
|  | incomplete_frames_.begin(), incomplete_frames_.end(), | 
|  | HasNonEmptyState); | 
|  | } | 
|  | bool found_key_frame = RecycleFramesUntilKeyFrame(); | 
|  | if (!found_key_frame) { | 
|  | *request_key_frame = have_non_empty_frame; | 
|  | *nack_list_size = 0; | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (TooLargeNackList()) { | 
|  | *request_key_frame = !HandleTooLargeNackList(); | 
|  | } | 
|  | if (max_incomplete_time_ms_ > 0) { | 
|  | int non_continuous_incomplete_duration = | 
|  | NonContinuousOrIncompleteDuration(); | 
|  | if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) { | 
|  | LOG_F(LS_WARNING) << "Too long non-decodable duration: " | 
|  | << non_continuous_incomplete_duration << " > " | 
|  | << 90 * max_incomplete_time_ms_; | 
|  | FrameList::reverse_iterator rit = find_if(incomplete_frames_.rbegin(), | 
|  | incomplete_frames_.rend(), IsKeyFrame); | 
|  | if (rit == incomplete_frames_.rend()) { | 
|  | // Request a key frame if we don't have one already. | 
|  | *request_key_frame = true; | 
|  | *nack_list_size = 0; | 
|  | return NULL; | 
|  | } else { | 
|  | // Skip to the last key frame. If it's incomplete we will start | 
|  | // NACKing it. | 
|  | // Note that the estimated low sequence number is correct for VP8 | 
|  | // streams because only the first packet of a key frame is marked. | 
|  | last_decoded_state_.Reset(); | 
|  | DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second)); | 
|  | } | 
|  | } | 
|  | } | 
|  | unsigned int i = 0; | 
|  | SequenceNumberSet::iterator it = missing_sequence_numbers_.begin(); | 
|  | for (; it != missing_sequence_numbers_.end(); ++it, ++i) { | 
|  | nack_seq_nums_[i] = *it; | 
|  | } | 
|  | *nack_list_size = i; | 
|  | return &nack_seq_nums_[0]; | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::SetDecodeErrorMode(VCMDecodeErrorMode error_mode) { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | decode_error_mode_ = error_mode; | 
|  | } | 
|  |  | 
|  | VCMFrameBuffer* VCMJitterBuffer::NextFrame() const { | 
|  | if (!decodable_frames_.empty()) | 
|  | return decodable_frames_.Front(); | 
|  | if (!incomplete_frames_.empty()) | 
|  | return incomplete_frames_.Front(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) { | 
|  | if (nack_mode_ == kNoNack) { | 
|  | return true; | 
|  | } | 
|  | // Make sure we don't add packets which are already too old to be decoded. | 
|  | if (!last_decoded_state_.in_initial_state()) { | 
|  | latest_received_sequence_number_ = LatestSequenceNumber( | 
|  | latest_received_sequence_number_, | 
|  | last_decoded_state_.sequence_num()); | 
|  | } | 
|  | if (IsNewerSequenceNumber(sequence_number, | 
|  | latest_received_sequence_number_)) { | 
|  | // Push any missing sequence numbers to the NACK list. | 
|  | for (uint16_t i = latest_received_sequence_number_ + 1; | 
|  | IsNewerSequenceNumber(sequence_number, i); ++i) { | 
|  | missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i); | 
|  | TRACE_EVENT_INSTANT1("webrtc", "AddNack", "seqnum", i); | 
|  | } | 
|  | if (TooLargeNackList() && !HandleTooLargeNackList()) { | 
|  | LOG(LS_WARNING) << "Requesting key frame due to too large NACK list."; | 
|  | return false; | 
|  | } | 
|  | if (MissingTooOldPacket(sequence_number) && | 
|  | !HandleTooOldPackets(sequence_number)) { | 
|  | LOG(LS_WARNING) << "Requesting key frame due to missing too old packets"; | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | missing_sequence_numbers_.erase(sequence_number); | 
|  | TRACE_EVENT_INSTANT1("webrtc", "RemoveNack", "seqnum", sequence_number); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VCMJitterBuffer::TooLargeNackList() const { | 
|  | return missing_sequence_numbers_.size() > max_nack_list_size_; | 
|  | } | 
|  |  | 
|  | bool VCMJitterBuffer::HandleTooLargeNackList() { | 
|  | // Recycle frames until the NACK list is small enough. It is likely cheaper to | 
|  | // request a key frame than to retransmit this many missing packets. | 
|  | LOG_F(LS_WARNING) << "NACK list has grown too large: " | 
|  | << missing_sequence_numbers_.size() << " > " | 
|  | << max_nack_list_size_; | 
|  | bool key_frame_found = false; | 
|  | while (TooLargeNackList()) { | 
|  | key_frame_found = RecycleFramesUntilKeyFrame(); | 
|  | } | 
|  | return key_frame_found; | 
|  | } | 
|  |  | 
|  | bool VCMJitterBuffer::MissingTooOldPacket( | 
|  | uint16_t latest_sequence_number) const { | 
|  | if (missing_sequence_numbers_.empty()) { | 
|  | return false; | 
|  | } | 
|  | const uint16_t age_of_oldest_missing_packet = latest_sequence_number - | 
|  | *missing_sequence_numbers_.begin(); | 
|  | // Recycle frames if the NACK list contains too old sequence numbers as | 
|  | // the packets may have already been dropped by the sender. | 
|  | return age_of_oldest_missing_packet > max_packet_age_to_nack_; | 
|  | } | 
|  |  | 
|  | bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) { | 
|  | bool key_frame_found = false; | 
|  | const uint16_t age_of_oldest_missing_packet = latest_sequence_number - | 
|  | *missing_sequence_numbers_.begin(); | 
|  | LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: " | 
|  | << age_of_oldest_missing_packet << " > " | 
|  | << max_packet_age_to_nack_; | 
|  | while (MissingTooOldPacket(latest_sequence_number)) { | 
|  | key_frame_found = RecycleFramesUntilKeyFrame(); | 
|  | } | 
|  | return key_frame_found; | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::DropPacketsFromNackList( | 
|  | uint16_t last_decoded_sequence_number) { | 
|  | // Erase all sequence numbers from the NACK list which we won't need any | 
|  | // longer. | 
|  | missing_sequence_numbers_.erase(missing_sequence_numbers_.begin(), | 
|  | missing_sequence_numbers_.upper_bound( | 
|  | last_decoded_sequence_number)); | 
|  | } | 
|  |  | 
|  | int64_t VCMJitterBuffer::LastDecodedTimestamp() const { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | return last_decoded_state_.time_stamp(); | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::RenderBufferSize(uint32_t* timestamp_start, | 
|  | uint32_t* timestamp_end) { | 
|  | CriticalSectionScoped cs(crit_sect_); | 
|  | CleanUpOldOrEmptyFrames(); | 
|  | *timestamp_start = 0; | 
|  | *timestamp_end = 0; | 
|  | if (decodable_frames_.empty()) { | 
|  | return; | 
|  | } | 
|  | *timestamp_start = decodable_frames_.Front()->TimeStamp(); | 
|  | *timestamp_end = decodable_frames_.Back()->TimeStamp(); | 
|  | } | 
|  |  | 
|  | VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() { | 
|  | if (free_frames_.empty()) { | 
|  | if (!TryToIncreaseJitterBufferSize()) { | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | VCMFrameBuffer* frame = free_frames_.front(); | 
|  | free_frames_.pop_front(); | 
|  | return frame; | 
|  | } | 
|  |  | 
|  | bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() { | 
|  | if (max_number_of_frames_ >= kMaxNumberOfFrames) | 
|  | return false; | 
|  | VCMFrameBuffer* new_frame = new VCMFrameBuffer(); | 
|  | frame_buffers_[max_number_of_frames_] = new_frame; | 
|  | free_frames_.push_back(new_frame); | 
|  | ++max_number_of_frames_; | 
|  | TRACE_COUNTER1("webrtc", "JBMaxFrames", max_number_of_frames_); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Recycle oldest frames up to a key frame, used if jitter buffer is completely | 
|  | // full. | 
|  | bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() { | 
|  | // First release incomplete frames, and only release decodable frames if there | 
|  | // are no incomplete ones. | 
|  | FrameList::iterator key_frame_it; | 
|  | bool key_frame_found = false; | 
|  | int dropped_frames = 0; | 
|  | dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame( | 
|  | &key_frame_it, &free_frames_); | 
|  | key_frame_found = key_frame_it != incomplete_frames_.end(); | 
|  | if (dropped_frames == 0) { | 
|  | dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame( | 
|  | &key_frame_it, &free_frames_); | 
|  | key_frame_found = key_frame_it != decodable_frames_.end(); | 
|  | } | 
|  | drop_count_ += dropped_frames; | 
|  | TRACE_EVENT_INSTANT0("webrtc", "JB::RecycleFramesUntilKeyFrame"); | 
|  | if (key_frame_found) { | 
|  | LOG(LS_INFO) << "Found key frame while dropping frames."; | 
|  | // Reset last decoded state to make sure the next frame decoded is a key | 
|  | // frame, and start NACKing from here. | 
|  | last_decoded_state_.Reset(); | 
|  | DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second)); | 
|  | } else if (decodable_frames_.empty()) { | 
|  | // All frames dropped. Reset the decoding state and clear missing sequence | 
|  | // numbers as we're starting fresh. | 
|  | last_decoded_state_.Reset(); | 
|  | missing_sequence_numbers_.clear(); | 
|  | } | 
|  | return key_frame_found; | 
|  | } | 
|  |  | 
|  | // Must be called under the critical section |crit_sect_|. | 
|  | void VCMJitterBuffer::CountFrame(const VCMFrameBuffer& frame) { | 
|  | if (!frame.GetCountedFrame()) { | 
|  | // Ignore ACK frames. | 
|  | incoming_frame_count_++; | 
|  | } | 
|  |  | 
|  | if (frame.FrameType() == kVideoFrameKey) { | 
|  | TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", | 
|  | frame.TimeStamp(), "KeyComplete"); | 
|  | } else { | 
|  | TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", | 
|  | frame.TimeStamp(), "DeltaComplete"); | 
|  | } | 
|  |  | 
|  | // Update receive statistics. We count all layers, thus when you use layers | 
|  | // adding all key and delta frames might differ from frame count. | 
|  | if (frame.IsSessionComplete()) { | 
|  | ++receive_statistics_[frame.FrameType()]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) { | 
|  | if (frame_counter_ > kFastConvergeThreshold) { | 
|  | average_packets_per_frame_ = average_packets_per_frame_ | 
|  | * (1 - kNormalConvergeMultiplier) | 
|  | + current_number_packets * kNormalConvergeMultiplier; | 
|  | } else if (frame_counter_ > 0) { | 
|  | average_packets_per_frame_ = average_packets_per_frame_ | 
|  | * (1 - kFastConvergeMultiplier) | 
|  | + current_number_packets * kFastConvergeMultiplier; | 
|  | frame_counter_++; | 
|  | } else { | 
|  | average_packets_per_frame_ = current_number_packets; | 
|  | frame_counter_++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Must be called under the critical section |crit_sect_|. | 
|  | void VCMJitterBuffer::CleanUpOldOrEmptyFrames() { | 
|  | drop_count_ += | 
|  | decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_, | 
|  | &free_frames_); | 
|  | drop_count_ += | 
|  | incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_, | 
|  | &free_frames_); | 
|  | if (!last_decoded_state_.in_initial_state()) { | 
|  | DropPacketsFromNackList(last_decoded_state_.sequence_num()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Must be called from within |crit_sect_|. | 
|  | bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const { | 
|  | return missing_sequence_numbers_.find(packet.seqNum) != | 
|  | missing_sequence_numbers_.end(); | 
|  | } | 
|  |  | 
|  | // Must be called under the critical section |crit_sect_|. Should never be | 
|  | // called with retransmitted frames, they must be filtered out before this | 
|  | // function is called. | 
|  | void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample, | 
|  | bool incomplete_frame) { | 
|  | if (sample.latest_packet_time == -1) { | 
|  | return; | 
|  | } | 
|  | UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp, | 
|  | sample.frame_size, incomplete_frame); | 
|  | } | 
|  |  | 
|  | // Must be called under the critical section crit_sect_. Should never be | 
|  | // called with retransmitted frames, they must be filtered out before this | 
|  | // function is called. | 
|  | void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame, | 
|  | bool incomplete_frame) { | 
|  | if (frame.LatestPacketTimeMs() == -1) { | 
|  | return; | 
|  | } | 
|  | // No retransmitted frames should be a part of the jitter | 
|  | // estimate. | 
|  | UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.TimeStamp(), | 
|  | frame.Length(), incomplete_frame); | 
|  | } | 
|  |  | 
|  | // Must be called under the critical section |crit_sect_|. Should never be | 
|  | // called with retransmitted frames, they must be filtered out before this | 
|  | // function is called. | 
|  | void VCMJitterBuffer::UpdateJitterEstimate( | 
|  | int64_t latest_packet_time_ms, | 
|  | uint32_t timestamp, | 
|  | unsigned int frame_size, | 
|  | bool incomplete_frame) { | 
|  | if (latest_packet_time_ms == -1) { | 
|  | return; | 
|  | } | 
|  | int64_t frame_delay; | 
|  | bool not_reordered = inter_frame_delay_.CalculateDelay(timestamp, | 
|  | &frame_delay, | 
|  | latest_packet_time_ms); | 
|  | // Filter out frames which have been reordered in time by the network | 
|  | if (not_reordered) { | 
|  | // Update the jitter estimate with the new samples | 
|  | jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool VCMJitterBuffer::WaitForRetransmissions() { | 
|  | if (nack_mode_ == kNoNack) { | 
|  | // NACK disabled -> don't wait for retransmissions. | 
|  | return false; | 
|  | } | 
|  | // Evaluate if the RTT is higher than |high_rtt_nack_threshold_ms_|, and in | 
|  | // that case we don't wait for retransmissions. | 
|  | if (high_rtt_nack_threshold_ms_ >= 0 && | 
|  | rtt_ms_ >= static_cast<unsigned int>(high_rtt_nack_threshold_ms_)) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | }  // namespace webrtc |