|  | /* | 
|  | *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "webrtc/modules/audio_coding/neteq/red_payload_splitter.h" | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <vector> | 
|  |  | 
|  | #include "webrtc/base/checks.h" | 
|  | #include "webrtc/base/logging.h" | 
|  | #include "webrtc/base/safe_conversions.h" | 
|  | #include "webrtc/modules/audio_coding/neteq/decoder_database.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | // The method loops through a list of packets {A, B, C, ...}. Each packet is | 
|  | // split into its corresponding RED payloads, {A1, A2, ...}, which is | 
|  | // temporarily held in the list |new_packets|. | 
|  | // When the first packet in |packet_list| has been processed, the orignal packet | 
|  | // is replaced by the new ones in |new_packets|, so that |packet_list| becomes: | 
|  | // {A1, A2, ..., B, C, ...}. The method then continues with B, and C, until all | 
|  | // the original packets have been replaced by their split payloads. | 
|  | bool RedPayloadSplitter::SplitRed(PacketList* packet_list) { | 
|  | // Too many RED blocks indicates that something is wrong. Clamp it at some | 
|  | // reasonable value. | 
|  | const size_t kMaxRedBlocks = 32; | 
|  | bool ret = true; | 
|  | PacketList::iterator it = packet_list->begin(); | 
|  | while (it != packet_list->end()) { | 
|  | const Packet& red_packet = *it; | 
|  | assert(!red_packet.payload.empty()); | 
|  | const uint8_t* payload_ptr = red_packet.payload.data(); | 
|  |  | 
|  | // Read RED headers (according to RFC 2198): | 
|  | // | 
|  | //    0                   1                   2                   3 | 
|  | //    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 | 
|  | //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | //   |F|   block PT  |  timestamp offset         |   block length    | | 
|  | //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | // Last RED header: | 
|  | //    0 1 2 3 4 5 6 7 | 
|  | //   +-+-+-+-+-+-+-+-+ | 
|  | //   |0|   Block PT  | | 
|  | //   +-+-+-+-+-+-+-+-+ | 
|  |  | 
|  | struct RedHeader { | 
|  | uint8_t payload_type; | 
|  | uint32_t timestamp; | 
|  | size_t payload_length; | 
|  | }; | 
|  |  | 
|  | std::vector<RedHeader> new_headers; | 
|  | bool last_block = false; | 
|  | size_t sum_length = 0; | 
|  | while (!last_block) { | 
|  | RedHeader new_header; | 
|  | // Check the F bit. If F == 0, this was the last block. | 
|  | last_block = ((*payload_ptr & 0x80) == 0); | 
|  | // Bits 1 through 7 are payload type. | 
|  | new_header.payload_type = payload_ptr[0] & 0x7F; | 
|  | if (last_block) { | 
|  | // No more header data to read. | 
|  | ++sum_length;  // Account for RED header size of 1 byte. | 
|  | new_header.timestamp = red_packet.timestamp; | 
|  | new_header.payload_length = red_packet.payload.size() - sum_length; | 
|  | payload_ptr += 1;  // Advance to first payload byte. | 
|  | } else { | 
|  | // Bits 8 through 21 are timestamp offset. | 
|  | int timestamp_offset = | 
|  | (payload_ptr[1] << 6) + ((payload_ptr[2] & 0xFC) >> 2); | 
|  | new_header.timestamp = red_packet.timestamp - timestamp_offset; | 
|  | // Bits 22 through 31 are payload length. | 
|  | new_header.payload_length = | 
|  | ((payload_ptr[2] & 0x03) << 8) + payload_ptr[3]; | 
|  | payload_ptr += 4;  // Advance to next RED header. | 
|  | } | 
|  | sum_length += new_header.payload_length; | 
|  | sum_length += 4;  // Account for RED header size of 4 bytes. | 
|  | // Store in new list of packets. | 
|  | new_headers.push_back(new_header); | 
|  | } | 
|  |  | 
|  | if (new_headers.size() <= kMaxRedBlocks) { | 
|  | // Populate the new packets with payload data. | 
|  | // |payload_ptr| now points at the first payload byte. | 
|  | PacketList new_packets;  // An empty list to store the split packets in. | 
|  | for (size_t i = 0; i != new_headers.size(); ++i) { | 
|  | const auto& new_header = new_headers[i]; | 
|  | size_t payload_length = new_header.payload_length; | 
|  | if (payload_ptr + payload_length > | 
|  | red_packet.payload.data() + red_packet.payload.size()) { | 
|  | // The block lengths in the RED headers do not match the overall | 
|  | // packet length. Something is corrupt. Discard this and the remaining | 
|  | // payloads from this packet. | 
|  | LOG(LS_WARNING) << "SplitRed length mismatch"; | 
|  | ret = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Packet new_packet; | 
|  | new_packet.timestamp = new_header.timestamp; | 
|  | new_packet.payload_type = new_header.payload_type; | 
|  | new_packet.sequence_number = red_packet.sequence_number; | 
|  | new_packet.priority.red_level = | 
|  | rtc::checked_cast<int>((new_headers.size() - 1) - i); | 
|  | new_packet.payload.SetData(payload_ptr, payload_length); | 
|  | new_packets.push_front(std::move(new_packet)); | 
|  | payload_ptr += payload_length; | 
|  | } | 
|  | // Insert new packets into original list, before the element pointed to by | 
|  | // iterator |it|. | 
|  | packet_list->splice(it, std::move(new_packets)); | 
|  | } else { | 
|  | LOG(LS_WARNING) << "SplitRed too many blocks: " << new_headers.size(); | 
|  | ret = false; | 
|  | } | 
|  | // Remove |it| from the packet list. This operation effectively moves the | 
|  | // iterator |it| to the next packet in the list. Thus, we do not have to | 
|  | // increment it manually. | 
|  | it = packet_list->erase(it); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int RedPayloadSplitter::CheckRedPayloads( | 
|  | PacketList* packet_list, | 
|  | const DecoderDatabase& decoder_database) { | 
|  | int main_payload_type = -1; | 
|  | int num_deleted_packets = 0; | 
|  | for (auto it = packet_list->begin(); it != packet_list->end(); /* */) { | 
|  | uint8_t this_payload_type = it->payload_type; | 
|  | if (!decoder_database.IsDtmf(this_payload_type) && | 
|  | !decoder_database.IsComfortNoise(this_payload_type)) { | 
|  | if (main_payload_type == -1) { | 
|  | // This is the first packet in the list which is non-DTMF non-CNG. | 
|  | main_payload_type = this_payload_type; | 
|  | } else { | 
|  | if (this_payload_type != main_payload_type) { | 
|  | // We do not allow redundant payloads of a different type. | 
|  | // Remove |it| from the packet list. This operation effectively | 
|  | // moves the iterator |it| to the next packet in the list. Thus, we | 
|  | // do not have to increment it manually. | 
|  | it = packet_list->erase(it); | 
|  | ++num_deleted_packets; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | ++it; | 
|  | } | 
|  | return num_deleted_packets; | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |