blob: cd0bb075c95f3378da04bd35675fb8399b8ace69 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Contains a function for WebRtcIsacfix_AllpassFilter2FixDec16Neon()
// in iSAC codec, optimized for ARM Neon platform. Bit exact with function
// WebRtcIsacfix_AllpassFilter2FixDec16C() in filterbanks.c. Prototype
// C code is at end of this file.
#include <arm_neon.h>
#include "webrtc/rtc_base/checks.h"
void WebRtcIsacfix_AllpassFilter2FixDec16Neon(
int16_t* data_ch1, // Input and output in channel 1, in Q0
int16_t* data_ch2, // Input and output in channel 2, in Q0
const int16_t* factor_ch1, // Scaling factor for channel 1, in Q15
const int16_t* factor_ch2, // Scaling factor for channel 2, in Q15
const int length, // Length of the data buffers
int32_t* filter_state_ch1, // Filter state for channel 1, in Q16
int32_t* filter_state_ch2) { // Filter state for channel 2, in Q16
RTC_DCHECK_EQ(0, length % 2);
int n = 0;
int16x4_t factorv;
int16x4_t datav;
int32x4_t statev;
// Load factor_ch1 and factor_ch2.
factorv = vld1_dup_s16(factor_ch1);
factorv = vld1_lane_s16(factor_ch1 + 1, factorv, 1);
factorv = vld1_lane_s16(factor_ch2, factorv, 2);
factorv = vld1_lane_s16(factor_ch2 + 1, factorv, 3);
// Load filter_state_ch1[0] and filter_state_ch2[0].
statev = vld1q_dup_s32(filter_state_ch1);
statev = vld1q_lane_s32(filter_state_ch2, statev, 2);
// Loop unrolling preprocessing.
int32x4_t a;
int16x4_t tmp1, tmp2;
// Load data_ch1[0] and data_ch2[0].
datav = vld1_dup_s16(data_ch1);
datav = vld1_lane_s16(data_ch2, datav, 2);
a = vqdmlal_s16(statev, datav, factorv);
tmp1 = vshrn_n_s32(a, 16);
// Update filter_state_ch1[0] and filter_state_ch2[0].
statev = vqdmlsl_s16(vshll_n_s16(datav, 16), tmp1, factorv);
// Load filter_state_ch1[1] and filter_state_ch2[1].
statev = vld1q_lane_s32(filter_state_ch1 + 1, statev, 1);
statev = vld1q_lane_s32(filter_state_ch2 + 1, statev, 3);
// Load data_ch1[1] and data_ch2[1].
tmp1 = vld1_lane_s16(data_ch1 + 1, tmp1, 1);
tmp1 = vld1_lane_s16(data_ch2 + 1, tmp1, 3);
datav = vrev32_s16(tmp1);
// Loop unrolling processing.
for (n = 0; n < length - 2; n += 2) {
a = vqdmlal_s16(statev, datav, factorv);
tmp1 = vshrn_n_s32(a, 16);
// Store data_ch1[n] and data_ch2[n].
vst1_lane_s16(data_ch1 + n, tmp1, 1);
vst1_lane_s16(data_ch2 + n, tmp1, 3);
// Update filter_state_ch1[0], filter_state_ch1[1]
// and filter_state_ch2[0], filter_state_ch2[1].
statev = vqdmlsl_s16(vshll_n_s16(datav, 16), tmp1, factorv);
// Load data_ch1[n + 2] and data_ch2[n + 2].
tmp1 = vld1_lane_s16(data_ch1 + n + 2, tmp1, 1);
tmp1 = vld1_lane_s16(data_ch2 + n + 2, tmp1, 3);
datav = vrev32_s16(tmp1);
a = vqdmlal_s16(statev, datav, factorv);
tmp2 = vshrn_n_s32(a, 16);
// Store data_ch1[n + 1] and data_ch2[n + 1].
vst1_lane_s16(data_ch1 + n + 1, tmp2, 1);
vst1_lane_s16(data_ch2 + n + 1, tmp2, 3);
// Update filter_state_ch1[0], filter_state_ch1[1]
// and filter_state_ch2[0], filter_state_ch2[1].
statev = vqdmlsl_s16(vshll_n_s16(datav, 16), tmp2, factorv);
// Load data_ch1[n + 3] and data_ch2[n + 3].
tmp2 = vld1_lane_s16(data_ch1 + n + 3, tmp2, 1);
tmp2 = vld1_lane_s16(data_ch2 + n + 3, tmp2, 3);
datav = vrev32_s16(tmp2);
}
// Loop unrolling post-processing.
a = vqdmlal_s16(statev, datav, factorv);
tmp1 = vshrn_n_s32(a, 16);
// Store data_ch1[n] and data_ch2[n].
vst1_lane_s16(data_ch1 + n, tmp1, 1);
vst1_lane_s16(data_ch2 + n, tmp1, 3);
// Update filter_state_ch1[0], filter_state_ch1[1]
// and filter_state_ch2[0], filter_state_ch2[1].
statev = vqdmlsl_s16(vshll_n_s16(datav, 16), tmp1, factorv);
// Store filter_state_ch1[0] and filter_state_ch2[0].
vst1q_lane_s32(filter_state_ch1, statev, 0);
vst1q_lane_s32(filter_state_ch2, statev, 2);
datav = vrev32_s16(tmp1);
a = vqdmlal_s16(statev, datav, factorv);
tmp2 = vshrn_n_s32(a, 16);
// Store data_ch1[n + 1] and data_ch2[n + 1].
vst1_lane_s16(data_ch1 + n + 1, tmp2, 1);
vst1_lane_s16(data_ch2 + n + 1, tmp2, 3);
// Update filter_state_ch1[1] and filter_state_ch2[1].
statev = vqdmlsl_s16(vshll_n_s16(datav, 16), tmp2, factorv);
// Store filter_state_ch1[1] and filter_state_ch2[1].
vst1q_lane_s32(filter_state_ch1 + 1, statev, 1);
vst1q_lane_s32(filter_state_ch2 + 1, statev, 3);
}
// This function is the prototype for above neon optimized function.
//void AllpassFilter2FixDec16BothChannels(
// int16_t *data_ch1, // Input and output in channel 1, in Q0
// int16_t *data_ch2, // Input and output in channel 2, in Q0
// const int16_t *factor_ch1, // Scaling factor for channel 1, in Q15
// const int16_t *factor_ch2, // Scaling factor for channel 2, in Q15
// const int length, // Length of the data buffers
// int32_t *filter_state_ch1, // Filter state for channel 1, in Q16
// int32_t *filter_state_ch2) { // Filter state for channel 2, in Q16
// int n = 0;
// int32_t state0_ch1 = filter_state_ch1[0], state1_ch1 = filter_state_ch1[1];
// int32_t state0_ch2 = filter_state_ch2[0], state1_ch2 = filter_state_ch2[1];
// int16_t sample0_ch1 = 0, sample0_ch2 = 0;
// int16_t sample1_ch1 = 0, sample1_ch2 = 0;
// int32_t a0_ch1 = 0, a0_ch2 = 0;
// int32_t b0_ch1 = 0, b0_ch2 = 0;
//
// int32_t a1_ch1 = 0, a1_ch2 = 0;
// int32_t b1_ch1 = 0, b1_ch2 = 0;
// int32_t b2_ch1 = 0, b2_ch2 = 0;
//
// // Loop unrolling preprocessing.
//
// sample0_ch1 = data_ch1[n];
// sample0_ch2 = data_ch2[n];
//
// a0_ch1 = (factor_ch1[0] * sample0_ch1) << 1;
// a0_ch2 = (factor_ch2[0] * sample0_ch2) << 1;
//
// b0_ch1 = WebRtcSpl_AddSatW32(a0_ch1, state0_ch1);
// b0_ch2 = WebRtcSpl_AddSatW32(a0_ch2, state0_ch2); //Q16+Q16=Q16
//
// a0_ch1 = -factor_ch1[0] * (int16_t)(b0_ch1 >> 16);
// a0_ch2 = -factor_ch2[0] * (int16_t)(b0_ch2 >> 16);
//
// state0_ch1 = WebRtcSpl_AddSatW32(a0_ch1 <<1, (uint32_t)sample0_ch1 << 16);
// state0_ch2 = WebRtcSpl_AddSatW32(a0_ch2 <<1, (uint32_t)sample0_ch2 << 16);
//
// sample1_ch1 = data_ch1[n + 1];
// sample0_ch1 = (int16_t) (b0_ch1 >> 16); //Save as Q0
// sample1_ch2 = data_ch2[n + 1];
// sample0_ch2 = (int16_t) (b0_ch2 >> 16); //Save as Q0
//
//
// for (n = 0; n < length - 2; n += 2) {
// a1_ch1 = (factor_ch1[0] * sample1_ch1) << 1;
// a0_ch1 = (factor_ch1[1] * sample0_ch1) << 1;
// a1_ch2 = (factor_ch2[0] * sample1_ch2) << 1;
// a0_ch2 = (factor_ch2[1] * sample0_ch2) << 1;
//
// b1_ch1 = WebRtcSpl_AddSatW32(a1_ch1, state0_ch1);
// b0_ch1 = WebRtcSpl_AddSatW32(a0_ch1, state1_ch1); //Q16+Q16=Q16
// b1_ch2 = WebRtcSpl_AddSatW32(a1_ch2, state0_ch2); //Q16+Q16=Q16
// b0_ch2 = WebRtcSpl_AddSatW32(a0_ch2, state1_ch2); //Q16+Q16=Q16
//
// a1_ch1 = -factor_ch1[0] * (int16_t)(b1_ch1 >> 16);
// a0_ch1 = -factor_ch1[1] * (int16_t)(b0_ch1 >> 16);
// a1_ch2 = -factor_ch2[0] * (int16_t)(b1_ch2 >> 16);
// a0_ch2 = -factor_ch2[1] * (int16_t)(b0_ch2 >> 16);
//
// state0_ch1 = WebRtcSpl_AddSatW32(a1_ch1<<1, (uint32_t)sample1_ch1 <<16);
// state1_ch1 = WebRtcSpl_AddSatW32(a0_ch1<<1, (uint32_t)sample0_ch1 <<16);
// state0_ch2 = WebRtcSpl_AddSatW32(a1_ch2<<1, (uint32_t)sample1_ch2 <<16);
// state1_ch2 = WebRtcSpl_AddSatW32(a0_ch2<<1, (uint32_t)sample0_ch2 <<16);
//
// sample0_ch1 = data_ch1[n + 2];
// sample1_ch1 = (int16_t) (b1_ch1 >> 16); //Save as Q0
// sample0_ch2 = data_ch2[n + 2];
// sample1_ch2 = (int16_t) (b1_ch2 >> 16); //Save as Q0
//
// a0_ch1 = (factor_ch1[0] * sample0_ch1) << 1;
// a1_ch1 = (factor_ch1[1] * sample1_ch1) << 1;
// a0_ch2 = (factor_ch2[0] * sample0_ch2) << 1;
// a1_ch2 = (factor_ch2[1] * sample1_ch2) << 1;
//
// b2_ch1 = WebRtcSpl_AddSatW32(a0_ch1, state0_ch1);
// b1_ch1 = WebRtcSpl_AddSatW32(a1_ch1, state1_ch1); //Q16+Q16=Q16
// b2_ch2 = WebRtcSpl_AddSatW32(a0_ch2, state0_ch2); //Q16+Q16=Q16
// b1_ch2 = WebRtcSpl_AddSatW32(a1_ch2, state1_ch2); //Q16+Q16=Q16
//
// a0_ch1 = -factor_ch1[0] * (int16_t)(b2_ch1 >> 16);
// a1_ch1 = -factor_ch1[1] * (int16_t)(b1_ch1 >> 16);
// a0_ch2 = -factor_ch2[0] * (int16_t)(b2_ch2 >> 16);
// a1_ch2 = -factor_ch2[1] * (int16_t)(b1_ch2 >> 16);
//
// state0_ch1 = WebRtcSpl_AddSatW32(a0_ch1<<1, (uint32_t)sample0_ch1<<16);
// state1_ch1 = WebRtcSpl_AddSatW32(a1_ch1<<1, (uint32_t)sample1_ch1<<16);
// state0_ch2 = WebRtcSpl_AddSatW32(a0_ch2<<1, (uint32_t)sample0_ch2<<16);
// state1_ch2 = WebRtcSpl_AddSatW32(a1_ch2<<1, (uint32_t)sample1_ch2<<16);
//
//
// sample1_ch1 = data_ch1[n + 3];
// sample0_ch1 = (int16_t) (b2_ch1 >> 16); //Save as Q0
// sample1_ch2 = data_ch2[n + 3];
// sample0_ch2 = (int16_t) (b2_ch2 >> 16); //Save as Q0
//
// data_ch1[n] = (int16_t) (b0_ch1 >> 16); //Save as Q0
// data_ch1[n + 1] = (int16_t) (b1_ch1 >> 16); //Save as Q0
// data_ch2[n] = (int16_t) (b0_ch2 >> 16);
// data_ch2[n + 1] = (int16_t) (b1_ch2 >> 16);
// }
//
// // Loop unrolling post-processing.
//
// a1_ch1 = (factor_ch1[0] * sample1_ch1) << 1;
// a0_ch1 = (factor_ch1[1] * sample0_ch1) << 1;
// a1_ch2 = (factor_ch2[0] * sample1_ch2) << 1;
// a0_ch2 = (factor_ch2[1] * sample0_ch2) << 1;
//
// b1_ch1 = WebRtcSpl_AddSatW32(a1_ch1, state0_ch1);
// b0_ch1 = WebRtcSpl_AddSatW32(a0_ch1, state1_ch1);
// b1_ch2 = WebRtcSpl_AddSatW32(a1_ch2, state0_ch2);
// b0_ch2 = WebRtcSpl_AddSatW32(a0_ch2, state1_ch2);
//
// a1_ch1 = -factor_ch1[0] * (int16_t)(b1_ch1 >> 16);
// a0_ch1 = -factor_ch1[1] * (int16_t)(b0_ch1 >> 16);
// a1_ch2 = -factor_ch2[0] * (int16_t)(b1_ch2 >> 16);
// a0_ch2 = -factor_ch2[1] * (int16_t)(b0_ch2 >> 16);
//
// state0_ch1 = WebRtcSpl_AddSatW32(a1_ch1<<1, (uint32_t)sample1_ch1 << 16);
// state1_ch1 = WebRtcSpl_AddSatW32(a0_ch1<<1, (uint32_t)sample0_ch1 << 16);
// state0_ch2 = WebRtcSpl_AddSatW32(a1_ch2<<1, (uint32_t)sample1_ch2 << 16);
// state1_ch2 = WebRtcSpl_AddSatW32(a0_ch2<<1, (uint32_t)sample0_ch2 << 16);
//
// data_ch1[n] = (int16_t) (b0_ch1 >> 16); //Save as Q0
// data_ch2[n] = (int16_t) (b0_ch2 >> 16);
//
// sample1_ch1 = (int16_t) (b1_ch1 >> 16); //Save as Q0
// sample1_ch2 = (int16_t) (b1_ch2 >> 16); //Save as Q0
//
// a1_ch1 = (factor_ch1[1] * sample1_ch1) << 1;
// a1_ch2 = (factor_ch2[1] * sample1_ch2) << 1;
//
// b1_ch1 = WebRtcSpl_AddSatW32(a1_ch1, state1_ch1); //Q16+Q16=Q16
// b1_ch2 = WebRtcSpl_AddSatW32(a1_ch2, state1_ch2); //Q16+Q16=Q16
//
// a1_ch1 = -factor_ch1[1] * (int16_t)(b1_ch1 >> 16);
// a1_ch2 = -factor_ch2[1] * (int16_t)(b1_ch2 >> 16);
//
// state1_ch1 = WebRtcSpl_AddSatW32(a1_ch1<<1, (uint32_t)sample1_ch1<<16);
// state1_ch2 = WebRtcSpl_AddSatW32(a1_ch2<<1, (uint32_t)sample1_ch2<<16);
//
// data_ch1[n + 1] = (int16_t) (b1_ch1 >> 16); //Save as Q0
// data_ch2[n + 1] = (int16_t) (b1_ch2 >> 16);
//
// filter_state_ch1[0] = state0_ch1;
// filter_state_ch1[1] = state1_ch1;
// filter_state_ch2[0] = state0_ch2;
// filter_state_ch2[1] = state1_ch2;
//}