blob: cbd62b58ad607c70cdf213bcfd12a8842c267a17 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aec3/main_filter_update_gain.h"
#include <algorithm>
#include <numeric>
#include <string>
#include "webrtc/modules/audio_processing/aec3/adaptive_fir_filter.h"
#include "webrtc/modules/audio_processing/aec3/aec_state.h"
#include "webrtc/modules/audio_processing/aec3/render_buffer.h"
#include "webrtc/modules/audio_processing/aec3/render_signal_analyzer.h"
#include "webrtc/modules/audio_processing/aec3/shadow_filter_update_gain.h"
#include "webrtc/modules/audio_processing/aec3/subtractor_output.h"
#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
#include "webrtc/modules/audio_processing/test/echo_canceller_test_tools.h"
#include "webrtc/rtc_base/random.h"
#include "webrtc/rtc_base/safe_minmax.h"
#include "webrtc/test/gtest.h"
namespace webrtc {
namespace {
// Method for performing the simulations needed to test the main filter update
// gain functionality.
void RunFilterUpdateTest(int num_blocks_to_process,
size_t delay_samples,
const std::vector<int>& blocks_with_echo_path_changes,
const std::vector<int>& blocks_with_saturation,
bool use_silent_render_in_second_half,
std::array<float, kBlockSize>* e_last_block,
std::array<float, kBlockSize>* y_last_block,
FftData* G_last_block) {
ApmDataDumper data_dumper(42);
AdaptiveFirFilter main_filter(9, DetectOptimization(), &data_dumper);
AdaptiveFirFilter shadow_filter(9, DetectOptimization(), &data_dumper);
Aec3Fft fft;
RenderBuffer render_buffer(
Aec3Optimization::kNone, 3, main_filter.SizePartitions(),
std::vector<size_t>(1, main_filter.SizePartitions()));
std::array<float, kBlockSize> x_old;
x_old.fill(0.f);
ShadowFilterUpdateGain shadow_gain;
MainFilterUpdateGain main_gain;
Random random_generator(42U);
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
std::vector<float> y(kBlockSize, 0.f);
AecState aec_state(AudioProcessing::Config::EchoCanceller3{});
RenderSignalAnalyzer render_signal_analyzer;
std::array<float, kFftLength> s_scratch;
std::array<float, kBlockSize> s;
FftData S;
FftData G;
SubtractorOutput output;
output.Reset();
FftData& E_main = output.E_main;
FftData E_shadow;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kFftLengthBy2Plus1>& E2_main = output.E2_main;
std::array<float, kBlockSize>& e_main = output.e_main;
std::array<float, kBlockSize>& e_shadow = output.e_shadow;
Y2.fill(0.f);
constexpr float kScale = 1.0f / kFftLengthBy2;
DelayBuffer<float> delay_buffer(delay_samples);
for (int k = 0; k < num_blocks_to_process; ++k) {
// Handle echo path changes.
if (std::find(blocks_with_echo_path_changes.begin(),
blocks_with_echo_path_changes.end(),
k) != blocks_with_echo_path_changes.end()) {
main_filter.HandleEchoPathChange();
}
// Handle saturation.
const bool saturation =
std::find(blocks_with_saturation.begin(), blocks_with_saturation.end(),
k) != blocks_with_saturation.end();
// Create the render signal.
if (use_silent_render_in_second_half && k > num_blocks_to_process / 2) {
std::fill(x[0].begin(), x[0].end(), 0.f);
} else {
RandomizeSampleVector(&random_generator, x[0]);
}
delay_buffer.Delay(x[0], y);
render_buffer.Insert(x);
render_signal_analyzer.Update(render_buffer, aec_state.FilterDelay());
// Apply the main filter.
main_filter.Filter(render_buffer, &S);
fft.Ifft(S, &s_scratch);
std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2,
e_main.begin(),
[&](float a, float b) { return a - b * kScale; });
std::for_each(e_main.begin(), e_main.end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
fft.ZeroPaddedFft(e_main, &E_main);
for (size_t k = 0; k < kBlockSize; ++k) {
s[k] = kScale * s_scratch[k + kFftLengthBy2];
}
// Apply the shadow filter.
shadow_filter.Filter(render_buffer, &S);
fft.Ifft(S, &s_scratch);
std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2,
e_shadow.begin(),
[&](float a, float b) { return a - b * kScale; });
std::for_each(e_shadow.begin(), e_shadow.end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
fft.ZeroPaddedFft(e_shadow, &E_shadow);
// Compute spectra for future use.
E_main.Spectrum(Aec3Optimization::kNone, &output.E2_main);
E_shadow.Spectrum(Aec3Optimization::kNone, &output.E2_shadow);
// Adapt the shadow filter.
shadow_gain.Compute(render_buffer, render_signal_analyzer, E_shadow,
shadow_filter.SizePartitions(), saturation, &G);
shadow_filter.Adapt(render_buffer, G);
// Adapt the main filter
main_gain.Compute(render_buffer, render_signal_analyzer, output,
main_filter, saturation, &G);
main_filter.Adapt(render_buffer, G);
// Update the delay.
aec_state.HandleEchoPathChange(EchoPathVariability(false, false));
aec_state.Update(main_filter.FilterFrequencyResponse(),
main_filter.FilterImpulseResponse(),
rtc::Optional<size_t>(), render_buffer, E2_main, Y2, x[0],
s, false);
}
std::copy(e_main.begin(), e_main.end(), e_last_block->begin());
std::copy(y.begin(), y.end(), y_last_block->begin());
std::copy(G.re.begin(), G.re.end(), G_last_block->re.begin());
std::copy(G.im.begin(), G.im.end(), G_last_block->im.begin());
}
std::string ProduceDebugText(size_t delay) {
std::ostringstream ss;
ss << "Delay: " << delay;
return ss.str();
}
} // namespace
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output gain parameter works.
TEST(MainFilterUpdateGain, NullDataOutputGain) {
ApmDataDumper data_dumper(42);
AdaptiveFirFilter filter(9, DetectOptimization(), &data_dumper);
RenderBuffer render_buffer(Aec3Optimization::kNone, 3,
filter.SizePartitions(),
std::vector<size_t>(1, filter.SizePartitions()));
RenderSignalAnalyzer analyzer;
SubtractorOutput output;
MainFilterUpdateGain gain;
EXPECT_DEATH(
gain.Compute(render_buffer, analyzer, output, filter, false, nullptr),
"");
}
#endif
// Verifies that the gain formed causes the filter using it to converge.
TEST(MainFilterUpdateGain, GainCausesFilterToConverge) {
std::vector<int> blocks_with_echo_path_changes;
std::vector<int> blocks_with_saturation;
for (size_t delay_samples : {0, 64, 150, 200, 301}) {
SCOPED_TRACE(ProduceDebugText(delay_samples));
std::array<float, kBlockSize> e;
std::array<float, kBlockSize> y;
FftData G;
RunFilterUpdateTest(500, delay_samples, blocks_with_echo_path_changes,
blocks_with_saturation, false, &e, &y, &G);
// Verify that the main filter is able to perform well.
EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
std::inner_product(y.begin(), y.end(), y.begin(), 0.f));
}
}
// Verifies that the magnitude of the gain on average decreases for a
// persistently exciting signal.
TEST(MainFilterUpdateGain, DecreasingGain) {
std::vector<int> blocks_with_echo_path_changes;
std::vector<int> blocks_with_saturation;
std::array<float, kBlockSize> e;
std::array<float, kBlockSize> y;
FftData G_a;
FftData G_b;
FftData G_c;
std::array<float, kFftLengthBy2Plus1> G_a_power;
std::array<float, kFftLengthBy2Plus1> G_b_power;
std::array<float, kFftLengthBy2Plus1> G_c_power;
RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes,
blocks_with_saturation, false, &e, &y, &G_a);
RunFilterUpdateTest(200, 65, blocks_with_echo_path_changes,
blocks_with_saturation, false, &e, &y, &G_b);
RunFilterUpdateTest(300, 65, blocks_with_echo_path_changes,
blocks_with_saturation, false, &e, &y, &G_c);
G_a.Spectrum(Aec3Optimization::kNone, &G_a_power);
G_b.Spectrum(Aec3Optimization::kNone, &G_b_power);
G_c.Spectrum(Aec3Optimization::kNone, &G_c_power);
EXPECT_GT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
EXPECT_GT(std::accumulate(G_b_power.begin(), G_b_power.end(), 0.),
std::accumulate(G_c_power.begin(), G_c_power.end(), 0.));
}
// Verifies that the gain is zero when there is saturation and that the internal
// error estimates cause the gain to increase after a period of saturation.
TEST(MainFilterUpdateGain, SaturationBehavior) {
std::vector<int> blocks_with_echo_path_changes;
std::vector<int> blocks_with_saturation;
for (int k = 99; k < 200; ++k) {
blocks_with_saturation.push_back(k);
}
std::array<float, kBlockSize> e;
std::array<float, kBlockSize> y;
FftData G_a;
FftData G_b;
FftData G_a_ref;
G_a_ref.re.fill(0.f);
G_a_ref.im.fill(0.f);
std::array<float, kFftLengthBy2Plus1> G_a_power;
std::array<float, kFftLengthBy2Plus1> G_b_power;
RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes,
blocks_with_saturation, false, &e, &y, &G_a);
EXPECT_EQ(G_a_ref.re, G_a.re);
EXPECT_EQ(G_a_ref.im, G_a.im);
RunFilterUpdateTest(99, 65, blocks_with_echo_path_changes,
blocks_with_saturation, false, &e, &y, &G_a);
RunFilterUpdateTest(201, 65, blocks_with_echo_path_changes,
blocks_with_saturation, false, &e, &y, &G_b);
G_a.Spectrum(Aec3Optimization::kNone, &G_a_power);
G_b.Spectrum(Aec3Optimization::kNone, &G_b_power);
EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
}
// Verifies that the gain increases after an echo path change.
TEST(MainFilterUpdateGain, EchoPathChangeBehavior) {
std::vector<int> blocks_with_echo_path_changes;
std::vector<int> blocks_with_saturation;
blocks_with_echo_path_changes.push_back(99);
std::array<float, kBlockSize> e;
std::array<float, kBlockSize> y;
FftData G_a;
FftData G_b;
std::array<float, kFftLengthBy2Plus1> G_a_power;
std::array<float, kFftLengthBy2Plus1> G_b_power;
RunFilterUpdateTest(99, 65, blocks_with_echo_path_changes,
blocks_with_saturation, false, &e, &y, &G_a);
RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes,
blocks_with_saturation, false, &e, &y, &G_b);
G_a.Spectrum(Aec3Optimization::kNone, &G_a_power);
G_b.Spectrum(Aec3Optimization::kNone, &G_b_power);
EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
}
} // namespace webrtc