| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/audio_processing/aec3/main_filter_update_gain.h" |
| |
| #include <algorithm> |
| #include <numeric> |
| #include <string> |
| |
| #include "webrtc/modules/audio_processing/aec3/adaptive_fir_filter.h" |
| #include "webrtc/modules/audio_processing/aec3/aec_state.h" |
| #include "webrtc/modules/audio_processing/aec3/render_buffer.h" |
| #include "webrtc/modules/audio_processing/aec3/render_signal_analyzer.h" |
| #include "webrtc/modules/audio_processing/aec3/shadow_filter_update_gain.h" |
| #include "webrtc/modules/audio_processing/aec3/subtractor_output.h" |
| #include "webrtc/modules/audio_processing/logging/apm_data_dumper.h" |
| #include "webrtc/modules/audio_processing/test/echo_canceller_test_tools.h" |
| #include "webrtc/rtc_base/random.h" |
| #include "webrtc/rtc_base/safe_minmax.h" |
| #include "webrtc/test/gtest.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| // Method for performing the simulations needed to test the main filter update |
| // gain functionality. |
| void RunFilterUpdateTest(int num_blocks_to_process, |
| size_t delay_samples, |
| const std::vector<int>& blocks_with_echo_path_changes, |
| const std::vector<int>& blocks_with_saturation, |
| bool use_silent_render_in_second_half, |
| std::array<float, kBlockSize>* e_last_block, |
| std::array<float, kBlockSize>* y_last_block, |
| FftData* G_last_block) { |
| ApmDataDumper data_dumper(42); |
| AdaptiveFirFilter main_filter(9, DetectOptimization(), &data_dumper); |
| AdaptiveFirFilter shadow_filter(9, DetectOptimization(), &data_dumper); |
| Aec3Fft fft; |
| RenderBuffer render_buffer( |
| Aec3Optimization::kNone, 3, main_filter.SizePartitions(), |
| std::vector<size_t>(1, main_filter.SizePartitions())); |
| std::array<float, kBlockSize> x_old; |
| x_old.fill(0.f); |
| ShadowFilterUpdateGain shadow_gain; |
| MainFilterUpdateGain main_gain; |
| Random random_generator(42U); |
| std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f)); |
| std::vector<float> y(kBlockSize, 0.f); |
| AecState aec_state(AudioProcessing::Config::EchoCanceller3{}); |
| RenderSignalAnalyzer render_signal_analyzer; |
| std::array<float, kFftLength> s_scratch; |
| std::array<float, kBlockSize> s; |
| FftData S; |
| FftData G; |
| SubtractorOutput output; |
| output.Reset(); |
| FftData& E_main = output.E_main; |
| FftData E_shadow; |
| std::array<float, kFftLengthBy2Plus1> Y2; |
| std::array<float, kFftLengthBy2Plus1>& E2_main = output.E2_main; |
| std::array<float, kBlockSize>& e_main = output.e_main; |
| std::array<float, kBlockSize>& e_shadow = output.e_shadow; |
| Y2.fill(0.f); |
| |
| constexpr float kScale = 1.0f / kFftLengthBy2; |
| |
| DelayBuffer<float> delay_buffer(delay_samples); |
| for (int k = 0; k < num_blocks_to_process; ++k) { |
| // Handle echo path changes. |
| if (std::find(blocks_with_echo_path_changes.begin(), |
| blocks_with_echo_path_changes.end(), |
| k) != blocks_with_echo_path_changes.end()) { |
| main_filter.HandleEchoPathChange(); |
| } |
| |
| // Handle saturation. |
| const bool saturation = |
| std::find(blocks_with_saturation.begin(), blocks_with_saturation.end(), |
| k) != blocks_with_saturation.end(); |
| |
| // Create the render signal. |
| if (use_silent_render_in_second_half && k > num_blocks_to_process / 2) { |
| std::fill(x[0].begin(), x[0].end(), 0.f); |
| } else { |
| RandomizeSampleVector(&random_generator, x[0]); |
| } |
| delay_buffer.Delay(x[0], y); |
| render_buffer.Insert(x); |
| render_signal_analyzer.Update(render_buffer, aec_state.FilterDelay()); |
| |
| // Apply the main filter. |
| main_filter.Filter(render_buffer, &S); |
| fft.Ifft(S, &s_scratch); |
| std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2, |
| e_main.begin(), |
| [&](float a, float b) { return a - b * kScale; }); |
| std::for_each(e_main.begin(), e_main.end(), |
| [](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); }); |
| fft.ZeroPaddedFft(e_main, &E_main); |
| for (size_t k = 0; k < kBlockSize; ++k) { |
| s[k] = kScale * s_scratch[k + kFftLengthBy2]; |
| } |
| |
| // Apply the shadow filter. |
| shadow_filter.Filter(render_buffer, &S); |
| fft.Ifft(S, &s_scratch); |
| std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2, |
| e_shadow.begin(), |
| [&](float a, float b) { return a - b * kScale; }); |
| std::for_each(e_shadow.begin(), e_shadow.end(), |
| [](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); }); |
| fft.ZeroPaddedFft(e_shadow, &E_shadow); |
| |
| // Compute spectra for future use. |
| E_main.Spectrum(Aec3Optimization::kNone, &output.E2_main); |
| E_shadow.Spectrum(Aec3Optimization::kNone, &output.E2_shadow); |
| |
| // Adapt the shadow filter. |
| shadow_gain.Compute(render_buffer, render_signal_analyzer, E_shadow, |
| shadow_filter.SizePartitions(), saturation, &G); |
| shadow_filter.Adapt(render_buffer, G); |
| |
| // Adapt the main filter |
| main_gain.Compute(render_buffer, render_signal_analyzer, output, |
| main_filter, saturation, &G); |
| main_filter.Adapt(render_buffer, G); |
| |
| // Update the delay. |
| aec_state.HandleEchoPathChange(EchoPathVariability(false, false)); |
| aec_state.Update(main_filter.FilterFrequencyResponse(), |
| main_filter.FilterImpulseResponse(), |
| rtc::Optional<size_t>(), render_buffer, E2_main, Y2, x[0], |
| s, false); |
| } |
| |
| std::copy(e_main.begin(), e_main.end(), e_last_block->begin()); |
| std::copy(y.begin(), y.end(), y_last_block->begin()); |
| std::copy(G.re.begin(), G.re.end(), G_last_block->re.begin()); |
| std::copy(G.im.begin(), G.im.end(), G_last_block->im.begin()); |
| } |
| |
| std::string ProduceDebugText(size_t delay) { |
| std::ostringstream ss; |
| ss << "Delay: " << delay; |
| return ss.str(); |
| } |
| |
| } // namespace |
| |
| #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) |
| |
| // Verifies that the check for non-null output gain parameter works. |
| TEST(MainFilterUpdateGain, NullDataOutputGain) { |
| ApmDataDumper data_dumper(42); |
| AdaptiveFirFilter filter(9, DetectOptimization(), &data_dumper); |
| RenderBuffer render_buffer(Aec3Optimization::kNone, 3, |
| filter.SizePartitions(), |
| std::vector<size_t>(1, filter.SizePartitions())); |
| RenderSignalAnalyzer analyzer; |
| SubtractorOutput output; |
| MainFilterUpdateGain gain; |
| EXPECT_DEATH( |
| gain.Compute(render_buffer, analyzer, output, filter, false, nullptr), |
| ""); |
| } |
| |
| #endif |
| |
| // Verifies that the gain formed causes the filter using it to converge. |
| TEST(MainFilterUpdateGain, GainCausesFilterToConverge) { |
| std::vector<int> blocks_with_echo_path_changes; |
| std::vector<int> blocks_with_saturation; |
| for (size_t delay_samples : {0, 64, 150, 200, 301}) { |
| SCOPED_TRACE(ProduceDebugText(delay_samples)); |
| |
| std::array<float, kBlockSize> e; |
| std::array<float, kBlockSize> y; |
| FftData G; |
| |
| RunFilterUpdateTest(500, delay_samples, blocks_with_echo_path_changes, |
| blocks_with_saturation, false, &e, &y, &G); |
| |
| // Verify that the main filter is able to perform well. |
| EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f), |
| std::inner_product(y.begin(), y.end(), y.begin(), 0.f)); |
| } |
| } |
| |
| // Verifies that the magnitude of the gain on average decreases for a |
| // persistently exciting signal. |
| TEST(MainFilterUpdateGain, DecreasingGain) { |
| std::vector<int> blocks_with_echo_path_changes; |
| std::vector<int> blocks_with_saturation; |
| |
| std::array<float, kBlockSize> e; |
| std::array<float, kBlockSize> y; |
| FftData G_a; |
| FftData G_b; |
| FftData G_c; |
| std::array<float, kFftLengthBy2Plus1> G_a_power; |
| std::array<float, kFftLengthBy2Plus1> G_b_power; |
| std::array<float, kFftLengthBy2Plus1> G_c_power; |
| |
| RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes, |
| blocks_with_saturation, false, &e, &y, &G_a); |
| RunFilterUpdateTest(200, 65, blocks_with_echo_path_changes, |
| blocks_with_saturation, false, &e, &y, &G_b); |
| RunFilterUpdateTest(300, 65, blocks_with_echo_path_changes, |
| blocks_with_saturation, false, &e, &y, &G_c); |
| |
| G_a.Spectrum(Aec3Optimization::kNone, &G_a_power); |
| G_b.Spectrum(Aec3Optimization::kNone, &G_b_power); |
| G_c.Spectrum(Aec3Optimization::kNone, &G_c_power); |
| |
| EXPECT_GT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.), |
| std::accumulate(G_b_power.begin(), G_b_power.end(), 0.)); |
| |
| EXPECT_GT(std::accumulate(G_b_power.begin(), G_b_power.end(), 0.), |
| std::accumulate(G_c_power.begin(), G_c_power.end(), 0.)); |
| } |
| |
| // Verifies that the gain is zero when there is saturation and that the internal |
| // error estimates cause the gain to increase after a period of saturation. |
| TEST(MainFilterUpdateGain, SaturationBehavior) { |
| std::vector<int> blocks_with_echo_path_changes; |
| std::vector<int> blocks_with_saturation; |
| for (int k = 99; k < 200; ++k) { |
| blocks_with_saturation.push_back(k); |
| } |
| |
| std::array<float, kBlockSize> e; |
| std::array<float, kBlockSize> y; |
| FftData G_a; |
| FftData G_b; |
| FftData G_a_ref; |
| G_a_ref.re.fill(0.f); |
| G_a_ref.im.fill(0.f); |
| |
| std::array<float, kFftLengthBy2Plus1> G_a_power; |
| std::array<float, kFftLengthBy2Plus1> G_b_power; |
| |
| RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes, |
| blocks_with_saturation, false, &e, &y, &G_a); |
| |
| EXPECT_EQ(G_a_ref.re, G_a.re); |
| EXPECT_EQ(G_a_ref.im, G_a.im); |
| |
| RunFilterUpdateTest(99, 65, blocks_with_echo_path_changes, |
| blocks_with_saturation, false, &e, &y, &G_a); |
| RunFilterUpdateTest(201, 65, blocks_with_echo_path_changes, |
| blocks_with_saturation, false, &e, &y, &G_b); |
| |
| G_a.Spectrum(Aec3Optimization::kNone, &G_a_power); |
| G_b.Spectrum(Aec3Optimization::kNone, &G_b_power); |
| |
| EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.), |
| std::accumulate(G_b_power.begin(), G_b_power.end(), 0.)); |
| } |
| |
| // Verifies that the gain increases after an echo path change. |
| TEST(MainFilterUpdateGain, EchoPathChangeBehavior) { |
| std::vector<int> blocks_with_echo_path_changes; |
| std::vector<int> blocks_with_saturation; |
| blocks_with_echo_path_changes.push_back(99); |
| |
| std::array<float, kBlockSize> e; |
| std::array<float, kBlockSize> y; |
| FftData G_a; |
| FftData G_b; |
| std::array<float, kFftLengthBy2Plus1> G_a_power; |
| std::array<float, kFftLengthBy2Plus1> G_b_power; |
| |
| RunFilterUpdateTest(99, 65, blocks_with_echo_path_changes, |
| blocks_with_saturation, false, &e, &y, &G_a); |
| RunFilterUpdateTest(100, 65, blocks_with_echo_path_changes, |
| blocks_with_saturation, false, &e, &y, &G_b); |
| |
| G_a.Spectrum(Aec3Optimization::kNone, &G_a_power); |
| G_b.Spectrum(Aec3Optimization::kNone, &G_b_power); |
| |
| EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.), |
| std::accumulate(G_b_power.begin(), G_b_power.end(), 0.)); |
| } |
| |
| } // namespace webrtc |