| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/rtp_rtcp/source/forward_error_correction_internal.h" |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <algorithm> |
| |
| #include "webrtc/modules/rtp_rtcp/source/fec_private_tables_bursty.h" |
| #include "webrtc/modules/rtp_rtcp/source/fec_private_tables_random.h" |
| #include "webrtc/rtc_base/checks.h" |
| |
| namespace { |
| using webrtc::fec_private_tables::kPacketMaskBurstyTbl; |
| using webrtc::fec_private_tables::kPacketMaskRandomTbl; |
| |
| // Allow for different modes of protection for packets in UEP case. |
| enum ProtectionMode { |
| kModeNoOverlap, |
| kModeOverlap, |
| kModeBiasFirstPacket, |
| }; |
| |
| // Fits an input mask (sub_mask) to an output mask. |
| // The mask is a matrix where the rows are the FEC packets, |
| // and the columns are the source packets the FEC is applied to. |
| // Each row of the mask is represented by a number of mask bytes. |
| // |
| // \param[in] num_mask_bytes The number of mask bytes of output mask. |
| // \param[in] num_sub_mask_bytes The number of mask bytes of input mask. |
| // \param[in] num_rows The number of rows of the input mask. |
| // \param[in] sub_mask A pointer to hold the input mask, of size |
| // [0, num_rows * num_sub_mask_bytes] |
| // \param[out] packet_mask A pointer to hold the output mask, of size |
| // [0, x * num_mask_bytes], where x >= num_rows. |
| void FitSubMask(int num_mask_bytes, |
| int num_sub_mask_bytes, |
| int num_rows, |
| const uint8_t* sub_mask, |
| uint8_t* packet_mask) { |
| if (num_mask_bytes == num_sub_mask_bytes) { |
| memcpy(packet_mask, sub_mask, num_rows * num_sub_mask_bytes); |
| } else { |
| for (int i = 0; i < num_rows; ++i) { |
| int pkt_mask_idx = i * num_mask_bytes; |
| int pkt_mask_idx2 = i * num_sub_mask_bytes; |
| for (int j = 0; j < num_sub_mask_bytes; ++j) { |
| packet_mask[pkt_mask_idx] = sub_mask[pkt_mask_idx2]; |
| pkt_mask_idx++; |
| pkt_mask_idx2++; |
| } |
| } |
| } |
| } |
| |
| // Shifts a mask by number of columns (bits), and fits it to an output mask. |
| // The mask is a matrix where the rows are the FEC packets, |
| // and the columns are the source packets the FEC is applied to. |
| // Each row of the mask is represented by a number of mask bytes. |
| // |
| // \param[in] num_mask_bytes The number of mask bytes of output mask. |
| // \param[in] num_sub_mask_bytes The number of mask bytes of input mask. |
| // \param[in] num_column_shift The number columns to be shifted, and |
| // the starting row for the output mask. |
| // \param[in] end_row The ending row for the output mask. |
| // \param[in] sub_mask A pointer to hold the input mask, of size |
| // [0, (end_row_fec - start_row_fec) * |
| // num_sub_mask_bytes] |
| // \param[out] packet_mask A pointer to hold the output mask, of size |
| // [0, x * num_mask_bytes], |
| // where x >= end_row_fec. |
| // TODO(marpan): This function is doing three things at the same time: |
| // shift within a byte, byte shift and resizing. |
| // Split up into subroutines. |
| void ShiftFitSubMask(int num_mask_bytes, |
| int res_mask_bytes, |
| int num_column_shift, |
| int end_row, |
| const uint8_t* sub_mask, |
| uint8_t* packet_mask) { |
| // Number of bit shifts within a byte |
| const int num_bit_shifts = (num_column_shift % 8); |
| const int num_byte_shifts = num_column_shift >> 3; |
| |
| // Modify new mask with sub-mask21. |
| |
| // Loop over the remaining FEC packets. |
| for (int i = num_column_shift; i < end_row; ++i) { |
| // Byte index of new mask, for row i and column res_mask_bytes, |
| // offset by the number of bytes shifts |
| int pkt_mask_idx = |
| i * num_mask_bytes + res_mask_bytes - 1 + num_byte_shifts; |
| // Byte index of sub_mask, for row i and column res_mask_bytes |
| int pkt_mask_idx2 = |
| (i - num_column_shift) * res_mask_bytes + res_mask_bytes - 1; |
| |
| uint8_t shift_right_curr_byte = 0; |
| uint8_t shift_left_prev_byte = 0; |
| uint8_t comb_new_byte = 0; |
| |
| // Handle case of num_mask_bytes > res_mask_bytes: |
| // For a given row, copy the rightmost "numBitShifts" bits |
| // of the last byte of sub_mask into output mask. |
| if (num_mask_bytes > res_mask_bytes) { |
| shift_left_prev_byte = (sub_mask[pkt_mask_idx2] << (8 - num_bit_shifts)); |
| packet_mask[pkt_mask_idx + 1] = shift_left_prev_byte; |
| } |
| |
| // For each row i (FEC packet), shift the bit-mask of the sub_mask. |
| // Each row of the mask contains "resMaskBytes" of bytes. |
| // We start from the last byte of the sub_mask and move to first one. |
| for (int j = res_mask_bytes - 1; j > 0; j--) { |
| // Shift current byte of sub21 to the right by "numBitShifts". |
| shift_right_curr_byte = sub_mask[pkt_mask_idx2] >> num_bit_shifts; |
| |
| // Fill in shifted bits with bits from the previous (left) byte: |
| // First shift the previous byte to the left by "8-numBitShifts". |
| shift_left_prev_byte = |
| (sub_mask[pkt_mask_idx2 - 1] << (8 - num_bit_shifts)); |
| |
| // Then combine both shifted bytes into new mask byte. |
| comb_new_byte = shift_right_curr_byte | shift_left_prev_byte; |
| |
| // Assign to new mask. |
| packet_mask[pkt_mask_idx] = comb_new_byte; |
| pkt_mask_idx--; |
| pkt_mask_idx2--; |
| } |
| // For the first byte in the row (j=0 case). |
| shift_right_curr_byte = sub_mask[pkt_mask_idx2] >> num_bit_shifts; |
| packet_mask[pkt_mask_idx] = shift_right_curr_byte; |
| } |
| } |
| } // namespace |
| |
| namespace webrtc { |
| namespace internal { |
| |
| PacketMaskTable::PacketMaskTable(FecMaskType fec_mask_type, |
| int num_media_packets) |
| : fec_mask_type_(InitMaskType(fec_mask_type, num_media_packets)), |
| fec_packet_mask_table_(InitMaskTable(fec_mask_type_)) {} |
| |
| // Sets |fec_mask_type_| to the type of packet mask selected. The type of |
| // packet mask selected is based on |fec_mask_type| and |num_media_packets|. |
| // If |num_media_packets| is larger than the maximum allowed by |fec_mask_type| |
| // for the bursty type, then the random type is selected. |
| FecMaskType PacketMaskTable::InitMaskType(FecMaskType fec_mask_type, |
| int num_media_packets) { |
| // The mask should not be bigger than |packetMaskTbl|. |
| assert(num_media_packets <= static_cast<int>(sizeof(kPacketMaskRandomTbl) / |
| sizeof(*kPacketMaskRandomTbl))); |
| switch (fec_mask_type) { |
| case kFecMaskRandom: { |
| return kFecMaskRandom; |
| } |
| case kFecMaskBursty: { |
| int max_media_packets = static_cast<int>(sizeof(kPacketMaskBurstyTbl) / |
| sizeof(*kPacketMaskBurstyTbl)); |
| if (num_media_packets > max_media_packets) { |
| return kFecMaskRandom; |
| } else { |
| return kFecMaskBursty; |
| } |
| } |
| } |
| assert(false); |
| return kFecMaskRandom; |
| } |
| |
| // Returns the pointer to the packet mask tables corresponding to type |
| // |fec_mask_type|. |
| const uint8_t* const* const* PacketMaskTable::InitMaskTable( |
| FecMaskType fec_mask_type) { |
| switch (fec_mask_type) { |
| case kFecMaskRandom: { |
| return kPacketMaskRandomTbl; |
| } |
| case kFecMaskBursty: { |
| return kPacketMaskBurstyTbl; |
| } |
| } |
| assert(false); |
| return kPacketMaskRandomTbl; |
| } |
| |
| // Remaining protection after important (first partition) packet protection |
| void RemainingPacketProtection(int num_media_packets, |
| int num_fec_remaining, |
| int num_fec_for_imp_packets, |
| int num_mask_bytes, |
| ProtectionMode mode, |
| uint8_t* packet_mask, |
| const PacketMaskTable& mask_table) { |
| if (mode == kModeNoOverlap) { |
| // sub_mask21 |
| |
| const int res_mask_bytes = |
| PacketMaskSize(num_media_packets - num_fec_for_imp_packets); |
| |
| const uint8_t* packet_mask_sub_21 = |
| mask_table.fec_packet_mask_table()[num_media_packets - |
| num_fec_for_imp_packets - |
| 1][num_fec_remaining - 1]; |
| |
| ShiftFitSubMask(num_mask_bytes, res_mask_bytes, num_fec_for_imp_packets, |
| (num_fec_for_imp_packets + num_fec_remaining), |
| packet_mask_sub_21, packet_mask); |
| |
| } else if (mode == kModeOverlap || mode == kModeBiasFirstPacket) { |
| // sub_mask22 |
| |
| const uint8_t* packet_mask_sub_22 = |
| mask_table.fec_packet_mask_table()[num_media_packets - |
| 1][num_fec_remaining - 1]; |
| |
| FitSubMask(num_mask_bytes, num_mask_bytes, num_fec_remaining, |
| packet_mask_sub_22, |
| &packet_mask[num_fec_for_imp_packets * num_mask_bytes]); |
| |
| if (mode == kModeBiasFirstPacket) { |
| for (int i = 0; i < num_fec_remaining; ++i) { |
| int pkt_mask_idx = i * num_mask_bytes; |
| packet_mask[pkt_mask_idx] = packet_mask[pkt_mask_idx] | (1 << 7); |
| } |
| } |
| } else { |
| assert(false); |
| } |
| } |
| |
| // Protection for important (first partition) packets |
| void ImportantPacketProtection(int num_fec_for_imp_packets, |
| int num_imp_packets, |
| int num_mask_bytes, |
| uint8_t* packet_mask, |
| const PacketMaskTable& mask_table) { |
| const int num_imp_mask_bytes = PacketMaskSize(num_imp_packets); |
| |
| // Get sub_mask1 from table |
| const uint8_t* packet_mask_sub_1 = |
| mask_table.fec_packet_mask_table()[num_imp_packets - |
| 1][num_fec_for_imp_packets - 1]; |
| |
| FitSubMask(num_mask_bytes, num_imp_mask_bytes, num_fec_for_imp_packets, |
| packet_mask_sub_1, packet_mask); |
| } |
| |
| // This function sets the protection allocation: i.e., how many FEC packets |
| // to use for num_imp (1st partition) packets, given the: number of media |
| // packets, number of FEC packets, and number of 1st partition packets. |
| int SetProtectionAllocation(int num_media_packets, |
| int num_fec_packets, |
| int num_imp_packets) { |
| // TODO(marpan): test different cases for protection allocation: |
| |
| // Use at most (alloc_par * num_fec_packets) for important packets. |
| float alloc_par = 0.5; |
| int max_num_fec_for_imp = alloc_par * num_fec_packets; |
| |
| int num_fec_for_imp_packets = (num_imp_packets < max_num_fec_for_imp) |
| ? num_imp_packets |
| : max_num_fec_for_imp; |
| |
| // Fall back to equal protection in this case |
| if (num_fec_packets == 1 && (num_media_packets > 2 * num_imp_packets)) { |
| num_fec_for_imp_packets = 0; |
| } |
| |
| return num_fec_for_imp_packets; |
| } |
| |
| // Modification for UEP: reuse the off-line tables for the packet masks. |
| // Note: these masks were designed for equal packet protection case, |
| // assuming random packet loss. |
| |
| // Current version has 3 modes (options) to build UEP mask from existing ones. |
| // Various other combinations may be added in future versions. |
| // Longer-term, we may add another set of tables specifically for UEP cases. |
| // TODO(marpan): also consider modification of masks for bursty loss cases. |
| |
| // Mask is characterized as (#packets_to_protect, #fec_for_protection). |
| // Protection factor defined as: (#fec_for_protection / #packets_to_protect). |
| |
| // Let k=num_media_packets, n=total#packets, (n-k)=num_fec_packets, |
| // m=num_imp_packets. |
| |
| // For ProtectionMode 0 and 1: |
| // one mask (sub_mask1) is used for 1st partition packets, |
| // the other mask (sub_mask21/22, for 0/1) is for the remaining FEC packets. |
| |
| // In both mode 0 and 1, the packets of 1st partition (num_imp_packets) are |
| // treated equally important, and are afforded more protection than the |
| // residual partition packets. |
| |
| // For num_imp_packets: |
| // sub_mask1 = (m, t): protection = t/(m), where t=F(k,n-k,m). |
| // t=F(k,n-k,m) is the number of packets used to protect first partition in |
| // sub_mask1. This is determined from the function SetProtectionAllocation(). |
| |
| // For the left-over protection: |
| // Mode 0: sub_mask21 = (k-m,n-k-t): protection = (n-k-t)/(k-m) |
| // mode 0 has no protection overlap between the two partitions. |
| // For mode 0, we would typically set t = min(m, n-k). |
| |
| // Mode 1: sub_mask22 = (k, n-k-t), with protection (n-k-t)/(k) |
| // mode 1 has protection overlap between the two partitions (preferred). |
| |
| // For ProtectionMode 2: |
| // This gives 1st packet of list (which is 1st packet of 1st partition) more |
| // protection. In mode 2, the equal protection mask (which is obtained from |
| // mode 1 for t=0) is modified (more "1s" added in 1st column of packet mask) |
| // to bias higher protection for the 1st source packet. |
| |
| // Protection Mode 2 may be extended for a sort of sliding protection |
| // (i.e., vary the number/density of "1s" across columns) across packets. |
| |
| void UnequalProtectionMask(int num_media_packets, |
| int num_fec_packets, |
| int num_imp_packets, |
| int num_mask_bytes, |
| uint8_t* packet_mask, |
| const PacketMaskTable& mask_table) { |
| // Set Protection type and allocation |
| // TODO(marpan): test/update for best mode and some combinations thereof. |
| |
| ProtectionMode mode = kModeOverlap; |
| int num_fec_for_imp_packets = 0; |
| |
| if (mode != kModeBiasFirstPacket) { |
| num_fec_for_imp_packets = SetProtectionAllocation( |
| num_media_packets, num_fec_packets, num_imp_packets); |
| } |
| |
| int num_fec_remaining = num_fec_packets - num_fec_for_imp_packets; |
| // Done with setting protection type and allocation |
| |
| // |
| // Generate sub_mask1 |
| // |
| if (num_fec_for_imp_packets > 0) { |
| ImportantPacketProtection(num_fec_for_imp_packets, num_imp_packets, |
| num_mask_bytes, packet_mask, mask_table); |
| } |
| |
| // |
| // Generate sub_mask2 |
| // |
| if (num_fec_remaining > 0) { |
| RemainingPacketProtection(num_media_packets, num_fec_remaining, |
| num_fec_for_imp_packets, num_mask_bytes, mode, |
| packet_mask, mask_table); |
| } |
| } |
| |
| void GeneratePacketMasks(int num_media_packets, |
| int num_fec_packets, |
| int num_imp_packets, |
| bool use_unequal_protection, |
| const PacketMaskTable& mask_table, |
| uint8_t* packet_mask) { |
| assert(num_media_packets > 0); |
| assert(num_fec_packets <= num_media_packets && num_fec_packets > 0); |
| assert(num_imp_packets <= num_media_packets && num_imp_packets >= 0); |
| |
| const int num_mask_bytes = PacketMaskSize(num_media_packets); |
| |
| // Equal-protection for these cases. |
| if (!use_unequal_protection || num_imp_packets == 0) { |
| // Retrieve corresponding mask table directly:for equal-protection case. |
| // Mask = (k,n-k), with protection factor = (n-k)/k, |
| // where k = num_media_packets, n=total#packets, (n-k)=num_fec_packets. |
| memcpy(packet_mask, |
| mask_table.fec_packet_mask_table()[num_media_packets - |
| 1][num_fec_packets - 1], |
| num_fec_packets * num_mask_bytes); |
| } else { // UEP case |
| UnequalProtectionMask(num_media_packets, num_fec_packets, num_imp_packets, |
| num_mask_bytes, packet_mask, mask_table); |
| } // End of UEP modification |
| } // End of GetPacketMasks |
| |
| size_t PacketMaskSize(size_t num_sequence_numbers) { |
| RTC_DCHECK_LE(num_sequence_numbers, 8 * kUlpfecPacketMaskSizeLBitSet); |
| if (num_sequence_numbers > 8 * kUlpfecPacketMaskSizeLBitClear) { |
| return kUlpfecPacketMaskSizeLBitSet; |
| } |
| return kUlpfecPacketMaskSizeLBitClear; |
| } |
| |
| void InsertZeroColumns(int num_zeros, |
| uint8_t* new_mask, |
| int new_mask_bytes, |
| int num_fec_packets, |
| int new_bit_index) { |
| for (uint16_t row = 0; row < num_fec_packets; ++row) { |
| const int new_byte_index = row * new_mask_bytes + new_bit_index / 8; |
| const int max_shifts = (7 - (new_bit_index % 8)); |
| new_mask[new_byte_index] <<= std::min(num_zeros, max_shifts); |
| } |
| } |
| |
| void CopyColumn(uint8_t* new_mask, |
| int new_mask_bytes, |
| uint8_t* old_mask, |
| int old_mask_bytes, |
| int num_fec_packets, |
| int new_bit_index, |
| int old_bit_index) { |
| // Copy column from the old mask to the beginning of the new mask and shift it |
| // out from the old mask. |
| for (uint16_t row = 0; row < num_fec_packets; ++row) { |
| int new_byte_index = row * new_mask_bytes + new_bit_index / 8; |
| int old_byte_index = row * old_mask_bytes + old_bit_index / 8; |
| new_mask[new_byte_index] |= ((old_mask[old_byte_index] & 0x80) >> 7); |
| if (new_bit_index % 8 != 7) { |
| new_mask[new_byte_index] <<= 1; |
| } |
| old_mask[old_byte_index] <<= 1; |
| } |
| } |
| |
| } // namespace internal |
| } // namespace webrtc |