blob: 50585e2dfe584a5f792eb72eed8a48e061edf53c [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include "webrtc/api/array_view.h"
#include "webrtc/common_types.h"
#include "webrtc/common_video/include/video_bitrate_allocator.h"
#include "webrtc/modules/rtp_rtcp/source/byte_io.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/app.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/bye.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/compound_packet.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/extended_jitter_report.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/extended_reports.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/fir.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/nack.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/pli.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/rapid_resync_request.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/receiver_report.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/remb.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/sdes.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/sender_report.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/tmmbr.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_receiver.h"
#include "webrtc/modules/rtp_rtcp/source/time_util.h"
#include "webrtc/rtc_base/arraysize.h"
#include "webrtc/rtc_base/random.h"
#include "webrtc/system_wrappers/include/ntp_time.h"
#include "webrtc/test/gmock.h"
#include "webrtc/test/gtest.h"
namespace webrtc {
namespace {
using ::testing::_;
using ::testing::AllOf;
using ::testing::ElementsAreArray;
using ::testing::Field;
using ::testing::IsEmpty;
using ::testing::NiceMock;
using ::testing::Property;
using ::testing::SizeIs;
using ::testing::StrEq;
using ::testing::StrictMock;
using ::testing::UnorderedElementsAre;
using rtcp::ReceiveTimeInfo;
class MockRtcpPacketTypeCounterObserver : public RtcpPacketTypeCounterObserver {
public:
MOCK_METHOD2(RtcpPacketTypesCounterUpdated,
void(uint32_t, const RtcpPacketTypeCounter&));
};
class MockRtcpIntraFrameObserver : public RtcpIntraFrameObserver {
public:
MOCK_METHOD1(OnReceivedIntraFrameRequest, void(uint32_t));
};
class MockRtcpCallbackImpl : public RtcpStatisticsCallback {
public:
MOCK_METHOD2(StatisticsUpdated, void(const RtcpStatistics&, uint32_t));
MOCK_METHOD2(CNameChanged, void(const char*, uint32_t));
};
class MockTransportFeedbackObserver : public TransportFeedbackObserver {
public:
MOCK_METHOD3(AddPacket, void(uint32_t, uint16_t, size_t));
MOCK_METHOD4(AddPacket,
void(uint32_t, uint16_t, size_t, const PacedPacketInfo&));
MOCK_METHOD1(OnTransportFeedback, void(const rtcp::TransportFeedback&));
MOCK_CONST_METHOD0(GetTransportFeedbackVector, std::vector<PacketFeedback>());
};
class MockRtcpBandwidthObserver : public RtcpBandwidthObserver {
public:
MOCK_METHOD1(OnReceivedEstimatedBitrate, void(uint32_t));
MOCK_METHOD3(OnReceivedRtcpReceiverReport,
void(const ReportBlockList&, int64_t, int64_t));
};
class MockModuleRtpRtcp : public RTCPReceiver::ModuleRtpRtcp {
public:
MOCK_METHOD1(SetTmmbn, void(std::vector<rtcp::TmmbItem>));
MOCK_METHOD0(OnRequestSendReport, void());
MOCK_METHOD1(OnReceivedNack, void(const std::vector<uint16_t>&));
MOCK_METHOD1(OnReceivedRtcpReportBlocks, void(const ReportBlockList&));
};
class MockVideoBitrateAllocationObserver
: public VideoBitrateAllocationObserver {
public:
MOCK_METHOD1(OnBitrateAllocationUpdated,
void(const BitrateAllocation& allocation));
};
// SSRC of remote peer, that sends rtcp packet to the rtcp receiver under test.
constexpr uint32_t kSenderSsrc = 0x10203;
// SSRCs of local peer, that rtcp packet addressed to.
constexpr uint32_t kReceiverMainSsrc = 0x123456;
// RtcpReceiver can accept several ssrc, e.g. regular and rtx streams.
constexpr uint32_t kReceiverExtraSsrc = 0x1234567;
// SSRCs to ignore (i.e. not configured in RtcpReceiver).
constexpr uint32_t kNotToUsSsrc = 0x654321;
constexpr uint32_t kUnknownSenderSsrc = 0x54321;
} // namespace
class RtcpReceiverTest : public ::testing::Test {
protected:
RtcpReceiverTest()
: system_clock_(1335900000),
rtcp_receiver_(&system_clock_,
false,
&packet_type_counter_observer_,
&bandwidth_observer_,
&intra_frame_observer_,
&transport_feedback_observer_,
&bitrate_allocation_observer_,
&rtp_rtcp_impl_) {}
void SetUp() {
std::set<uint32_t> ssrcs = {kReceiverMainSsrc, kReceiverExtraSsrc};
rtcp_receiver_.SetSsrcs(kReceiverMainSsrc, ssrcs);
rtcp_receiver_.SetRemoteSSRC(kSenderSsrc);
}
void InjectRtcpPacket(rtc::ArrayView<const uint8_t> raw) {
rtcp_receiver_.IncomingPacket(raw.data(), raw.size());
}
void InjectRtcpPacket(const rtcp::RtcpPacket& packet) {
rtc::Buffer raw = packet.Build();
rtcp_receiver_.IncomingPacket(raw.data(), raw.size());
}
SimulatedClock system_clock_;
// Callbacks to packet_type_counter_observer are frequent but most of the time
// are not interesting.
NiceMock<MockRtcpPacketTypeCounterObserver> packet_type_counter_observer_;
StrictMock<MockRtcpBandwidthObserver> bandwidth_observer_;
StrictMock<MockRtcpIntraFrameObserver> intra_frame_observer_;
StrictMock<MockTransportFeedbackObserver> transport_feedback_observer_;
StrictMock<MockVideoBitrateAllocationObserver> bitrate_allocation_observer_;
StrictMock<MockModuleRtpRtcp> rtp_rtcp_impl_;
RTCPReceiver rtcp_receiver_;
};
TEST_F(RtcpReceiverTest, BrokenPacketIsIgnored) {
const uint8_t bad_packet[] = {0, 0, 0, 0};
EXPECT_CALL(packet_type_counter_observer_,
RtcpPacketTypesCounterUpdated(_, _))
.Times(0);
InjectRtcpPacket(bad_packet);
}
TEST_F(RtcpReceiverTest, InvalidFeedbackPacketIsIgnored) {
// Too short feedback packet.
const uint8_t bad_packet[] = {0x81, rtcp::Rtpfb::kPacketType, 0, 0};
// TODO(danilchap): Add expectation RtcpPacketTypesCounterUpdated
// is not called once parser would be adjusted to avoid that callback on
// semi-valid packets.
InjectRtcpPacket(bad_packet);
}
TEST_F(RtcpReceiverTest, InjectSrPacket) {
EXPECT_FALSE(rtcp_receiver_.NTP(nullptr, nullptr, nullptr, nullptr, nullptr));
int64_t now = system_clock_.TimeInMilliseconds();
rtcp::SenderReport sr;
sr.SetSenderSsrc(kSenderSsrc);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(IsEmpty()));
EXPECT_CALL(bandwidth_observer_,
OnReceivedRtcpReceiverReport(IsEmpty(), _, now));
InjectRtcpPacket(sr);
EXPECT_TRUE(rtcp_receiver_.NTP(nullptr, nullptr, nullptr, nullptr, nullptr));
}
TEST_F(RtcpReceiverTest, InjectSrPacketFromUnknownSender) {
int64_t now = system_clock_.TimeInMilliseconds();
rtcp::SenderReport sr;
sr.SetSenderSsrc(kUnknownSenderSsrc);
// The parser will handle report blocks in Sender Report from other than his
// expected peer.
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, now));
InjectRtcpPacket(sr);
// But will not flag that he's gotten sender information.
EXPECT_FALSE(rtcp_receiver_.NTP(nullptr, nullptr, nullptr, nullptr, nullptr));
}
TEST_F(RtcpReceiverTest, InjectSrPacketCalculatesRTT) {
Random r(0x0123456789abcdef);
const int64_t kRttMs = r.Rand(1, 9 * 3600 * 1000);
const uint32_t kDelayNtp = r.Rand(0, 0x7fffffff);
const int64_t kDelayMs = CompactNtpRttToMs(kDelayNtp);
int64_t rtt_ms = 0;
EXPECT_EQ(
-1, rtcp_receiver_.RTT(kSenderSsrc, &rtt_ms, nullptr, nullptr, nullptr));
uint32_t sent_ntp = CompactNtp(system_clock_.CurrentNtpTime());
system_clock_.AdvanceTimeMilliseconds(kRttMs + kDelayMs);
rtcp::SenderReport sr;
sr.SetSenderSsrc(kSenderSsrc);
rtcp::ReportBlock block;
block.SetMediaSsrc(kReceiverMainSsrc);
block.SetLastSr(sent_ntp);
block.SetDelayLastSr(kDelayNtp);
sr.AddReportBlock(block);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
InjectRtcpPacket(sr);
EXPECT_EQ(
0, rtcp_receiver_.RTT(kSenderSsrc, &rtt_ms, nullptr, nullptr, nullptr));
EXPECT_NEAR(kRttMs, rtt_ms, 1);
}
TEST_F(RtcpReceiverTest, InjectSrPacketCalculatesNegativeRTTAsOne) {
Random r(0x0123456789abcdef);
const int64_t kRttMs = r.Rand(-3600 * 1000, -1);
const uint32_t kDelayNtp = r.Rand(0, 0x7fffffff);
const int64_t kDelayMs = CompactNtpRttToMs(kDelayNtp);
int64_t rtt_ms = 0;
EXPECT_EQ(
-1, rtcp_receiver_.RTT(kSenderSsrc, &rtt_ms, nullptr, nullptr, nullptr));
uint32_t sent_ntp = CompactNtp(system_clock_.CurrentNtpTime());
system_clock_.AdvanceTimeMilliseconds(kRttMs + kDelayMs);
rtcp::SenderReport sr;
sr.SetSenderSsrc(kSenderSsrc);
rtcp::ReportBlock block;
block.SetMediaSsrc(kReceiverMainSsrc);
block.SetLastSr(sent_ntp);
block.SetDelayLastSr(kDelayNtp);
sr.AddReportBlock(block);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(1)));
EXPECT_CALL(bandwidth_observer_,
OnReceivedRtcpReceiverReport(SizeIs(1), _, _));
InjectRtcpPacket(sr);
EXPECT_EQ(
0, rtcp_receiver_.RTT(kSenderSsrc, &rtt_ms, nullptr, nullptr, nullptr));
EXPECT_EQ(1, rtt_ms);
}
TEST_F(RtcpReceiverTest, InjectRrPacket) {
int64_t now = system_clock_.TimeInMilliseconds();
rtcp::ReceiverReport rr;
rr.SetSenderSsrc(kSenderSsrc);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(IsEmpty()));
EXPECT_CALL(bandwidth_observer_,
OnReceivedRtcpReceiverReport(IsEmpty(), _, now));
InjectRtcpPacket(rr);
EXPECT_EQ(now, rtcp_receiver_.LastReceivedReceiverReport());
std::vector<RTCPReportBlock> report_blocks;
rtcp_receiver_.StatisticsReceived(&report_blocks);
EXPECT_TRUE(report_blocks.empty());
}
TEST_F(RtcpReceiverTest, InjectRrPacketWithReportBlockNotToUsIgnored) {
int64_t now = system_clock_.TimeInMilliseconds();
rtcp::ReportBlock rb;
rb.SetMediaSsrc(kNotToUsSsrc);
rtcp::ReceiverReport rr;
rr.SetSenderSsrc(kSenderSsrc);
rr.AddReportBlock(rb);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(IsEmpty()));
EXPECT_CALL(bandwidth_observer_,
OnReceivedRtcpReceiverReport(IsEmpty(), _, now));
InjectRtcpPacket(rr);
EXPECT_EQ(now, rtcp_receiver_.LastReceivedReceiverReport());
std::vector<RTCPReportBlock> received_blocks;
rtcp_receiver_.StatisticsReceived(&received_blocks);
EXPECT_TRUE(received_blocks.empty());
}
TEST_F(RtcpReceiverTest, InjectRrPacketWithOneReportBlock) {
int64_t now = system_clock_.TimeInMilliseconds();
rtcp::ReportBlock rb;
rb.SetMediaSsrc(kReceiverMainSsrc);
rtcp::ReceiverReport rr;
rr.SetSenderSsrc(kSenderSsrc);
rr.AddReportBlock(rb);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(1)));
EXPECT_CALL(bandwidth_observer_,
OnReceivedRtcpReceiverReport(SizeIs(1), _, now));
InjectRtcpPacket(rr);
EXPECT_EQ(now, rtcp_receiver_.LastReceivedReceiverReport());
std::vector<RTCPReportBlock> received_blocks;
rtcp_receiver_.StatisticsReceived(&received_blocks);
EXPECT_EQ(1u, received_blocks.size());
}
TEST_F(RtcpReceiverTest, InjectRrPacketWithTwoReportBlocks) {
const uint16_t kSequenceNumbers[] = {10, 12423};
const uint32_t kCumLost[] = {13, 555};
const uint8_t kFracLost[] = {20, 11};
int64_t now = system_clock_.TimeInMilliseconds();
rtcp::ReportBlock rb1;
rb1.SetMediaSsrc(kReceiverMainSsrc);
rb1.SetExtHighestSeqNum(kSequenceNumbers[0]);
rb1.SetFractionLost(10);
rtcp::ReportBlock rb2;
rb2.SetMediaSsrc(kReceiverExtraSsrc);
rb2.SetExtHighestSeqNum(kSequenceNumbers[1]);
rb2.SetFractionLost(0);
rtcp::ReceiverReport rr1;
rr1.SetSenderSsrc(kSenderSsrc);
rr1.AddReportBlock(rb1);
rr1.AddReportBlock(rb2);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(2)));
EXPECT_CALL(bandwidth_observer_,
OnReceivedRtcpReceiverReport(SizeIs(2), _, now));
InjectRtcpPacket(rr1);
EXPECT_EQ(now, rtcp_receiver_.LastReceivedReceiverReport());
std::vector<RTCPReportBlock> received_blocks;
rtcp_receiver_.StatisticsReceived(&received_blocks);
EXPECT_THAT(received_blocks,
UnorderedElementsAre(Field(&RTCPReportBlock::fraction_lost, 0),
Field(&RTCPReportBlock::fraction_lost, 10)));
// Insert next receiver report with same ssrc but new values.
rtcp::ReportBlock rb3;
rb3.SetMediaSsrc(kReceiverMainSsrc);
rb3.SetExtHighestSeqNum(kSequenceNumbers[0]);
rb3.SetFractionLost(kFracLost[0]);
rb3.SetCumulativeLost(kCumLost[0]);
rtcp::ReportBlock rb4;
rb4.SetMediaSsrc(kReceiverExtraSsrc);
rb4.SetExtHighestSeqNum(kSequenceNumbers[1]);
rb4.SetFractionLost(kFracLost[1]);
rb4.SetCumulativeLost(kCumLost[1]);
rtcp::ReceiverReport rr2;
rr2.SetSenderSsrc(kSenderSsrc);
rr2.AddReportBlock(rb3);
rr2.AddReportBlock(rb4);
// Advance time to make 1st sent time and 2nd sent time different.
system_clock_.AdvanceTimeMilliseconds(500);
now = system_clock_.TimeInMilliseconds();
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(2)));
EXPECT_CALL(bandwidth_observer_,
OnReceivedRtcpReceiverReport(SizeIs(2), _, now));
InjectRtcpPacket(rr2);
received_blocks.clear();
rtcp_receiver_.StatisticsReceived(&received_blocks);
EXPECT_EQ(2u, received_blocks.size());
EXPECT_THAT(
received_blocks,
UnorderedElementsAre(
AllOf(Field(&RTCPReportBlock::source_ssrc, kReceiverMainSsrc),
Field(&RTCPReportBlock::fraction_lost, kFracLost[0]),
Field(&RTCPReportBlock::packets_lost, kCumLost[0]),
Field(&RTCPReportBlock::extended_highest_sequence_number,
kSequenceNumbers[0])),
AllOf(Field(&RTCPReportBlock::source_ssrc, kReceiverExtraSsrc),
Field(&RTCPReportBlock::fraction_lost, kFracLost[1]),
Field(&RTCPReportBlock::packets_lost, kCumLost[1]),
Field(&RTCPReportBlock::extended_highest_sequence_number,
kSequenceNumbers[1]))));
}
TEST_F(RtcpReceiverTest, InjectRrPacketsFromTwoRemoteSsrcs) {
const uint32_t kSenderSsrc2 = 0x20304;
const uint16_t kSequenceNumbers[] = {10, 12423};
const uint32_t kCumLost[] = {13, 555};
const uint8_t kFracLost[] = {20, 11};
rtcp::ReportBlock rb1;
rb1.SetMediaSsrc(kReceiverMainSsrc);
rb1.SetExtHighestSeqNum(kSequenceNumbers[0]);
rb1.SetFractionLost(kFracLost[0]);
rb1.SetCumulativeLost(kCumLost[0]);
rtcp::ReceiverReport rr1;
rr1.SetSenderSsrc(kSenderSsrc);
rr1.AddReportBlock(rb1);
int64_t now = system_clock_.TimeInMilliseconds();
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(1)));
EXPECT_CALL(bandwidth_observer_,
OnReceivedRtcpReceiverReport(SizeIs(1), _, now));
InjectRtcpPacket(rr1);
EXPECT_EQ(now, rtcp_receiver_.LastReceivedReceiverReport());
std::vector<RTCPReportBlock> received_blocks;
rtcp_receiver_.StatisticsReceived(&received_blocks);
EXPECT_EQ(1u, received_blocks.size());
EXPECT_EQ(kSenderSsrc, received_blocks[0].sender_ssrc);
EXPECT_EQ(kReceiverMainSsrc, received_blocks[0].source_ssrc);
EXPECT_EQ(kFracLost[0], received_blocks[0].fraction_lost);
EXPECT_EQ(kCumLost[0], received_blocks[0].packets_lost);
EXPECT_EQ(kSequenceNumbers[0],
received_blocks[0].extended_highest_sequence_number);
rtcp::ReportBlock rb2;
rb2.SetMediaSsrc(kReceiverMainSsrc);
rb2.SetExtHighestSeqNum(kSequenceNumbers[1]);
rb2.SetFractionLost(kFracLost[1]);
rb2.SetCumulativeLost(kCumLost[1]);
rtcp::ReceiverReport rr2;
rr2.SetSenderSsrc(kSenderSsrc2);
rr2.AddReportBlock(rb2);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(SizeIs(1)));
EXPECT_CALL(bandwidth_observer_,
OnReceivedRtcpReceiverReport(SizeIs(1), _, now));
InjectRtcpPacket(rr2);
received_blocks.clear();
rtcp_receiver_.StatisticsReceived(&received_blocks);
ASSERT_EQ(2u, received_blocks.size());
EXPECT_THAT(
received_blocks,
UnorderedElementsAre(
AllOf(Field(&RTCPReportBlock::source_ssrc, kReceiverMainSsrc),
Field(&RTCPReportBlock::sender_ssrc, kSenderSsrc),
Field(&RTCPReportBlock::fraction_lost, kFracLost[0]),
Field(&RTCPReportBlock::packets_lost, kCumLost[0]),
Field(&RTCPReportBlock::extended_highest_sequence_number,
kSequenceNumbers[0])),
AllOf(Field(&RTCPReportBlock::source_ssrc, kReceiverMainSsrc),
Field(&RTCPReportBlock::sender_ssrc, kSenderSsrc2),
Field(&RTCPReportBlock::fraction_lost, kFracLost[1]),
Field(&RTCPReportBlock::packets_lost, kCumLost[1]),
Field(&RTCPReportBlock::extended_highest_sequence_number,
kSequenceNumbers[1]))));
}
TEST_F(RtcpReceiverTest, GetRtt) {
const uint32_t kSentCompactNtp = 0x1234;
const uint32_t kDelayCompactNtp = 0x222;
// No report block received.
EXPECT_EQ(
-1, rtcp_receiver_.RTT(kSenderSsrc, nullptr, nullptr, nullptr, nullptr));
rtcp::ReportBlock rb;
rb.SetMediaSsrc(kReceiverMainSsrc);
rb.SetLastSr(kSentCompactNtp);
rb.SetDelayLastSr(kDelayCompactNtp);
rtcp::ReceiverReport rr;
rr.SetSenderSsrc(kSenderSsrc);
rr.AddReportBlock(rb);
int64_t now = system_clock_.TimeInMilliseconds();
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
InjectRtcpPacket(rr);
EXPECT_EQ(now, rtcp_receiver_.LastReceivedReceiverReport());
EXPECT_EQ(
0, rtcp_receiver_.RTT(kSenderSsrc, nullptr, nullptr, nullptr, nullptr));
}
// Ij packets are ignored.
TEST_F(RtcpReceiverTest, InjectIjWithNoItem) {
rtcp::ExtendedJitterReport ij;
InjectRtcpPacket(ij);
}
// App packets are ignored.
TEST_F(RtcpReceiverTest, InjectApp) {
rtcp::App app;
app.SetSubType(30);
app.SetName(0x17a177e);
const uint8_t kData[] = {'t', 'e', 's', 't', 'd', 'a', 't', 'a'};
app.SetData(kData, sizeof(kData));
InjectRtcpPacket(app);
}
TEST_F(RtcpReceiverTest, InjectSdesWithOneChunk) {
const char kCname[] = "alice@host";
MockRtcpCallbackImpl callback;
rtcp_receiver_.RegisterRtcpStatisticsCallback(&callback);
rtcp::Sdes sdes;
sdes.AddCName(kSenderSsrc, kCname);
EXPECT_CALL(callback, CNameChanged(StrEq(kCname), kSenderSsrc));
InjectRtcpPacket(sdes);
char cName[RTCP_CNAME_SIZE];
EXPECT_EQ(0, rtcp_receiver_.CNAME(kSenderSsrc, cName));
EXPECT_EQ(0, strncmp(cName, kCname, RTCP_CNAME_SIZE));
}
TEST_F(RtcpReceiverTest, InjectByePacket_RemovesCname) {
const char kCname[] = "alice@host";
rtcp::Sdes sdes;
sdes.AddCName(kSenderSsrc, kCname);
InjectRtcpPacket(sdes);
char cName[RTCP_CNAME_SIZE];
EXPECT_EQ(0, rtcp_receiver_.CNAME(kSenderSsrc, cName));
// Verify that BYE removes the CNAME.
rtcp::Bye bye;
bye.SetSenderSsrc(kSenderSsrc);
InjectRtcpPacket(bye);
EXPECT_EQ(-1, rtcp_receiver_.CNAME(kSenderSsrc, cName));
}
TEST_F(RtcpReceiverTest, InjectByePacket_RemovesReportBlocks) {
rtcp::ReportBlock rb1;
rb1.SetMediaSsrc(kReceiverMainSsrc);
rtcp::ReportBlock rb2;
rb2.SetMediaSsrc(kReceiverExtraSsrc);
rtcp::ReceiverReport rr;
rr.SetSenderSsrc(kSenderSsrc);
rr.AddReportBlock(rb1);
rr.AddReportBlock(rb2);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
InjectRtcpPacket(rr);
std::vector<RTCPReportBlock> received_blocks;
rtcp_receiver_.StatisticsReceived(&received_blocks);
EXPECT_EQ(2u, received_blocks.size());
// Verify that BYE removes the report blocks.
rtcp::Bye bye;
bye.SetSenderSsrc(kSenderSsrc);
InjectRtcpPacket(bye);
received_blocks.clear();
rtcp_receiver_.StatisticsReceived(&received_blocks);
EXPECT_TRUE(received_blocks.empty());
// Inject packet again.
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
InjectRtcpPacket(rr);
received_blocks.clear();
rtcp_receiver_.StatisticsReceived(&received_blocks);
EXPECT_EQ(2u, received_blocks.size());
}
TEST_F(RtcpReceiverTest, InjectPliPacket) {
rtcp::Pli pli;
pli.SetMediaSsrc(kReceiverMainSsrc);
EXPECT_CALL(
packet_type_counter_observer_,
RtcpPacketTypesCounterUpdated(
kReceiverMainSsrc, Field(&RtcpPacketTypeCounter::pli_packets, 1)));
EXPECT_CALL(intra_frame_observer_,
OnReceivedIntraFrameRequest(kReceiverMainSsrc));
InjectRtcpPacket(pli);
}
TEST_F(RtcpReceiverTest, PliPacketNotToUsIgnored) {
rtcp::Pli pli;
pli.SetMediaSsrc(kNotToUsSsrc);
EXPECT_CALL(
packet_type_counter_observer_,
RtcpPacketTypesCounterUpdated(
kReceiverMainSsrc, Field(&RtcpPacketTypeCounter::pli_packets, 0)));
EXPECT_CALL(intra_frame_observer_, OnReceivedIntraFrameRequest(_)).Times(0);
InjectRtcpPacket(pli);
}
TEST_F(RtcpReceiverTest, InjectFirPacket) {
rtcp::Fir fir;
fir.AddRequestTo(kReceiverMainSsrc, 13);
EXPECT_CALL(
packet_type_counter_observer_,
RtcpPacketTypesCounterUpdated(
kReceiverMainSsrc, Field(&RtcpPacketTypeCounter::fir_packets, 1)));
EXPECT_CALL(intra_frame_observer_,
OnReceivedIntraFrameRequest(kReceiverMainSsrc));
InjectRtcpPacket(fir);
}
TEST_F(RtcpReceiverTest, FirPacketNotToUsIgnored) {
rtcp::Fir fir;
fir.AddRequestTo(kNotToUsSsrc, 13);
EXPECT_CALL(intra_frame_observer_, OnReceivedIntraFrameRequest(_)).Times(0);
InjectRtcpPacket(fir);
}
TEST_F(RtcpReceiverTest, ExtendedReportsPacketWithZeroReportBlocksIgnored) {
rtcp::ExtendedReports xr;
xr.SetSenderSsrc(kSenderSsrc);
InjectRtcpPacket(xr);
}
// VOiP reports are ignored.
TEST_F(RtcpReceiverTest, InjectExtendedReportsVoipPacket) {
const uint8_t kLossRate = 123;
rtcp::VoipMetric voip_metric;
voip_metric.SetMediaSsrc(kReceiverMainSsrc);
RTCPVoIPMetric metric;
metric.lossRate = kLossRate;
voip_metric.SetVoipMetric(metric);
rtcp::ExtendedReports xr;
xr.SetSenderSsrc(kSenderSsrc);
xr.SetVoipMetric(voip_metric);
InjectRtcpPacket(xr);
}
TEST_F(RtcpReceiverTest, ExtendedReportsVoipPacketNotToUsIgnored) {
rtcp::VoipMetric voip_metric;
voip_metric.SetMediaSsrc(kNotToUsSsrc);
rtcp::ExtendedReports xr;
xr.SetSenderSsrc(kSenderSsrc);
xr.SetVoipMetric(voip_metric);
InjectRtcpPacket(xr);
}
TEST_F(RtcpReceiverTest, InjectExtendedReportsReceiverReferenceTimePacket) {
const NtpTime kNtp(0x10203, 0x40506);
rtcp::Rrtr rrtr;
rrtr.SetNtp(kNtp);
rtcp::ExtendedReports xr;
xr.SetSenderSsrc(kSenderSsrc);
xr.SetRrtr(rrtr);
ReceiveTimeInfo rrtime;
EXPECT_FALSE(rtcp_receiver_.LastReceivedXrReferenceTimeInfo(&rrtime));
InjectRtcpPacket(xr);
EXPECT_TRUE(rtcp_receiver_.LastReceivedXrReferenceTimeInfo(&rrtime));
EXPECT_EQ(rrtime.ssrc, kSenderSsrc);
EXPECT_EQ(rrtime.last_rr, CompactNtp(kNtp));
EXPECT_EQ(0U, rrtime.delay_since_last_rr);
system_clock_.AdvanceTimeMilliseconds(1500);
EXPECT_TRUE(rtcp_receiver_.LastReceivedXrReferenceTimeInfo(&rrtime));
EXPECT_NEAR(1500, CompactNtpRttToMs(rrtime.delay_since_last_rr), 1);
}
TEST_F(RtcpReceiverTest, ExtendedReportsDlrrPacketNotToUsIgnored) {
// Allow calculate rtt using dlrr/rrtr, simulating media receiver side.
rtcp_receiver_.SetRtcpXrRrtrStatus(true);
rtcp::ExtendedReports xr;
xr.SetSenderSsrc(kSenderSsrc);
xr.AddDlrrItem(ReceiveTimeInfo(kNotToUsSsrc, 0x12345, 0x67890));
InjectRtcpPacket(xr);
int64_t rtt_ms = 0;
EXPECT_FALSE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms));
}
TEST_F(RtcpReceiverTest, InjectExtendedReportsDlrrPacketWithSubBlock) {
const uint32_t kLastRR = 0x12345;
const uint32_t kDelay = 0x23456;
rtcp_receiver_.SetRtcpXrRrtrStatus(true);
int64_t rtt_ms = 0;
EXPECT_FALSE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms));
rtcp::ExtendedReports xr;
xr.SetSenderSsrc(kSenderSsrc);
xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc, kLastRR, kDelay));
InjectRtcpPacket(xr);
uint32_t compact_ntp_now = CompactNtp(system_clock_.CurrentNtpTime());
EXPECT_TRUE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms));
uint32_t rtt_ntp = compact_ntp_now - kDelay - kLastRR;
EXPECT_NEAR(CompactNtpRttToMs(rtt_ntp), rtt_ms, 1);
}
TEST_F(RtcpReceiverTest, InjectExtendedReportsDlrrPacketWithMultipleSubBlocks) {
const uint32_t kLastRR = 0x12345;
const uint32_t kDelay = 0x56789;
rtcp_receiver_.SetRtcpXrRrtrStatus(true);
rtcp::ExtendedReports xr;
xr.SetSenderSsrc(kSenderSsrc);
xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc, kLastRR, kDelay));
xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc + 1, 0x12345, 0x67890));
xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc + 2, 0x12345, 0x67890));
InjectRtcpPacket(xr);
uint32_t compact_ntp_now = CompactNtp(system_clock_.CurrentNtpTime());
int64_t rtt_ms = 0;
EXPECT_TRUE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms));
uint32_t rtt_ntp = compact_ntp_now - kDelay - kLastRR;
EXPECT_NEAR(CompactNtpRttToMs(rtt_ntp), rtt_ms, 1);
}
TEST_F(RtcpReceiverTest, InjectExtendedReportsPacketWithMultipleReportBlocks) {
rtcp_receiver_.SetRtcpXrRrtrStatus(true);
rtcp::Rrtr rrtr;
rtcp::VoipMetric metric;
metric.SetMediaSsrc(kReceiverMainSsrc);
rtcp::ExtendedReports xr;
xr.SetSenderSsrc(kSenderSsrc);
xr.SetRrtr(rrtr);
xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc, 0x12345, 0x67890));
xr.SetVoipMetric(metric);
InjectRtcpPacket(xr);
ReceiveTimeInfo rrtime;
EXPECT_TRUE(rtcp_receiver_.LastReceivedXrReferenceTimeInfo(&rrtime));
int64_t rtt_ms = 0;
EXPECT_TRUE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms));
}
TEST_F(RtcpReceiverTest, InjectExtendedReportsPacketWithUnknownReportBlock) {
rtcp_receiver_.SetRtcpXrRrtrStatus(true);
rtcp::Rrtr rrtr;
rtcp::VoipMetric metric;
metric.SetMediaSsrc(kReceiverMainSsrc);
rtcp::ExtendedReports xr;
xr.SetSenderSsrc(kSenderSsrc);
xr.SetRrtr(rrtr);
xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc, 0x12345, 0x67890));
xr.SetVoipMetric(metric);
rtc::Buffer packet = xr.Build();
// Modify the DLRR block to have an unsupported block type, from 5 to 6.
ASSERT_EQ(5, packet.data()[20]);
packet.data()[20] = 6;
InjectRtcpPacket(packet);
// Validate Rrtr was received and processed.
ReceiveTimeInfo rrtime;
EXPECT_TRUE(rtcp_receiver_.LastReceivedXrReferenceTimeInfo(&rrtime));
// Validate Dlrr report wasn't processed.
int64_t rtt_ms = 0;
EXPECT_FALSE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms));
}
TEST_F(RtcpReceiverTest, TestExtendedReportsRrRttInitiallyFalse) {
rtcp_receiver_.SetRtcpXrRrtrStatus(true);
int64_t rtt_ms;
EXPECT_FALSE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms));
}
TEST_F(RtcpReceiverTest, RttCalculatedAfterExtendedReportsDlrr) {
Random rand(0x0123456789abcdef);
const int64_t kRttMs = rand.Rand(1, 9 * 3600 * 1000);
const uint32_t kDelayNtp = rand.Rand(0, 0x7fffffff);
const int64_t kDelayMs = CompactNtpRttToMs(kDelayNtp);
rtcp_receiver_.SetRtcpXrRrtrStatus(true);
NtpTime now = system_clock_.CurrentNtpTime();
uint32_t sent_ntp = CompactNtp(now);
system_clock_.AdvanceTimeMilliseconds(kRttMs + kDelayMs);
rtcp::ExtendedReports xr;
xr.SetSenderSsrc(kSenderSsrc);
xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc, sent_ntp, kDelayNtp));
InjectRtcpPacket(xr);
int64_t rtt_ms = 0;
EXPECT_TRUE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms));
EXPECT_NEAR(kRttMs, rtt_ms, 1);
}
TEST_F(RtcpReceiverTest, XrDlrrCalculatesNegativeRttAsOne) {
Random rand(0x0123456789abcdef);
const int64_t kRttMs = rand.Rand(-3600 * 1000, -1);
const uint32_t kDelayNtp = rand.Rand(0, 0x7fffffff);
const int64_t kDelayMs = CompactNtpRttToMs(kDelayNtp);
NtpTime now = system_clock_.CurrentNtpTime();
uint32_t sent_ntp = CompactNtp(now);
system_clock_.AdvanceTimeMilliseconds(kRttMs + kDelayMs);
rtcp_receiver_.SetRtcpXrRrtrStatus(true);
rtcp::ExtendedReports xr;
xr.SetSenderSsrc(kSenderSsrc);
xr.AddDlrrItem(ReceiveTimeInfo(kReceiverMainSsrc, sent_ntp, kDelayNtp));
InjectRtcpPacket(xr);
int64_t rtt_ms = 0;
EXPECT_TRUE(rtcp_receiver_.GetAndResetXrRrRtt(&rtt_ms));
EXPECT_EQ(1, rtt_ms);
}
TEST_F(RtcpReceiverTest, LastReceivedXrReferenceTimeInfoInitiallyFalse) {
ReceiveTimeInfo info;
EXPECT_FALSE(rtcp_receiver_.LastReceivedXrReferenceTimeInfo(&info));
}
TEST_F(RtcpReceiverTest, GetLastReceivedExtendedReportsReferenceTimeInfo) {
const NtpTime kNtp(0x10203, 0x40506);
const uint32_t kNtpMid = CompactNtp(kNtp);
rtcp::Rrtr rrtr;
rrtr.SetNtp(kNtp);
rtcp::ExtendedReports xr;
xr.SetSenderSsrc(kSenderSsrc);
xr.SetRrtr(rrtr);
InjectRtcpPacket(xr);
ReceiveTimeInfo info;
EXPECT_TRUE(rtcp_receiver_.LastReceivedXrReferenceTimeInfo(&info));
EXPECT_EQ(kSenderSsrc, info.ssrc);
EXPECT_EQ(kNtpMid, info.last_rr);
EXPECT_EQ(0U, info.delay_since_last_rr);
system_clock_.AdvanceTimeMilliseconds(1000);
EXPECT_TRUE(rtcp_receiver_.LastReceivedXrReferenceTimeInfo(&info));
EXPECT_EQ(65536U, info.delay_since_last_rr);
}
TEST_F(RtcpReceiverTest, ReceiveReportTimeout) {
const int64_t kRtcpIntervalMs = 1000;
const uint16_t kSequenceNumber = 1234;
system_clock_.AdvanceTimeMilliseconds(3 * kRtcpIntervalMs);
// No RR received, shouldn't trigger a timeout.
EXPECT_FALSE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs));
EXPECT_FALSE(rtcp_receiver_.RtcpRrSequenceNumberTimeout(kRtcpIntervalMs));
// Add a RR and advance the clock just enough to not trigger a timeout.
rtcp::ReportBlock rb1;
rb1.SetMediaSsrc(kReceiverMainSsrc);
rb1.SetExtHighestSeqNum(kSequenceNumber);
rtcp::ReceiverReport rr1;
rr1.SetSenderSsrc(kSenderSsrc);
rr1.AddReportBlock(rb1);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
InjectRtcpPacket(rr1);
system_clock_.AdvanceTimeMilliseconds(3 * kRtcpIntervalMs - 1);
EXPECT_FALSE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs));
EXPECT_FALSE(rtcp_receiver_.RtcpRrSequenceNumberTimeout(kRtcpIntervalMs));
// Add a RR with the same extended max as the previous RR to trigger a
// sequence number timeout, but not a RR timeout.
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
InjectRtcpPacket(rr1);
system_clock_.AdvanceTimeMilliseconds(2);
EXPECT_FALSE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs));
EXPECT_TRUE(rtcp_receiver_.RtcpRrSequenceNumberTimeout(kRtcpIntervalMs));
// Advance clock enough to trigger an RR timeout too.
system_clock_.AdvanceTimeMilliseconds(3 * kRtcpIntervalMs);
EXPECT_TRUE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs));
// We should only get one timeout even though we still haven't received a new
// RR.
EXPECT_FALSE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs));
EXPECT_FALSE(rtcp_receiver_.RtcpRrSequenceNumberTimeout(kRtcpIntervalMs));
// Add a new RR with increase sequence number to reset timers.
rtcp::ReportBlock rb2;
rb2.SetMediaSsrc(kReceiverMainSsrc);
rb2.SetExtHighestSeqNum(kSequenceNumber + 1);
rtcp::ReceiverReport rr2;
rr2.SetSenderSsrc(kSenderSsrc);
rr2.AddReportBlock(rb2);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
InjectRtcpPacket(rr2);
EXPECT_FALSE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs));
EXPECT_FALSE(rtcp_receiver_.RtcpRrSequenceNumberTimeout(kRtcpIntervalMs));
// Verify we can get a timeout again once we've received new RR.
system_clock_.AdvanceTimeMilliseconds(2 * kRtcpIntervalMs);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
InjectRtcpPacket(rr2);
system_clock_.AdvanceTimeMilliseconds(kRtcpIntervalMs + 1);
EXPECT_FALSE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs));
EXPECT_TRUE(rtcp_receiver_.RtcpRrSequenceNumberTimeout(kRtcpIntervalMs));
system_clock_.AdvanceTimeMilliseconds(2 * kRtcpIntervalMs);
EXPECT_TRUE(rtcp_receiver_.RtcpRrTimeout(kRtcpIntervalMs));
}
TEST_F(RtcpReceiverTest, TmmbrReceivedWithNoIncomingPacket) {
EXPECT_EQ(0u, rtcp_receiver_.TmmbrReceived().size());
}
TEST_F(RtcpReceiverTest, TmmbrPacketAccepted) {
const uint32_t kBitrateBps = 30000;
rtcp::Tmmbr tmmbr;
tmmbr.SetSenderSsrc(kSenderSsrc);
tmmbr.AddTmmbr(rtcp::TmmbItem(kReceiverMainSsrc, kBitrateBps, 0));
rtcp::SenderReport sr;
sr.SetSenderSsrc(kSenderSsrc);
rtcp::CompoundPacket compound;
compound.Append(&sr);
compound.Append(&tmmbr);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(rtp_rtcp_impl_, SetTmmbn(SizeIs(1)));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
EXPECT_CALL(bandwidth_observer_, OnReceivedEstimatedBitrate(kBitrateBps));
InjectRtcpPacket(compound);
std::vector<rtcp::TmmbItem> tmmbr_received = rtcp_receiver_.TmmbrReceived();
ASSERT_EQ(1u, tmmbr_received.size());
EXPECT_EQ(kBitrateBps, tmmbr_received[0].bitrate_bps());
EXPECT_EQ(kSenderSsrc, tmmbr_received[0].ssrc());
}
TEST_F(RtcpReceiverTest, TmmbrPacketNotForUsIgnored) {
const uint32_t kBitrateBps = 30000;
rtcp::Tmmbr tmmbr;
tmmbr.SetSenderSsrc(kSenderSsrc);
tmmbr.AddTmmbr(rtcp::TmmbItem(kNotToUsSsrc, kBitrateBps, 0));
rtcp::SenderReport sr;
sr.SetSenderSsrc(kSenderSsrc);
rtcp::CompoundPacket compound;
compound.Append(&sr);
compound.Append(&tmmbr);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
EXPECT_CALL(bandwidth_observer_, OnReceivedEstimatedBitrate(_)).Times(0);
InjectRtcpPacket(compound);
EXPECT_EQ(0u, rtcp_receiver_.TmmbrReceived().size());
}
TEST_F(RtcpReceiverTest, TmmbrPacketZeroRateIgnored) {
rtcp::Tmmbr tmmbr;
tmmbr.SetSenderSsrc(kSenderSsrc);
tmmbr.AddTmmbr(rtcp::TmmbItem(kReceiverMainSsrc, 0, 0));
rtcp::SenderReport sr;
sr.SetSenderSsrc(kSenderSsrc);
rtcp::CompoundPacket compound;
compound.Append(&sr);
compound.Append(&tmmbr);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
EXPECT_CALL(bandwidth_observer_, OnReceivedEstimatedBitrate(_)).Times(0);
InjectRtcpPacket(compound);
EXPECT_EQ(0u, rtcp_receiver_.TmmbrReceived().size());
}
TEST_F(RtcpReceiverTest, TmmbrThreeConstraintsTimeOut) {
// Inject 3 packets "from" kSenderSsrc, kSenderSsrc+1, kSenderSsrc+2.
// The times of arrival are starttime + 0, starttime + 5 and starttime + 10.
for (uint32_t ssrc = kSenderSsrc; ssrc < kSenderSsrc + 3; ++ssrc) {
rtcp::Tmmbr tmmbr;
tmmbr.SetSenderSsrc(ssrc);
tmmbr.AddTmmbr(rtcp::TmmbItem(kReceiverMainSsrc, 30000, 0));
rtcp::SenderReport sr;
sr.SetSenderSsrc(ssrc);
rtcp::CompoundPacket compound;
compound.Append(&sr);
compound.Append(&tmmbr);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(rtp_rtcp_impl_, SetTmmbn(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
EXPECT_CALL(bandwidth_observer_, OnReceivedEstimatedBitrate(_));
InjectRtcpPacket(compound);
// 5 seconds between each packet.
system_clock_.AdvanceTimeMilliseconds(5000);
}
// It is now starttime + 15.
std::vector<rtcp::TmmbItem> candidate_set = rtcp_receiver_.TmmbrReceived();
ASSERT_EQ(3u, candidate_set.size());
EXPECT_EQ(30000U, candidate_set[0].bitrate_bps());
// We expect the timeout to be 25 seconds. Advance the clock by 12
// seconds, timing out the first packet.
system_clock_.AdvanceTimeMilliseconds(12000);
candidate_set = rtcp_receiver_.TmmbrReceived();
ASSERT_EQ(2u, candidate_set.size());
EXPECT_EQ(kSenderSsrc + 1, candidate_set[0].ssrc());
}
TEST_F(RtcpReceiverTest, Callbacks) {
MockRtcpCallbackImpl callback;
rtcp_receiver_.RegisterRtcpStatisticsCallback(&callback);
const uint8_t kFractionLoss = 3;
const uint32_t kCumulativeLoss = 7;
const uint32_t kJitter = 9;
const uint16_t kSequenceNumber = 1234;
// First packet, all numbers should just propagate.
rtcp::ReportBlock rb1;
rb1.SetMediaSsrc(kReceiverMainSsrc);
rb1.SetExtHighestSeqNum(kSequenceNumber);
rb1.SetFractionLost(kFractionLoss);
rb1.SetCumulativeLost(kCumulativeLoss);
rb1.SetJitter(kJitter);
rtcp::ReceiverReport rr1;
rr1.SetSenderSsrc(kSenderSsrc);
rr1.AddReportBlock(rb1);
EXPECT_CALL(callback,
StatisticsUpdated(
AllOf(Field(&RtcpStatistics::fraction_lost, kFractionLoss),
Field(&RtcpStatistics::packets_lost, kCumulativeLoss),
Field(&RtcpStatistics::extended_highest_sequence_number,
kSequenceNumber),
Field(&RtcpStatistics::jitter, kJitter)),
kReceiverMainSsrc));
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
InjectRtcpPacket(rr1);
rtcp_receiver_.RegisterRtcpStatisticsCallback(nullptr);
// Add arbitrary numbers, callback should not be called.
rtcp::ReportBlock rb2;
rb2.SetMediaSsrc(kReceiverMainSsrc);
rb2.SetExtHighestSeqNum(kSequenceNumber + 1);
rb2.SetFractionLost(42);
rb2.SetCumulativeLost(137);
rb2.SetJitter(4711);
rtcp::ReceiverReport rr2;
rr2.SetSenderSsrc(kSenderSsrc);
rr2.AddReportBlock(rb2);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedRtcpReportBlocks(_));
EXPECT_CALL(bandwidth_observer_, OnReceivedRtcpReceiverReport(_, _, _));
EXPECT_CALL(callback, StatisticsUpdated(_, _)).Times(0);
InjectRtcpPacket(rr2);
}
TEST_F(RtcpReceiverTest, ReceivesTransportFeedback) {
rtcp::TransportFeedback packet;
packet.SetMediaSsrc(kReceiverMainSsrc);
packet.SetSenderSsrc(kSenderSsrc);
packet.SetBase(1, 1000);
packet.AddReceivedPacket(1, 1000);
EXPECT_CALL(
transport_feedback_observer_,
OnTransportFeedback(AllOf(
Property(&rtcp::TransportFeedback::media_ssrc, kReceiverMainSsrc),
Property(&rtcp::TransportFeedback::sender_ssrc, kSenderSsrc))));
InjectRtcpPacket(packet);
}
TEST_F(RtcpReceiverTest, ReceivesRemb) {
const uint32_t kBitrateBps = 500000;
rtcp::Remb remb;
remb.SetSenderSsrc(kSenderSsrc);
remb.SetBitrateBps(kBitrateBps);
EXPECT_CALL(bandwidth_observer_, OnReceivedEstimatedBitrate(kBitrateBps));
InjectRtcpPacket(remb);
}
TEST_F(RtcpReceiverTest, HandlesInvalidTransportFeedback) {
// Send a compound packet with a TransportFeedback followed by something else.
rtcp::TransportFeedback packet;
packet.SetMediaSsrc(kReceiverMainSsrc);
packet.SetSenderSsrc(kSenderSsrc);
packet.SetBase(1, 1000);
packet.AddReceivedPacket(1, 1000);
static uint32_t kBitrateBps = 50000;
rtcp::Remb remb;
remb.SetSenderSsrc(kSenderSsrc);
remb.SetBitrateBps(kBitrateBps);
rtcp::CompoundPacket compound;
compound.Append(&packet);
compound.Append(&remb);
rtc::Buffer built_packet = compound.Build();
// Modify the TransportFeedback packet so that it is invalid.
const size_t kStatusCountOffset = 14;
ByteWriter<uint16_t>::WriteBigEndian(
&built_packet.data()[kStatusCountOffset], 42);
// Stress no transport feedback is expected.
EXPECT_CALL(transport_feedback_observer_, OnTransportFeedback(_)).Times(0);
// But remb should be processed and cause a callback
EXPECT_CALL(bandwidth_observer_, OnReceivedEstimatedBitrate(kBitrateBps));
InjectRtcpPacket(built_packet);
}
TEST_F(RtcpReceiverTest, Nack) {
const uint16_t kNackList1[] = {1, 2, 3, 5};
const uint16_t kNackList23[] = {5, 7, 30, 40, 41, 58, 59, 61, 63};
const size_t kNackListLength2 = 4;
const size_t kNackListLength3 = arraysize(kNackList23) - kNackListLength2;
std::set<uint16_t> nack_set;
nack_set.insert(std::begin(kNackList1), std::end(kNackList1));
nack_set.insert(std::begin(kNackList23), std::end(kNackList23));
rtcp::Nack nack1;
nack1.SetSenderSsrc(kSenderSsrc);
nack1.SetMediaSsrc(kReceiverMainSsrc);
nack1.SetPacketIds(kNackList1, arraysize(kNackList1));
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedNack(ElementsAreArray(kNackList1)));
EXPECT_CALL(packet_type_counter_observer_,
RtcpPacketTypesCounterUpdated(
kReceiverMainSsrc,
AllOf(Field(&RtcpPacketTypeCounter::nack_requests,
arraysize(kNackList1)),
Field(&RtcpPacketTypeCounter::unique_nack_requests,
arraysize(kNackList1)))));
InjectRtcpPacket(nack1);
rtcp::Nack nack2;
nack2.SetSenderSsrc(kSenderSsrc);
nack2.SetMediaSsrc(kReceiverMainSsrc);
nack2.SetPacketIds(kNackList23, kNackListLength2);
rtcp::Nack nack3;
nack3.SetSenderSsrc(kSenderSsrc);
nack3.SetMediaSsrc(kReceiverMainSsrc);
nack3.SetPacketIds(kNackList23 + kNackListLength2, kNackListLength3);
rtcp::CompoundPacket two_nacks;
two_nacks.Append(&nack2);
two_nacks.Append(&nack3);
EXPECT_CALL(rtp_rtcp_impl_, OnReceivedNack(ElementsAreArray(kNackList23)));
EXPECT_CALL(packet_type_counter_observer_,
RtcpPacketTypesCounterUpdated(
kReceiverMainSsrc,
AllOf(Field(&RtcpPacketTypeCounter::nack_requests,
arraysize(kNackList1) + arraysize(kNackList23)),
Field(&RtcpPacketTypeCounter::unique_nack_requests,
nack_set.size()))));
InjectRtcpPacket(two_nacks);
}
TEST_F(RtcpReceiverTest, NackNotForUsIgnored) {
const uint16_t kNackList1[] = {1, 2, 3, 5};
const size_t kNackListLength1 = std::end(kNackList1) - std::begin(kNackList1);
rtcp::Nack nack;
nack.SetSenderSsrc(kSenderSsrc);
nack.SetMediaSsrc(kNotToUsSsrc);
nack.SetPacketIds(kNackList1, kNackListLength1);
EXPECT_CALL(packet_type_counter_observer_,
RtcpPacketTypesCounterUpdated(
_, Field(&RtcpPacketTypeCounter::nack_requests, 0)));
InjectRtcpPacket(nack);
}
TEST_F(RtcpReceiverTest, ForceSenderReport) {
rtcp::RapidResyncRequest rr;
rr.SetSenderSsrc(kSenderSsrc);
rr.SetMediaSsrc(kReceiverMainSsrc);
EXPECT_CALL(rtp_rtcp_impl_, OnRequestSendReport());
InjectRtcpPacket(rr);
}
TEST_F(RtcpReceiverTest, ReceivesTargetBitrate) {
BitrateAllocation expected_allocation;
expected_allocation.SetBitrate(0, 0, 10000);
expected_allocation.SetBitrate(0, 1, 20000);
expected_allocation.SetBitrate(1, 0, 40000);
expected_allocation.SetBitrate(1, 1, 80000);
rtcp::TargetBitrate bitrate;
bitrate.AddTargetBitrate(0, 0, expected_allocation.GetBitrate(0, 0) / 1000);
bitrate.AddTargetBitrate(0, 1, expected_allocation.GetBitrate(0, 1) / 1000);
bitrate.AddTargetBitrate(1, 0, expected_allocation.GetBitrate(1, 0) / 1000);
bitrate.AddTargetBitrate(1, 1, expected_allocation.GetBitrate(1, 1) / 1000);
rtcp::ExtendedReports xr;
xr.SetTargetBitrate(bitrate);
// Wrong sender ssrc, target bitrate should be discarded.
xr.SetSenderSsrc(kSenderSsrc + 1);
EXPECT_CALL(bitrate_allocation_observer_,
OnBitrateAllocationUpdated(expected_allocation))
.Times(0);
InjectRtcpPacket(xr);
// Set correct ssrc, callback should be called once.
xr.SetSenderSsrc(kSenderSsrc);
EXPECT_CALL(bitrate_allocation_observer_,
OnBitrateAllocationUpdated(expected_allocation));
InjectRtcpPacket(xr);
}
TEST_F(RtcpReceiverTest, HandlesIncorrectTargetBitrate) {
BitrateAllocation expected_allocation;
expected_allocation.SetBitrate(0, 0, 10000);
rtcp::TargetBitrate bitrate;
bitrate.AddTargetBitrate(0, 0, expected_allocation.GetBitrate(0, 0) / 1000);
bitrate.AddTargetBitrate(0, kMaxTemporalStreams, 20000);
bitrate.AddTargetBitrate(kMaxSpatialLayers, 0, 40000);
rtcp::ExtendedReports xr;
xr.SetTargetBitrate(bitrate);
xr.SetSenderSsrc(kSenderSsrc);
EXPECT_CALL(bitrate_allocation_observer_,
OnBitrateAllocationUpdated(expected_allocation));
InjectRtcpPacket(xr);
}
} // namespace webrtc