|  | /* | 
|  | *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h" | 
|  |  | 
|  | #include <string.h> | 
|  | #include <vector> | 
|  |  | 
|  | #include "webrtc/base/checks.h" | 
|  | #include "webrtc/base/logging.h" | 
|  | #include "webrtc/modules/include/module_common_types.h" | 
|  | #include "webrtc/modules/rtp_rtcp/source/byte_io.h" | 
|  | #include "webrtc/common_video/h264/sps_vui_rewriter.h" | 
|  | #include "webrtc/common_video/h264/h264_common.h" | 
|  | #include "webrtc/common_video/h264/sps_parser.h" | 
|  | #include "webrtc/system_wrappers/include/metrics.h" | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace { | 
|  |  | 
|  | static const size_t kNalHeaderSize = 1; | 
|  | static const size_t kFuAHeaderSize = 2; | 
|  | static const size_t kLengthFieldSize = 2; | 
|  | static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize; | 
|  |  | 
|  | static const char* kSpsValidHistogramName = "WebRTC.Video.H264.SpsValid"; | 
|  | enum SpsValidEvent { | 
|  | kReceivedSpsPocOk = 0, | 
|  | kReceivedSpsVuiOk = 1, | 
|  | kReceivedSpsRewritten = 2, | 
|  | kReceivedSpsParseFailure = 3, | 
|  | kSentSpsPocOk = 4, | 
|  | kSentSpsVuiOk = 5, | 
|  | kSentSpsRewritten = 6, | 
|  | kSentSpsParseFailure = 7, | 
|  | kSpsRewrittenMax = 8 | 
|  | }; | 
|  |  | 
|  | // Bit masks for FU (A and B) indicators. | 
|  | enum NalDefs : uint8_t { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; | 
|  |  | 
|  | // Bit masks for FU (A and B) headers. | 
|  | enum FuDefs : uint8_t { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; | 
|  |  | 
|  | // TODO(pbos): Avoid parsing this here as well as inside the jitter buffer. | 
|  | bool ParseStapAStartOffsets(const uint8_t* nalu_ptr, | 
|  | size_t length_remaining, | 
|  | std::vector<size_t>* offsets) { | 
|  | size_t offset = 0; | 
|  | while (length_remaining > 0) { | 
|  | // Buffer doesn't contain room for additional nalu length. | 
|  | if (length_remaining < sizeof(uint16_t)) | 
|  | return false; | 
|  | uint16_t nalu_size = ByteReader<uint16_t>::ReadBigEndian(nalu_ptr); | 
|  | nalu_ptr += sizeof(uint16_t); | 
|  | length_remaining -= sizeof(uint16_t); | 
|  | if (nalu_size > length_remaining) | 
|  | return false; | 
|  | nalu_ptr += nalu_size; | 
|  | length_remaining -= nalu_size; | 
|  |  | 
|  | offsets->push_back(offset + kStapAHeaderSize); | 
|  | offset += kLengthFieldSize + nalu_size; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type, | 
|  | size_t max_payload_len) | 
|  | : max_payload_len_(max_payload_len) {} | 
|  |  | 
|  | RtpPacketizerH264::~RtpPacketizerH264() { | 
|  | } | 
|  |  | 
|  | RtpPacketizerH264::Fragment::Fragment(const uint8_t* buffer, size_t length) | 
|  | : buffer(buffer), length(length) {} | 
|  | RtpPacketizerH264::Fragment::Fragment(const Fragment& fragment) | 
|  | : buffer(fragment.buffer), length(fragment.length) {} | 
|  |  | 
|  | void RtpPacketizerH264::SetPayloadData( | 
|  | const uint8_t* payload_data, | 
|  | size_t payload_size, | 
|  | const RTPFragmentationHeader* fragmentation) { | 
|  | RTC_DCHECK(packets_.empty()); | 
|  | RTC_DCHECK(input_fragments_.empty()); | 
|  | RTC_DCHECK(fragmentation); | 
|  | for (int i = 0; i < fragmentation->fragmentationVectorSize; ++i) { | 
|  | const uint8_t* buffer = | 
|  | &payload_data[fragmentation->fragmentationOffset[i]]; | 
|  | size_t length = fragmentation->fragmentationLength[i]; | 
|  |  | 
|  | bool updated_sps = false; | 
|  | H264::NaluType nalu_type = H264::ParseNaluType(buffer[0]); | 
|  | if (nalu_type == H264::NaluType::kSps) { | 
|  | // Check if stream uses picture order count type 0, and if so rewrite it | 
|  | // to enable faster decoding. Streams in that format incur additional | 
|  | // delay because it allows decode order to differ from render order. | 
|  | // The mechanism used is to rewrite (edit or add) the SPS's VUI to contain | 
|  | // restrictions on the maximum number of reordered pictures. This reduces | 
|  | // latency significantly, though it still adds about a frame of latency to | 
|  | // decoding. | 
|  | // Note that we do this rewriting both here (send side, in order to | 
|  | // protect legacy receive clients) and below in | 
|  | // RtpDepacketizerH264::ParseSingleNalu (receive side, in orderer to | 
|  | // protect us from unknown or legacy send clients). | 
|  |  | 
|  | // Create temporary RBSP decoded buffer of the payload (exlcuding the | 
|  | // leading nalu type header byte (the SpsParser uses only the payload). | 
|  | std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp( | 
|  | buffer + H264::kNaluTypeSize, length - H264::kNaluTypeSize); | 
|  | rtc::Optional<SpsParser::SpsState> sps; | 
|  |  | 
|  | std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer()); | 
|  | // Add the type header to the output buffer first, so that the rewriter | 
|  | // can append modified payload on top of that. | 
|  | output_buffer->AppendData(buffer[0]); | 
|  | SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps( | 
|  | rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get()); | 
|  |  | 
|  | switch (result) { | 
|  | case SpsVuiRewriter::ParseResult::kVuiRewritten: | 
|  | input_fragments_.push_back( | 
|  | Fragment(output_buffer->data(), output_buffer->size())); | 
|  | input_fragments_.rbegin()->tmp_buffer = std::move(output_buffer); | 
|  | updated_sps = true; | 
|  | RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, | 
|  | SpsValidEvent::kSentSpsRewritten, | 
|  | SpsValidEvent::kSpsRewrittenMax); | 
|  | break; | 
|  | case SpsVuiRewriter::ParseResult::kPocOk: | 
|  | RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, | 
|  | SpsValidEvent::kSentSpsPocOk, | 
|  | SpsValidEvent::kSpsRewrittenMax); | 
|  | break; | 
|  | case SpsVuiRewriter::ParseResult::kVuiOk: | 
|  | RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, | 
|  | SpsValidEvent::kSentSpsVuiOk, | 
|  | SpsValidEvent::kSpsRewrittenMax); | 
|  | break; | 
|  | case SpsVuiRewriter::ParseResult::kFailure: | 
|  | RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, | 
|  | SpsValidEvent::kSentSpsParseFailure, | 
|  | SpsValidEvent::kSpsRewrittenMax); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!updated_sps) | 
|  | input_fragments_.push_back(Fragment(buffer, length)); | 
|  | } | 
|  | GeneratePackets(); | 
|  | } | 
|  |  | 
|  | void RtpPacketizerH264::GeneratePackets() { | 
|  | for (size_t i = 0; i < input_fragments_.size();) { | 
|  | if (input_fragments_[i].length > max_payload_len_) { | 
|  | PacketizeFuA(i); | 
|  | ++i; | 
|  | } else { | 
|  | i = PacketizeStapA(i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void RtpPacketizerH264::PacketizeFuA(size_t fragment_index) { | 
|  | // Fragment payload into packets (FU-A). | 
|  | // Strip out the original header and leave room for the FU-A header. | 
|  | const Fragment& fragment = input_fragments_[fragment_index]; | 
|  |  | 
|  | size_t fragment_length = fragment.length - kNalHeaderSize; | 
|  | size_t offset = kNalHeaderSize; | 
|  | size_t bytes_available = max_payload_len_ - kFuAHeaderSize; | 
|  | const size_t num_fragments = | 
|  | (fragment_length + (bytes_available - 1)) / bytes_available; | 
|  |  | 
|  | const size_t avg_size = (fragment_length + num_fragments - 1) / num_fragments; | 
|  | while (fragment_length > 0) { | 
|  | size_t packet_length = avg_size; | 
|  | if (fragment_length < avg_size) | 
|  | packet_length = fragment_length; | 
|  | packets_.push(PacketUnit(Fragment(fragment.buffer + offset, packet_length), | 
|  | offset - kNalHeaderSize == 0, | 
|  | fragment_length == packet_length, false, | 
|  | fragment.buffer[0])); | 
|  | offset += packet_length; | 
|  | fragment_length -= packet_length; | 
|  | } | 
|  | RTC_CHECK_EQ(0u, fragment_length); | 
|  | } | 
|  |  | 
|  | size_t RtpPacketizerH264::PacketizeStapA(size_t fragment_index) { | 
|  | // Aggregate fragments into one packet (STAP-A). | 
|  | size_t payload_size_left = max_payload_len_; | 
|  | int aggregated_fragments = 0; | 
|  | size_t fragment_headers_length = 0; | 
|  | const Fragment* fragment = &input_fragments_[fragment_index]; | 
|  | RTC_CHECK_GE(payload_size_left, fragment->length); | 
|  | while (payload_size_left >= fragment->length + fragment_headers_length) { | 
|  | RTC_CHECK_GT(fragment->length, 0u); | 
|  | packets_.push(PacketUnit(*fragment, aggregated_fragments == 0, false, true, | 
|  | fragment->buffer[0])); | 
|  | payload_size_left -= fragment->length; | 
|  | payload_size_left -= fragment_headers_length; | 
|  |  | 
|  | // Next fragment. | 
|  | ++fragment_index; | 
|  | if (fragment_index == input_fragments_.size()) | 
|  | break; | 
|  | fragment = &input_fragments_[fragment_index]; | 
|  |  | 
|  | fragment_headers_length = kLengthFieldSize; | 
|  | // If we are going to try to aggregate more fragments into this packet | 
|  | // we need to add the STAP-A NALU header and a length field for the first | 
|  | // NALU of this packet. | 
|  | if (aggregated_fragments == 0) | 
|  | fragment_headers_length += kNalHeaderSize + kLengthFieldSize; | 
|  | ++aggregated_fragments; | 
|  | } | 
|  | packets_.back().last_fragment = true; | 
|  | return fragment_index; | 
|  | } | 
|  |  | 
|  | bool RtpPacketizerH264::NextPacket(uint8_t* buffer, | 
|  | size_t* bytes_to_send, | 
|  | bool* last_packet) { | 
|  | *bytes_to_send = 0; | 
|  | if (packets_.empty()) { | 
|  | *bytes_to_send = 0; | 
|  | *last_packet = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | PacketUnit packet = packets_.front(); | 
|  |  | 
|  | if (packet.first_fragment && packet.last_fragment) { | 
|  | // Single NAL unit packet. | 
|  | *bytes_to_send = packet.source_fragment.length; | 
|  | memcpy(buffer, packet.source_fragment.buffer, *bytes_to_send); | 
|  | packets_.pop(); | 
|  | input_fragments_.pop_front(); | 
|  | RTC_CHECK_LE(*bytes_to_send, max_payload_len_); | 
|  | } else if (packet.aggregated) { | 
|  | NextAggregatePacket(buffer, bytes_to_send); | 
|  | RTC_CHECK_LE(*bytes_to_send, max_payload_len_); | 
|  | } else { | 
|  | NextFragmentPacket(buffer, bytes_to_send); | 
|  | RTC_CHECK_LE(*bytes_to_send, max_payload_len_); | 
|  | } | 
|  | *last_packet = packets_.empty(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer, | 
|  | size_t* bytes_to_send) { | 
|  | PacketUnit* packet = &packets_.front(); | 
|  | RTC_CHECK(packet->first_fragment); | 
|  | // STAP-A NALU header. | 
|  | buffer[0] = (packet->header & (kFBit | kNriMask)) | H264::NaluType::kStapA; | 
|  | int index = kNalHeaderSize; | 
|  | *bytes_to_send += kNalHeaderSize; | 
|  | while (packet->aggregated) { | 
|  | const Fragment& fragment = packet->source_fragment; | 
|  | // Add NAL unit length field. | 
|  | ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], fragment.length); | 
|  | index += kLengthFieldSize; | 
|  | *bytes_to_send += kLengthFieldSize; | 
|  | // Add NAL unit. | 
|  | memcpy(&buffer[index], fragment.buffer, fragment.length); | 
|  | index += fragment.length; | 
|  | *bytes_to_send += fragment.length; | 
|  | packets_.pop(); | 
|  | input_fragments_.pop_front(); | 
|  | if (packet->last_fragment) | 
|  | break; | 
|  | packet = &packets_.front(); | 
|  | } | 
|  | RTC_CHECK(packet->last_fragment); | 
|  | } | 
|  |  | 
|  | void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer, | 
|  | size_t* bytes_to_send) { | 
|  | PacketUnit* packet = &packets_.front(); | 
|  | // NAL unit fragmented over multiple packets (FU-A). | 
|  | // We do not send original NALU header, so it will be replaced by the | 
|  | // FU indicator header of the first packet. | 
|  | uint8_t fu_indicator = | 
|  | (packet->header & (kFBit | kNriMask)) | H264::NaluType::kFuA; | 
|  | uint8_t fu_header = 0; | 
|  |  | 
|  | // S | E | R | 5 bit type. | 
|  | fu_header |= (packet->first_fragment ? kSBit : 0); | 
|  | fu_header |= (packet->last_fragment ? kEBit : 0); | 
|  | uint8_t type = packet->header & kTypeMask; | 
|  | fu_header |= type; | 
|  | buffer[0] = fu_indicator; | 
|  | buffer[1] = fu_header; | 
|  |  | 
|  | const Fragment& fragment = packet->source_fragment; | 
|  | *bytes_to_send = fragment.length + kFuAHeaderSize; | 
|  | memcpy(buffer + kFuAHeaderSize, fragment.buffer, fragment.length); | 
|  | if (packet->last_fragment) | 
|  | input_fragments_.pop_front(); | 
|  | packets_.pop(); | 
|  | } | 
|  |  | 
|  | ProtectionType RtpPacketizerH264::GetProtectionType() { | 
|  | return kProtectedPacket; | 
|  | } | 
|  |  | 
|  | StorageType RtpPacketizerH264::GetStorageType( | 
|  | uint32_t retransmission_settings) { | 
|  | return kAllowRetransmission; | 
|  | } | 
|  |  | 
|  | std::string RtpPacketizerH264::ToString() { | 
|  | return "RtpPacketizerH264"; | 
|  | } | 
|  |  | 
|  | RtpDepacketizerH264::RtpDepacketizerH264() : offset_(0), length_(0) {} | 
|  | RtpDepacketizerH264::~RtpDepacketizerH264() {} | 
|  |  | 
|  | bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload, | 
|  | const uint8_t* payload_data, | 
|  | size_t payload_data_length) { | 
|  | RTC_CHECK(parsed_payload != nullptr); | 
|  | if (payload_data_length == 0) { | 
|  | LOG(LS_ERROR) << "Empty payload."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | offset_ = 0; | 
|  | length_ = payload_data_length; | 
|  | modified_buffer_.reset(); | 
|  |  | 
|  | uint8_t nal_type = payload_data[0] & kTypeMask; | 
|  | if (nal_type == H264::NaluType::kFuA) { | 
|  | // Fragmented NAL units (FU-A). | 
|  | if (!ParseFuaNalu(parsed_payload, payload_data)) | 
|  | return false; | 
|  | } else { | 
|  | // We handle STAP-A and single NALU's the same way here. The jitter buffer | 
|  | // will depacketize the STAP-A into NAL units later. | 
|  | // TODO(sprang): Parse STAP-A offsets here and store in fragmentation vec. | 
|  | if (!ProcessStapAOrSingleNalu(parsed_payload, payload_data)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const uint8_t* payload = | 
|  | modified_buffer_ ? modified_buffer_->data() : payload_data; | 
|  |  | 
|  | parsed_payload->payload = payload + offset_; | 
|  | parsed_payload->payload_length = length_; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RtpDepacketizerH264::ProcessStapAOrSingleNalu( | 
|  | ParsedPayload* parsed_payload, | 
|  | const uint8_t* payload_data) { | 
|  | parsed_payload->type.Video.width = 0; | 
|  | parsed_payload->type.Video.height = 0; | 
|  | parsed_payload->type.Video.codec = kRtpVideoH264; | 
|  | parsed_payload->type.Video.isFirstPacket = true; | 
|  | RTPVideoHeaderH264* h264_header = | 
|  | &parsed_payload->type.Video.codecHeader.H264; | 
|  |  | 
|  | const uint8_t* nalu_start = payload_data + kNalHeaderSize; | 
|  | const size_t nalu_length = length_ - kNalHeaderSize; | 
|  | uint8_t nal_type = payload_data[0] & kTypeMask; | 
|  | std::vector<size_t> nalu_start_offsets; | 
|  | if (nal_type == H264::NaluType::kStapA) { | 
|  | // Skip the StapA header (StapA NAL type + length). | 
|  | if (length_ <= kStapAHeaderSize) { | 
|  | LOG(LS_ERROR) << "StapA header truncated."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!ParseStapAStartOffsets(nalu_start, nalu_length, &nalu_start_offsets)) { | 
|  | LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | h264_header->packetization_type = kH264StapA; | 
|  | nal_type = payload_data[kStapAHeaderSize] & kTypeMask; | 
|  | } else { | 
|  | h264_header->packetization_type = kH264SingleNalu; | 
|  | nalu_start_offsets.push_back(0); | 
|  | } | 
|  | h264_header->nalu_type = nal_type; | 
|  | parsed_payload->frame_type = kVideoFrameDelta; | 
|  |  | 
|  | nalu_start_offsets.push_back(length_ + kLengthFieldSize);  // End offset. | 
|  | for (size_t i = 0; i < nalu_start_offsets.size() - 1; ++i) { | 
|  | size_t start_offset = nalu_start_offsets[i]; | 
|  | // End offset is actually start offset for next unit, excluding length field | 
|  | // so remove that from this units length. | 
|  | size_t end_offset = nalu_start_offsets[i + 1] - kLengthFieldSize; | 
|  | if (end_offset - start_offset < H264::kNaluTypeSize) { | 
|  | LOG(LS_ERROR) << "STAP-A packet too short"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | nal_type = payload_data[start_offset] & kTypeMask; | 
|  | start_offset += H264::kNaluTypeSize; | 
|  |  | 
|  | if (nal_type == H264::NaluType::kSps) { | 
|  | // Check if VUI is present in SPS and if it needs to be modified to avoid | 
|  | // excessive decoder latency. | 
|  |  | 
|  | // Copy any previous data first (likely just the first header). | 
|  | std::unique_ptr<rtc::Buffer> output_buffer(new rtc::Buffer()); | 
|  | if (start_offset) | 
|  | output_buffer->AppendData(payload_data, start_offset); | 
|  |  | 
|  | // RBSP decode of payload data. | 
|  | std::unique_ptr<rtc::Buffer> rbsp_buffer = H264::ParseRbsp( | 
|  | &payload_data[start_offset], end_offset - start_offset); | 
|  | rtc::Optional<SpsParser::SpsState> sps; | 
|  |  | 
|  | SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps( | 
|  | rbsp_buffer->data(), rbsp_buffer->size(), &sps, output_buffer.get()); | 
|  | switch (result) { | 
|  | case SpsVuiRewriter::ParseResult::kVuiRewritten: | 
|  | if (modified_buffer_) { | 
|  | LOG(LS_WARNING) << "More than one H264 SPS NAL units needing " | 
|  | "rewriting found within a single STAP-A packet. " | 
|  | "Keeping the first and rewriting the last."; | 
|  | } | 
|  |  | 
|  | // Rewrite length field to new SPS size. | 
|  | if (h264_header->packetization_type == kH264StapA) { | 
|  | size_t length_field_offset = | 
|  | start_offset - (H264::kNaluTypeSize + kLengthFieldSize); | 
|  | // Stap-A Length includes payload data and type header. | 
|  | size_t rewritten_size = | 
|  | output_buffer->size() - start_offset + H264::kNaluTypeSize; | 
|  | ByteWriter<uint16_t>::WriteBigEndian( | 
|  | &(*output_buffer)[length_field_offset], rewritten_size); | 
|  | } | 
|  |  | 
|  | // Append rest of packet. | 
|  | output_buffer->AppendData(&payload_data[end_offset], | 
|  | nalu_length + kNalHeaderSize - end_offset); | 
|  |  | 
|  | modified_buffer_ = std::move(output_buffer); | 
|  | length_ = modified_buffer_->size(); | 
|  |  | 
|  | RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, | 
|  | SpsValidEvent::kReceivedSpsRewritten, | 
|  | SpsValidEvent::kSpsRewrittenMax); | 
|  | break; | 
|  | case SpsVuiRewriter::ParseResult::kPocOk: | 
|  | RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, | 
|  | SpsValidEvent::kReceivedSpsPocOk, | 
|  | SpsValidEvent::kSpsRewrittenMax); | 
|  | break; | 
|  | case SpsVuiRewriter::ParseResult::kVuiOk: | 
|  | RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, | 
|  | SpsValidEvent::kReceivedSpsVuiOk, | 
|  | SpsValidEvent::kSpsRewrittenMax); | 
|  | break; | 
|  | case SpsVuiRewriter::ParseResult::kFailure: | 
|  | RTC_HISTOGRAM_ENUMERATION(kSpsValidHistogramName, | 
|  | SpsValidEvent::kReceivedSpsParseFailure, | 
|  | SpsValidEvent::kSpsRewrittenMax); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (sps) { | 
|  | parsed_payload->type.Video.width = sps->width; | 
|  | parsed_payload->type.Video.height = sps->height; | 
|  | } | 
|  | parsed_payload->frame_type = kVideoFrameKey; | 
|  | } else if (nal_type == H264::NaluType::kPps || | 
|  | nal_type == H264::NaluType::kSei || | 
|  | nal_type == H264::NaluType::kIdr) { | 
|  | parsed_payload->frame_type = kVideoFrameKey; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RtpDepacketizerH264::ParseFuaNalu( | 
|  | RtpDepacketizer::ParsedPayload* parsed_payload, | 
|  | const uint8_t* payload_data) { | 
|  | if (length_ < kFuAHeaderSize) { | 
|  | LOG(LS_ERROR) << "FU-A NAL units truncated."; | 
|  | return false; | 
|  | } | 
|  | uint8_t fnri = payload_data[0] & (kFBit | kNriMask); | 
|  | uint8_t original_nal_type = payload_data[1] & kTypeMask; | 
|  | bool first_fragment = (payload_data[1] & kSBit) > 0; | 
|  |  | 
|  | if (first_fragment) { | 
|  | offset_ = 0; | 
|  | length_ -= kNalHeaderSize; | 
|  | uint8_t original_nal_header = fnri | original_nal_type; | 
|  | modified_buffer_.reset(new rtc::Buffer()); | 
|  | modified_buffer_->AppendData(payload_data + kNalHeaderSize, length_); | 
|  | (*modified_buffer_)[0] = original_nal_header; | 
|  | } else { | 
|  | offset_ = kFuAHeaderSize; | 
|  | length_ -= kFuAHeaderSize; | 
|  | } | 
|  |  | 
|  | if (original_nal_type == H264::NaluType::kIdr) { | 
|  | parsed_payload->frame_type = kVideoFrameKey; | 
|  | } else { | 
|  | parsed_payload->frame_type = kVideoFrameDelta; | 
|  | } | 
|  | parsed_payload->type.Video.width = 0; | 
|  | parsed_payload->type.Video.height = 0; | 
|  | parsed_payload->type.Video.codec = kRtpVideoH264; | 
|  | parsed_payload->type.Video.isFirstPacket = first_fragment; | 
|  | RTPVideoHeaderH264* h264_header = | 
|  | &parsed_payload->type.Video.codecHeader.H264; | 
|  | h264_header->packetization_type = kH264FuA; | 
|  | h264_header->nalu_type = original_nal_type; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |