blob: 26e46a69958ce7f66ce7a0db0969b7c3610e7aca [file] [log] [blame]
henrike@webrtc.org1a02faa2014-10-28 22:20:111/*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "webrtc/p2p/base/basicpacketsocketfactory.h"
12#include "webrtc/p2p/base/portproxy.h"
13#include "webrtc/p2p/base/relayport.h"
14#include "webrtc/p2p/base/stunport.h"
15#include "webrtc/p2p/base/tcpport.h"
16#include "webrtc/p2p/base/testrelayserver.h"
17#include "webrtc/p2p/base/teststunserver.h"
18#include "webrtc/p2p/base/testturnserver.h"
19#include "webrtc/p2p/base/transport.h"
20#include "webrtc/p2p/base/turnport.h"
21#include "webrtc/base/crc32.h"
22#include "webrtc/base/gunit.h"
23#include "webrtc/base/helpers.h"
24#include "webrtc/base/logging.h"
25#include "webrtc/base/natserver.h"
26#include "webrtc/base/natsocketfactory.h"
27#include "webrtc/base/physicalsocketserver.h"
28#include "webrtc/base/scoped_ptr.h"
29#include "webrtc/base/socketaddress.h"
30#include "webrtc/base/ssladapter.h"
31#include "webrtc/base/stringutils.h"
32#include "webrtc/base/thread.h"
33#include "webrtc/base/virtualsocketserver.h"
34
35using rtc::AsyncPacketSocket;
36using rtc::ByteBuffer;
37using rtc::NATType;
38using rtc::NAT_OPEN_CONE;
39using rtc::NAT_ADDR_RESTRICTED;
40using rtc::NAT_PORT_RESTRICTED;
41using rtc::NAT_SYMMETRIC;
42using rtc::PacketSocketFactory;
43using rtc::scoped_ptr;
44using rtc::Socket;
45using rtc::SocketAddress;
46using namespace cricket;
47
48static const int kTimeout = 1000;
49static const SocketAddress kLocalAddr1("192.168.1.2", 0);
50static const SocketAddress kLocalAddr2("192.168.1.3", 0);
51static const SocketAddress kNatAddr1("77.77.77.77", rtc::NAT_SERVER_PORT);
52static const SocketAddress kNatAddr2("88.88.88.88", rtc::NAT_SERVER_PORT);
53static const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT);
54static const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000);
55static const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001);
56static const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002);
57static const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003);
58static const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004);
59static const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005);
60static const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT);
61static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
62static const RelayCredentials kRelayCredentials("test", "test");
63
64// TODO: Update these when RFC5245 is completely supported.
65// Magic value of 30 is from RFC3484, for IPv4 addresses.
66static const uint32 kDefaultPrflxPriority = ICE_TYPE_PREFERENCE_PRFLX << 24 |
67 30 << 8 | (256 - ICE_CANDIDATE_COMPONENT_DEFAULT);
68static const int STUN_ERROR_BAD_REQUEST_AS_GICE =
69 STUN_ERROR_BAD_REQUEST / 256 * 100 + STUN_ERROR_BAD_REQUEST % 256;
70static const int STUN_ERROR_UNAUTHORIZED_AS_GICE =
71 STUN_ERROR_UNAUTHORIZED / 256 * 100 + STUN_ERROR_UNAUTHORIZED % 256;
72static const int STUN_ERROR_SERVER_ERROR_AS_GICE =
73 STUN_ERROR_SERVER_ERROR / 256 * 100 + STUN_ERROR_SERVER_ERROR % 256;
74
75static const int kTiebreaker1 = 11111;
76static const int kTiebreaker2 = 22222;
77
78static Candidate GetCandidate(Port* port) {
79 assert(port->Candidates().size() == 1);
80 return port->Candidates()[0];
81}
82
83static SocketAddress GetAddress(Port* port) {
84 return GetCandidate(port).address();
85}
86
87static IceMessage* CopyStunMessage(const IceMessage* src) {
88 IceMessage* dst = new IceMessage();
89 ByteBuffer buf;
90 src->Write(&buf);
91 dst->Read(&buf);
92 return dst;
93}
94
95static bool WriteStunMessage(const StunMessage* msg, ByteBuffer* buf) {
96 buf->Resize(0); // clear out any existing buffer contents
97 return msg->Write(buf);
98}
99
100// Stub port class for testing STUN generation and processing.
101class TestPort : public Port {
102 public:
pkasting@chromium.org8645a5a2014-11-06 20:19:22103 TestPort(rtc::Thread* thread,
104 const std::string& type,
105 rtc::PacketSocketFactory* factory,
106 rtc::Network* network,
107 const rtc::IPAddress& ip,
108 uint16 min_port,
109 uint16 max_port,
110 const std::string& username_fragment,
111 const std::string& password)
112 : Port(thread, type, factory, network, ip, min_port, max_port,
113 username_fragment, password) {
henrike@webrtc.org1a02faa2014-10-28 22:20:11114 }
115 ~TestPort() {}
116
117 // Expose GetStunMessage so that we can test it.
118 using cricket::Port::GetStunMessage;
119
120 // The last StunMessage that was sent on this Port.
121 // TODO: Make these const; requires changes to SendXXXXResponse.
122 ByteBuffer* last_stun_buf() { return last_stun_buf_.get(); }
123 IceMessage* last_stun_msg() { return last_stun_msg_.get(); }
124 int last_stun_error_code() {
125 int code = 0;
126 if (last_stun_msg_) {
127 const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode();
128 if (error_attr) {
129 code = error_attr->code();
130 }
131 }
132 return code;
133 }
134
135 virtual void PrepareAddress() {
136 rtc::SocketAddress addr(ip(), min_port());
137 AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", Type(),
138 ICE_TYPE_PREFERENCE_HOST, 0, true);
139 }
140
141 // Exposed for testing candidate building.
142 void AddCandidateAddress(const rtc::SocketAddress& addr) {
143 AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", Type(),
144 type_preference_, 0, false);
145 }
146 void AddCandidateAddress(const rtc::SocketAddress& addr,
147 const rtc::SocketAddress& base_address,
148 const std::string& type,
149 int type_preference,
150 bool final) {
151 AddAddress(addr, base_address, rtc::SocketAddress(), "udp", "", type,
152 type_preference, 0, final);
153 }
154
155 virtual Connection* CreateConnection(const Candidate& remote_candidate,
156 CandidateOrigin origin) {
157 Connection* conn = new ProxyConnection(this, 0, remote_candidate);
158 AddConnection(conn);
159 // Set use-candidate attribute flag as this will add USE-CANDIDATE attribute
160 // in STUN binding requests.
161 conn->set_use_candidate_attr(true);
162 return conn;
163 }
164 virtual int SendTo(
165 const void* data, size_t size, const rtc::SocketAddress& addr,
166 const rtc::PacketOptions& options, bool payload) {
167 if (!payload) {
168 IceMessage* msg = new IceMessage;
169 ByteBuffer* buf = new ByteBuffer(static_cast<const char*>(data), size);
170 ByteBuffer::ReadPosition pos(buf->GetReadPosition());
171 if (!msg->Read(buf)) {
172 delete msg;
173 delete buf;
174 return -1;
175 }
176 buf->SetReadPosition(pos);
177 last_stun_buf_.reset(buf);
178 last_stun_msg_.reset(msg);
179 }
180 return static_cast<int>(size);
181 }
182 virtual int SetOption(rtc::Socket::Option opt, int value) {
183 return 0;
184 }
185 virtual int GetOption(rtc::Socket::Option opt, int* value) {
186 return -1;
187 }
188 virtual int GetError() {
189 return 0;
190 }
191 void Reset() {
192 last_stun_buf_.reset();
193 last_stun_msg_.reset();
194 }
195 void set_type_preference(int type_preference) {
196 type_preference_ = type_preference;
197 }
198
199 private:
200 rtc::scoped_ptr<ByteBuffer> last_stun_buf_;
201 rtc::scoped_ptr<IceMessage> last_stun_msg_;
202 int type_preference_;
203};
204
205class TestChannel : public sigslot::has_slots<> {
206 public:
207 // Takes ownership of |p1| (but not |p2|).
208 TestChannel(Port* p1, Port* p2)
209 : ice_mode_(ICEMODE_FULL), src_(p1), dst_(p2), complete_count_(0),
pthatcher@webrtc.org8aac6ec2015-01-10 00:47:02210 conn_(NULL), remote_request_(), nominated_(false) {
henrike@webrtc.org1a02faa2014-10-28 22:20:11211 src_->SignalPortComplete.connect(
212 this, &TestChannel::OnPortComplete);
213 src_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress);
214 src_->SignalDestroyed.connect(this, &TestChannel::OnSrcPortDestroyed);
215 }
216
217 int complete_count() { return complete_count_; }
218 Connection* conn() { return conn_; }
219 const SocketAddress& remote_address() { return remote_address_; }
220 const std::string remote_fragment() { return remote_frag_; }
221
222 void Start() {
223 src_->PrepareAddress();
224 }
225 void CreateConnection() {
226 conn_ = src_->CreateConnection(GetCandidate(dst_), Port::ORIGIN_MESSAGE);
227 IceMode remote_ice_mode =
228 (ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL;
229 conn_->set_remote_ice_mode(remote_ice_mode);
230 conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL);
231 conn_->SignalStateChange.connect(
232 this, &TestChannel::OnConnectionStateChange);
233 }
234 void OnConnectionStateChange(Connection* conn) {
235 if (conn->write_state() == Connection::STATE_WRITABLE) {
236 conn->set_use_candidate_attr(true);
237 nominated_ = true;
238 }
239 }
240 void AcceptConnection() {
241 ASSERT_TRUE(remote_request_.get() != NULL);
242 Candidate c = GetCandidate(dst_);
243 c.set_address(remote_address_);
244 conn_ = src_->CreateConnection(c, Port::ORIGIN_MESSAGE);
245 src_->SendBindingResponse(remote_request_.get(), remote_address_);
246 remote_request_.reset();
247 }
248 void Ping() {
249 Ping(0);
250 }
251 void Ping(uint32 now) {
252 conn_->Ping(now);
253 }
254 void Stop() {
255 conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
256 conn_->Destroy();
257 }
258
259 void OnPortComplete(Port* port) {
260 complete_count_++;
261 }
262 void SetIceMode(IceMode ice_mode) {
263 ice_mode_ = ice_mode;
264 }
265
266 void OnUnknownAddress(PortInterface* port, const SocketAddress& addr,
267 ProtocolType proto,
268 IceMessage* msg, const std::string& rf,
269 bool /*port_muxed*/) {
270 ASSERT_EQ(src_.get(), port);
271 if (!remote_address_.IsNil()) {
272 ASSERT_EQ(remote_address_, addr);
273 }
274 // MI and PRIORITY attribute should be present in ping requests when port
275 // is in ICEPROTO_RFC5245 mode.
276 const cricket::StunUInt32Attribute* priority_attr =
277 msg->GetUInt32(STUN_ATTR_PRIORITY);
278 const cricket::StunByteStringAttribute* mi_attr =
279 msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
280 const cricket::StunUInt32Attribute* fingerprint_attr =
281 msg->GetUInt32(STUN_ATTR_FINGERPRINT);
282 if (src_->IceProtocol() == cricket::ICEPROTO_RFC5245) {
283 EXPECT_TRUE(priority_attr != NULL);
284 EXPECT_TRUE(mi_attr != NULL);
285 EXPECT_TRUE(fingerprint_attr != NULL);
286 } else {
287 EXPECT_TRUE(priority_attr == NULL);
288 EXPECT_TRUE(mi_attr == NULL);
289 EXPECT_TRUE(fingerprint_attr == NULL);
290 }
291 remote_address_ = addr;
292 remote_request_.reset(CopyStunMessage(msg));
293 remote_frag_ = rf;
294 }
295
296 void OnDestroyed(Connection* conn) {
297 ASSERT_EQ(conn_, conn);
298 conn_ = NULL;
299 }
300
301 void OnSrcPortDestroyed(PortInterface* port) {
302 Port* destroyed_src = src_.release();
303 ASSERT_EQ(destroyed_src, port);
304 }
305
306 bool nominated() const { return nominated_; }
307
308 private:
309 IceMode ice_mode_;
310 rtc::scoped_ptr<Port> src_;
311 Port* dst_;
312
313 int complete_count_;
314 Connection* conn_;
315 SocketAddress remote_address_;
316 rtc::scoped_ptr<StunMessage> remote_request_;
317 std::string remote_frag_;
318 bool nominated_;
319};
320
321class PortTest : public testing::Test, public sigslot::has_slots<> {
322 public:
323 PortTest()
324 : main_(rtc::Thread::Current()),
325 pss_(new rtc::PhysicalSocketServer),
326 ss_(new rtc::VirtualSocketServer(pss_.get())),
327 ss_scope_(ss_.get()),
328 network_("unittest", "unittest", rtc::IPAddress(INADDR_ANY), 32),
329 socket_factory_(rtc::Thread::Current()),
330 nat_factory1_(ss_.get(), kNatAddr1),
331 nat_factory2_(ss_.get(), kNatAddr2),
332 nat_socket_factory1_(&nat_factory1_),
333 nat_socket_factory2_(&nat_factory2_),
334 stun_server_(TestStunServer::Create(main_, kStunAddr)),
335 turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr),
336 relay_server_(main_, kRelayUdpIntAddr, kRelayUdpExtAddr,
337 kRelayTcpIntAddr, kRelayTcpExtAddr,
338 kRelaySslTcpIntAddr, kRelaySslTcpExtAddr),
339 username_(rtc::CreateRandomString(ICE_UFRAG_LENGTH)),
340 password_(rtc::CreateRandomString(ICE_PWD_LENGTH)),
341 ice_protocol_(cricket::ICEPROTO_GOOGLE),
342 role_conflict_(false),
343 destroyed_(false) {
344 network_.AddIP(rtc::IPAddress(INADDR_ANY));
345 }
346
347 protected:
348 void TestLocalToLocal() {
349 Port* port1 = CreateUdpPort(kLocalAddr1);
350 Port* port2 = CreateUdpPort(kLocalAddr2);
351 TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
352 }
353 void TestLocalToStun(NATType ntype) {
354 Port* port1 = CreateUdpPort(kLocalAddr1);
355 nat_server2_.reset(CreateNatServer(kNatAddr2, ntype));
356 Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
357 TestConnectivity("udp", port1, StunName(ntype), port2,
358 ntype == NAT_OPEN_CONE, true,
359 ntype != NAT_SYMMETRIC, true);
360 }
361 void TestLocalToRelay(RelayType rtype, ProtocolType proto) {
362 Port* port1 = CreateUdpPort(kLocalAddr1);
363 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
364 TestConnectivity("udp", port1, RelayName(rtype, proto), port2,
365 rtype == RELAY_GTURN, true, true, true);
366 }
367 void TestStunToLocal(NATType ntype) {
368 nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
369 Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
370 Port* port2 = CreateUdpPort(kLocalAddr2);
371 TestConnectivity(StunName(ntype), port1, "udp", port2,
372 true, ntype != NAT_SYMMETRIC, true, true);
373 }
374 void TestStunToStun(NATType ntype1, NATType ntype2) {
375 nat_server1_.reset(CreateNatServer(kNatAddr1, ntype1));
376 Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
377 nat_server2_.reset(CreateNatServer(kNatAddr2, ntype2));
378 Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
379 TestConnectivity(StunName(ntype1), port1, StunName(ntype2), port2,
380 ntype2 == NAT_OPEN_CONE,
381 ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC,
382 ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC));
383 }
384 void TestStunToRelay(NATType ntype, RelayType rtype, ProtocolType proto) {
385 nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
386 Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
387 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
388 TestConnectivity(StunName(ntype), port1, RelayName(rtype, proto), port2,
389 rtype == RELAY_GTURN, ntype != NAT_SYMMETRIC, true, true);
390 }
391 void TestTcpToTcp() {
392 Port* port1 = CreateTcpPort(kLocalAddr1);
393 Port* port2 = CreateTcpPort(kLocalAddr2);
394 TestConnectivity("tcp", port1, "tcp", port2, true, false, true, true);
395 }
396 void TestTcpToRelay(RelayType rtype, ProtocolType proto) {
397 Port* port1 = CreateTcpPort(kLocalAddr1);
398 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_TCP);
399 TestConnectivity("tcp", port1, RelayName(rtype, proto), port2,
400 rtype == RELAY_GTURN, false, true, true);
401 }
402 void TestSslTcpToRelay(RelayType rtype, ProtocolType proto) {
403 Port* port1 = CreateTcpPort(kLocalAddr1);
404 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_SSLTCP);
405 TestConnectivity("ssltcp", port1, RelayName(rtype, proto), port2,
406 rtype == RELAY_GTURN, false, true, true);
407 }
408
409 // helpers for above functions
410 UDPPort* CreateUdpPort(const SocketAddress& addr) {
411 return CreateUdpPort(addr, &socket_factory_);
412 }
413 UDPPort* CreateUdpPort(const SocketAddress& addr,
414 PacketSocketFactory* socket_factory) {
415 UDPPort* port = UDPPort::Create(main_, socket_factory, &network_,
pthatcher@webrtc.org8aac6ec2015-01-10 00:47:02416 addr.ipaddr(), 0, 0, username_, password_,
417 std::string());
henrike@webrtc.org1a02faa2014-10-28 22:20:11418 port->SetIceProtocolType(ice_protocol_);
419 return port;
420 }
421 TCPPort* CreateTcpPort(const SocketAddress& addr) {
422 TCPPort* port = CreateTcpPort(addr, &socket_factory_);
423 port->SetIceProtocolType(ice_protocol_);
424 return port;
425 }
426 TCPPort* CreateTcpPort(const SocketAddress& addr,
427 PacketSocketFactory* socket_factory) {
428 TCPPort* port = TCPPort::Create(main_, socket_factory, &network_,
429 addr.ipaddr(), 0, 0, username_, password_,
430 true);
431 port->SetIceProtocolType(ice_protocol_);
432 return port;
433 }
434 StunPort* CreateStunPort(const SocketAddress& addr,
435 rtc::PacketSocketFactory* factory) {
436 ServerAddresses stun_servers;
437 stun_servers.insert(kStunAddr);
438 StunPort* port = StunPort::Create(main_, factory, &network_,
439 addr.ipaddr(), 0, 0,
pthatcher@webrtc.org8aac6ec2015-01-10 00:47:02440 username_, password_, stun_servers,
441 std::string());
henrike@webrtc.org1a02faa2014-10-28 22:20:11442 port->SetIceProtocolType(ice_protocol_);
443 return port;
444 }
445 Port* CreateRelayPort(const SocketAddress& addr, RelayType rtype,
446 ProtocolType int_proto, ProtocolType ext_proto) {
447 if (rtype == RELAY_TURN) {
448 return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto);
449 } else {
450 return CreateGturnPort(addr, int_proto, ext_proto);
451 }
452 }
453 TurnPort* CreateTurnPort(const SocketAddress& addr,
454 PacketSocketFactory* socket_factory,
455 ProtocolType int_proto, ProtocolType ext_proto) {
456 return CreateTurnPort(addr, socket_factory,
457 int_proto, ext_proto, kTurnUdpIntAddr);
458 }
459 TurnPort* CreateTurnPort(const SocketAddress& addr,
460 PacketSocketFactory* socket_factory,
461 ProtocolType int_proto, ProtocolType ext_proto,
462 const rtc::SocketAddress& server_addr) {
463 TurnPort* port = TurnPort::Create(main_, socket_factory, &network_,
464 addr.ipaddr(), 0, 0,
465 username_, password_, ProtocolAddress(
pthatcher@webrtc.org8aac6ec2015-01-10 00:47:02466 server_addr, PROTO_UDP),
467 kRelayCredentials, 0,
468 std::string());
henrike@webrtc.org1a02faa2014-10-28 22:20:11469 port->SetIceProtocolType(ice_protocol_);
470 return port;
471 }
472 RelayPort* CreateGturnPort(const SocketAddress& addr,
473 ProtocolType int_proto, ProtocolType ext_proto) {
474 RelayPort* port = CreateGturnPort(addr);
475 SocketAddress addrs[] =
476 { kRelayUdpIntAddr, kRelayTcpIntAddr, kRelaySslTcpIntAddr };
477 port->AddServerAddress(ProtocolAddress(addrs[int_proto], int_proto));
478 return port;
479 }
480 RelayPort* CreateGturnPort(const SocketAddress& addr) {
481 RelayPort* port = RelayPort::Create(main_, &socket_factory_, &network_,
482 addr.ipaddr(), 0, 0,
483 username_, password_);
484 // TODO: Add an external address for ext_proto, so that the
485 // other side can connect to this port using a non-UDP protocol.
486 port->SetIceProtocolType(ice_protocol_);
487 return port;
488 }
489 rtc::NATServer* CreateNatServer(const SocketAddress& addr,
490 rtc::NATType type) {
491 return new rtc::NATServer(type, ss_.get(), addr, ss_.get(), addr);
492 }
493 static const char* StunName(NATType type) {
494 switch (type) {
495 case NAT_OPEN_CONE: return "stun(open cone)";
496 case NAT_ADDR_RESTRICTED: return "stun(addr restricted)";
497 case NAT_PORT_RESTRICTED: return "stun(port restricted)";
498 case NAT_SYMMETRIC: return "stun(symmetric)";
499 default: return "stun(?)";
500 }
501 }
502 static const char* RelayName(RelayType type, ProtocolType proto) {
503 if (type == RELAY_TURN) {
504 switch (proto) {
505 case PROTO_UDP: return "turn(udp)";
506 case PROTO_TCP: return "turn(tcp)";
507 case PROTO_SSLTCP: return "turn(ssltcp)";
508 default: return "turn(?)";
509 }
510 } else {
511 switch (proto) {
512 case PROTO_UDP: return "gturn(udp)";
513 case PROTO_TCP: return "gturn(tcp)";
514 case PROTO_SSLTCP: return "gturn(ssltcp)";
515 default: return "gturn(?)";
516 }
517 }
518 }
519
520 void TestCrossFamilyPorts(int type);
521
522 // This does all the work and then deletes |port1| and |port2|.
523 void TestConnectivity(const char* name1, Port* port1,
524 const char* name2, Port* port2,
525 bool accept, bool same_addr1,
526 bool same_addr2, bool possible);
527
528 // This connects and disconnects the provided channels in the same sequence as
529 // TestConnectivity with all options set to |true|. It does not delete either
530 // channel.
531 void ConnectAndDisconnectChannels(TestChannel* ch1, TestChannel* ch2);
532
533 void SetIceProtocolType(cricket::IceProtocolType protocol) {
534 ice_protocol_ = protocol;
535 }
536
537 IceMessage* CreateStunMessage(int type) {
538 IceMessage* msg = new IceMessage();
539 msg->SetType(type);
540 msg->SetTransactionID("TESTTESTTEST");
541 return msg;
542 }
543 IceMessage* CreateStunMessageWithUsername(int type,
544 const std::string& username) {
545 IceMessage* msg = CreateStunMessage(type);
546 msg->AddAttribute(
547 new StunByteStringAttribute(STUN_ATTR_USERNAME, username));
548 return msg;
549 }
550 TestPort* CreateTestPort(const rtc::SocketAddress& addr,
551 const std::string& username,
552 const std::string& password) {
553 TestPort* port = new TestPort(main_, "test", &socket_factory_, &network_,
554 addr.ipaddr(), 0, 0, username, password);
555 port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
556 return port;
557 }
558 TestPort* CreateTestPort(const rtc::SocketAddress& addr,
559 const std::string& username,
560 const std::string& password,
561 cricket::IceProtocolType type,
562 cricket::IceRole role,
563 int tiebreaker) {
564 TestPort* port = CreateTestPort(addr, username, password);
565 port->SetIceProtocolType(type);
566 port->SetIceRole(role);
567 port->SetIceTiebreaker(tiebreaker);
568 return port;
569 }
570
571 void OnRoleConflict(PortInterface* port) {
572 role_conflict_ = true;
573 }
574 bool role_conflict() const { return role_conflict_; }
575
576 void ConnectToSignalDestroyed(PortInterface* port) {
577 port->SignalDestroyed.connect(this, &PortTest::OnDestroyed);
578 }
579
580 void OnDestroyed(PortInterface* port) {
581 destroyed_ = true;
582 }
583 bool destroyed() const { return destroyed_; }
584
585 rtc::BasicPacketSocketFactory* nat_socket_factory1() {
586 return &nat_socket_factory1_;
587 }
588
589 private:
590 rtc::Thread* main_;
591 rtc::scoped_ptr<rtc::PhysicalSocketServer> pss_;
592 rtc::scoped_ptr<rtc::VirtualSocketServer> ss_;
593 rtc::SocketServerScope ss_scope_;
594 rtc::Network network_;
595 rtc::BasicPacketSocketFactory socket_factory_;
596 rtc::scoped_ptr<rtc::NATServer> nat_server1_;
597 rtc::scoped_ptr<rtc::NATServer> nat_server2_;
598 rtc::NATSocketFactory nat_factory1_;
599 rtc::NATSocketFactory nat_factory2_;
600 rtc::BasicPacketSocketFactory nat_socket_factory1_;
601 rtc::BasicPacketSocketFactory nat_socket_factory2_;
602 scoped_ptr<TestStunServer> stun_server_;
603 TestTurnServer turn_server_;
604 TestRelayServer relay_server_;
605 std::string username_;
606 std::string password_;
607 cricket::IceProtocolType ice_protocol_;
608 bool role_conflict_;
609 bool destroyed_;
610};
611
612void PortTest::TestConnectivity(const char* name1, Port* port1,
613 const char* name2, Port* port2,
614 bool accept, bool same_addr1,
615 bool same_addr2, bool possible) {
616 LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": ";
617 port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
618 port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
619
620 // Set up channels and ensure both ports will be deleted.
621 TestChannel ch1(port1, port2);
622 TestChannel ch2(port2, port1);
623 EXPECT_EQ(0, ch1.complete_count());
624 EXPECT_EQ(0, ch2.complete_count());
625
626 // Acquire addresses.
627 ch1.Start();
628 ch2.Start();
629 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
630 ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
631
632 // Send a ping from src to dst. This may or may not make it.
633 ch1.CreateConnection();
634 ASSERT_TRUE(ch1.conn() != NULL);
635 EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); // for TCP connect
636 ch1.Ping();
637 WAIT(!ch2.remote_address().IsNil(), kTimeout);
638
639 if (accept) {
640 // We are able to send a ping from src to dst. This is the case when
641 // sending to UDP ports and cone NATs.
642 EXPECT_TRUE(ch1.remote_address().IsNil());
643 EXPECT_EQ(ch2.remote_fragment(), port1->username_fragment());
644
645 // Ensure the ping came from the same address used for src.
646 // This is the case unless the source NAT was symmetric.
647 if (same_addr1) EXPECT_EQ(ch2.remote_address(), GetAddress(port1));
648 EXPECT_TRUE(same_addr2);
649
650 // Send a ping from dst to src.
651 ch2.AcceptConnection();
652 ASSERT_TRUE(ch2.conn() != NULL);
653 ch2.Ping();
654 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
655 kTimeout);
656 } else {
657 // We can't send a ping from src to dst, so flip it around. This will happen
658 // when the destination NAT is addr/port restricted or symmetric.
659 EXPECT_TRUE(ch1.remote_address().IsNil());
660 EXPECT_TRUE(ch2.remote_address().IsNil());
661
662 // Send a ping from dst to src. Again, this may or may not make it.
663 ch2.CreateConnection();
664 ASSERT_TRUE(ch2.conn() != NULL);
665 ch2.Ping();
666 WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE, kTimeout);
667
668 if (same_addr1 && same_addr2) {
669 // The new ping got back to the source.
670 EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
671 EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
672
673 // First connection may not be writable if the first ping did not get
674 // through. So we will have to do another.
675 if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) {
676 ch1.Ping();
677 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
678 kTimeout);
679 }
680 } else if (!same_addr1 && possible) {
681 // The new ping went to the candidate address, but that address was bad.
682 // This will happen when the source NAT is symmetric.
683 EXPECT_TRUE(ch1.remote_address().IsNil());
684 EXPECT_TRUE(ch2.remote_address().IsNil());
685
686 // However, since we have now sent a ping to the source IP, we should be
687 // able to get a ping from it. This gives us the real source address.
688 ch1.Ping();
689 EXPECT_TRUE_WAIT(!ch2.remote_address().IsNil(), kTimeout);
690 EXPECT_EQ(Connection::STATE_READ_INIT, ch2.conn()->read_state());
691 EXPECT_TRUE(ch1.remote_address().IsNil());
692
693 // Pick up the actual address and establish the connection.
694 ch2.AcceptConnection();
695 ASSERT_TRUE(ch2.conn() != NULL);
696 ch2.Ping();
697 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
698 kTimeout);
699 } else if (!same_addr2 && possible) {
700 // The new ping came in, but from an unexpected address. This will happen
701 // when the destination NAT is symmetric.
702 EXPECT_FALSE(ch1.remote_address().IsNil());
703 EXPECT_EQ(Connection::STATE_READ_INIT, ch1.conn()->read_state());
704
705 // Update our address and complete the connection.
706 ch1.AcceptConnection();
707 ch1.Ping();
708 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
709 kTimeout);
710 } else { // (!possible)
711 // There should be s no way for the pings to reach each other. Check it.
712 EXPECT_TRUE(ch1.remote_address().IsNil());
713 EXPECT_TRUE(ch2.remote_address().IsNil());
714 ch1.Ping();
715 WAIT(!ch2.remote_address().IsNil(), kTimeout);
716 EXPECT_TRUE(ch1.remote_address().IsNil());
717 EXPECT_TRUE(ch2.remote_address().IsNil());
718 }
719 }
720
721 // Everything should be good, unless we know the situation is impossible.
722 ASSERT_TRUE(ch1.conn() != NULL);
723 ASSERT_TRUE(ch2.conn() != NULL);
724 if (possible) {
725 EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
726 EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
727 EXPECT_EQ(Connection::STATE_READABLE, ch2.conn()->read_state());
728 EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
729 } else {
730 EXPECT_NE(Connection::STATE_READABLE, ch1.conn()->read_state());
731 EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state());
732 EXPECT_NE(Connection::STATE_READABLE, ch2.conn()->read_state());
733 EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state());
734 }
735
736 // Tear down and ensure that goes smoothly.
737 ch1.Stop();
738 ch2.Stop();
739 EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout);
740 EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout);
741}
742
743void PortTest::ConnectAndDisconnectChannels(TestChannel* ch1,
744 TestChannel* ch2) {
745 // Acquire addresses.
746 ch1->Start();
747 ch2->Start();
748
749 // Send a ping from src to dst.
750 ch1->CreateConnection();
751 EXPECT_TRUE_WAIT(ch1->conn()->connected(), kTimeout); // for TCP connect
752 ch1->Ping();
753 WAIT(!ch2->remote_address().IsNil(), kTimeout);
754
755 // Send a ping from dst to src.
756 ch2->AcceptConnection();
757 ch2->Ping();
758 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2->conn()->write_state(),
759 kTimeout);
760
761 // Destroy the connections.
762 ch1->Stop();
763 ch2->Stop();
764}
765
766class FakePacketSocketFactory : public rtc::PacketSocketFactory {
767 public:
768 FakePacketSocketFactory()
769 : next_udp_socket_(NULL),
770 next_server_tcp_socket_(NULL),
771 next_client_tcp_socket_(NULL) {
772 }
pkasting@chromium.org8645a5a2014-11-06 20:19:22773 ~FakePacketSocketFactory() override { }
henrike@webrtc.org1a02faa2014-10-28 22:20:11774
pkasting@chromium.org8645a5a2014-11-06 20:19:22775 AsyncPacketSocket* CreateUdpSocket(const SocketAddress& address,
776 uint16 min_port,
777 uint16 max_port) override {
henrike@webrtc.org1a02faa2014-10-28 22:20:11778 EXPECT_TRUE(next_udp_socket_ != NULL);
779 AsyncPacketSocket* result = next_udp_socket_;
780 next_udp_socket_ = NULL;
781 return result;
782 }
783
pkasting@chromium.org8645a5a2014-11-06 20:19:22784 AsyncPacketSocket* CreateServerTcpSocket(const SocketAddress& local_address,
785 uint16 min_port,
786 uint16 max_port,
787 int opts) override {
henrike@webrtc.org1a02faa2014-10-28 22:20:11788 EXPECT_TRUE(next_server_tcp_socket_ != NULL);
789 AsyncPacketSocket* result = next_server_tcp_socket_;
790 next_server_tcp_socket_ = NULL;
791 return result;
792 }
793
794 // TODO: |proxy_info| and |user_agent| should be set
795 // per-factory and not when socket is created.
pkasting@chromium.org8645a5a2014-11-06 20:19:22796 AsyncPacketSocket* CreateClientTcpSocket(const SocketAddress& local_address,
797 const SocketAddress& remote_address,
798 const rtc::ProxyInfo& proxy_info,
799 const std::string& user_agent,
800 int opts) override {
henrike@webrtc.org1a02faa2014-10-28 22:20:11801 EXPECT_TRUE(next_client_tcp_socket_ != NULL);
802 AsyncPacketSocket* result = next_client_tcp_socket_;
803 next_client_tcp_socket_ = NULL;
804 return result;
805 }
806
807 void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) {
808 next_udp_socket_ = next_udp_socket;
809 }
810 void set_next_server_tcp_socket(AsyncPacketSocket* next_server_tcp_socket) {
811 next_server_tcp_socket_ = next_server_tcp_socket;
812 }
813 void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) {
814 next_client_tcp_socket_ = next_client_tcp_socket;
815 }
816 rtc::AsyncResolverInterface* CreateAsyncResolver() {
817 return NULL;
818 }
819
820 private:
821 AsyncPacketSocket* next_udp_socket_;
822 AsyncPacketSocket* next_server_tcp_socket_;
823 AsyncPacketSocket* next_client_tcp_socket_;
824};
825
826class FakeAsyncPacketSocket : public AsyncPacketSocket {
827 public:
828 // Returns current local address. Address may be set to NULL if the
829 // socket is not bound yet (GetState() returns STATE_BINDING).
830 virtual SocketAddress GetLocalAddress() const {
831 return SocketAddress();
832 }
833
834 // Returns remote address. Returns zeroes if this is not a client TCP socket.
835 virtual SocketAddress GetRemoteAddress() const {
836 return SocketAddress();
837 }
838
839 // Send a packet.
840 virtual int Send(const void *pv, size_t cb,
841 const rtc::PacketOptions& options) {
842 return static_cast<int>(cb);
843 }
844 virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr,
845 const rtc::PacketOptions& options) {
846 return static_cast<int>(cb);
847 }
848 virtual int Close() {
849 return 0;
850 }
851
852 virtual State GetState() const { return state_; }
853 virtual int GetOption(Socket::Option opt, int* value) { return 0; }
854 virtual int SetOption(Socket::Option opt, int value) { return 0; }
855 virtual int GetError() const { return 0; }
856 virtual void SetError(int error) { }
857
858 void set_state(State state) { state_ = state; }
859
860 private:
861 State state_;
862};
863
864// Local -> XXXX
865TEST_F(PortTest, TestLocalToLocal) {
866 TestLocalToLocal();
867}
868
869TEST_F(PortTest, TestLocalToConeNat) {
870 TestLocalToStun(NAT_OPEN_CONE);
871}
872
873TEST_F(PortTest, TestLocalToARNat) {
874 TestLocalToStun(NAT_ADDR_RESTRICTED);
875}
876
877TEST_F(PortTest, TestLocalToPRNat) {
878 TestLocalToStun(NAT_PORT_RESTRICTED);
879}
880
881TEST_F(PortTest, TestLocalToSymNat) {
882 TestLocalToStun(NAT_SYMMETRIC);
883}
884
885// Flaky: https://code.google.com/p/webrtc/issues/detail?id=3316.
886TEST_F(PortTest, DISABLED_TestLocalToTurn) {
887 TestLocalToRelay(RELAY_TURN, PROTO_UDP);
888}
889
890TEST_F(PortTest, TestLocalToGturn) {
891 TestLocalToRelay(RELAY_GTURN, PROTO_UDP);
892}
893
894TEST_F(PortTest, TestLocalToTcpGturn) {
895 TestLocalToRelay(RELAY_GTURN, PROTO_TCP);
896}
897
898TEST_F(PortTest, TestLocalToSslTcpGturn) {
899 TestLocalToRelay(RELAY_GTURN, PROTO_SSLTCP);
900}
901
902// Cone NAT -> XXXX
903TEST_F(PortTest, TestConeNatToLocal) {
904 TestStunToLocal(NAT_OPEN_CONE);
905}
906
907TEST_F(PortTest, TestConeNatToConeNat) {
908 TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE);
909}
910
911TEST_F(PortTest, TestConeNatToARNat) {
912 TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED);
913}
914
915TEST_F(PortTest, TestConeNatToPRNat) {
916 TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED);
917}
918
919TEST_F(PortTest, TestConeNatToSymNat) {
920 TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC);
921}
922
923TEST_F(PortTest, TestConeNatToTurn) {
924 TestStunToRelay(NAT_OPEN_CONE, RELAY_TURN, PROTO_UDP);
925}
926
927TEST_F(PortTest, TestConeNatToGturn) {
928 TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_UDP);
929}
930
931TEST_F(PortTest, TestConeNatToTcpGturn) {
932 TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_TCP);
933}
934
935// Address-restricted NAT -> XXXX
936TEST_F(PortTest, TestARNatToLocal) {
937 TestStunToLocal(NAT_ADDR_RESTRICTED);
938}
939
940TEST_F(PortTest, TestARNatToConeNat) {
941 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE);
942}
943
944TEST_F(PortTest, TestARNatToARNat) {
945 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED);
946}
947
948TEST_F(PortTest, TestARNatToPRNat) {
949 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED);
950}
951
952TEST_F(PortTest, TestARNatToSymNat) {
953 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC);
954}
955
956TEST_F(PortTest, TestARNatToTurn) {
957 TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_TURN, PROTO_UDP);
958}
959
960TEST_F(PortTest, TestARNatToGturn) {
961 TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_UDP);
962}
963
964TEST_F(PortTest, TestARNATNatToTcpGturn) {
965 TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_TCP);
966}
967
968// Port-restricted NAT -> XXXX
969TEST_F(PortTest, TestPRNatToLocal) {
970 TestStunToLocal(NAT_PORT_RESTRICTED);
971}
972
973TEST_F(PortTest, TestPRNatToConeNat) {
974 TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE);
975}
976
977TEST_F(PortTest, TestPRNatToARNat) {
978 TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED);
979}
980
981TEST_F(PortTest, TestPRNatToPRNat) {
982 TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED);
983}
984
985TEST_F(PortTest, TestPRNatToSymNat) {
986 // Will "fail"
987 TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC);
988}
989
990TEST_F(PortTest, TestPRNatToTurn) {
991 TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_TURN, PROTO_UDP);
992}
993
994TEST_F(PortTest, TestPRNatToGturn) {
995 TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_UDP);
996}
997
998TEST_F(PortTest, TestPRNatToTcpGturn) {
999 TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_TCP);
1000}
1001
1002// Symmetric NAT -> XXXX
1003TEST_F(PortTest, TestSymNatToLocal) {
1004 TestStunToLocal(NAT_SYMMETRIC);
1005}
1006
1007TEST_F(PortTest, TestSymNatToConeNat) {
1008 TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE);
1009}
1010
1011TEST_F(PortTest, TestSymNatToARNat) {
1012 TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED);
1013}
1014
1015TEST_F(PortTest, TestSymNatToPRNat) {
1016 // Will "fail"
1017 TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED);
1018}
1019
1020TEST_F(PortTest, TestSymNatToSymNat) {
1021 // Will "fail"
1022 TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC);
1023}
1024
1025TEST_F(PortTest, TestSymNatToTurn) {
1026 TestStunToRelay(NAT_SYMMETRIC, RELAY_TURN, PROTO_UDP);
1027}
1028
1029TEST_F(PortTest, TestSymNatToGturn) {
1030 TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_UDP);
1031}
1032
1033TEST_F(PortTest, TestSymNatToTcpGturn) {
1034 TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_TCP);
1035}
1036
1037// Outbound TCP -> XXXX
1038TEST_F(PortTest, TestTcpToTcp) {
1039 TestTcpToTcp();
1040}
1041
1042/* TODO: Enable these once testrelayserver can accept external TCP.
1043TEST_F(PortTest, TestTcpToTcpRelay) {
1044 TestTcpToRelay(PROTO_TCP);
1045}
1046
1047TEST_F(PortTest, TestTcpToSslTcpRelay) {
1048 TestTcpToRelay(PROTO_SSLTCP);
1049}
1050*/
1051
1052// Outbound SSLTCP -> XXXX
1053/* TODO: Enable these once testrelayserver can accept external SSL.
1054TEST_F(PortTest, TestSslTcpToTcpRelay) {
1055 TestSslTcpToRelay(PROTO_TCP);
1056}
1057
1058TEST_F(PortTest, TestSslTcpToSslTcpRelay) {
1059 TestSslTcpToRelay(PROTO_SSLTCP);
1060}
1061*/
1062
1063// This test case verifies standard ICE features in STUN messages. Currently it
1064// verifies Message Integrity attribute in STUN messages and username in STUN
1065// binding request will have colon (":") between remote and local username.
1066TEST_F(PortTest, TestLocalToLocalAsIce) {
1067 SetIceProtocolType(cricket::ICEPROTO_RFC5245);
1068 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
1069 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
1070 port1->SetIceTiebreaker(kTiebreaker1);
1071 ASSERT_EQ(cricket::ICEPROTO_RFC5245, port1->IceProtocol());
1072 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
1073 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
1074 port2->SetIceTiebreaker(kTiebreaker2);
1075 ASSERT_EQ(cricket::ICEPROTO_RFC5245, port2->IceProtocol());
1076 // Same parameters as TestLocalToLocal above.
1077 TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
1078}
1079
1080// This test is trying to validate a successful and failure scenario in a
1081// loopback test when protocol is RFC5245. For success IceTiebreaker, username
1082// should remain equal to the request generated by the port and role of port
1083// must be in controlling.
1084TEST_F(PortTest, TestLoopbackCallAsIce) {
1085 rtc::scoped_ptr<TestPort> lport(
1086 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1087 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1088 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1089 lport->SetIceTiebreaker(kTiebreaker1);
1090 lport->PrepareAddress();
1091 ASSERT_FALSE(lport->Candidates().empty());
1092 Connection* conn = lport->CreateConnection(lport->Candidates()[0],
1093 Port::ORIGIN_MESSAGE);
1094 conn->Ping(0);
1095
1096 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1097 IceMessage* msg = lport->last_stun_msg();
1098 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1099 conn->OnReadPacket(lport->last_stun_buf()->Data(),
1100 lport->last_stun_buf()->Length(),
1101 rtc::PacketTime());
1102 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1103 msg = lport->last_stun_msg();
1104 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1105
1106 // If the tiebreaker value is different from port, we expect a error
1107 // response.
1108 lport->Reset();
1109 lport->AddCandidateAddress(kLocalAddr2);
1110 // Creating a different connection as |conn| is in STATE_READABLE.
1111 Connection* conn1 = lport->CreateConnection(lport->Candidates()[1],
1112 Port::ORIGIN_MESSAGE);
1113 conn1->Ping(0);
1114
1115 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1116 msg = lport->last_stun_msg();
1117 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1118 rtc::scoped_ptr<IceMessage> modified_req(
1119 CreateStunMessage(STUN_BINDING_REQUEST));
1120 const StunByteStringAttribute* username_attr = msg->GetByteString(
1121 STUN_ATTR_USERNAME);
1122 modified_req->AddAttribute(new StunByteStringAttribute(
1123 STUN_ATTR_USERNAME, username_attr->GetString()));
1124 // To make sure we receive error response, adding tiebreaker less than
1125 // what's present in request.
1126 modified_req->AddAttribute(new StunUInt64Attribute(
1127 STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1));
1128 modified_req->AddMessageIntegrity("lpass");
1129 modified_req->AddFingerprint();
1130
1131 lport->Reset();
1132 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1133 WriteStunMessage(modified_req.get(), buf.get());
1134 conn1->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime());
1135 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1136 msg = lport->last_stun_msg();
1137 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1138}
1139
1140// This test verifies role conflict signal is received when there is
1141// conflict in the role. In this case both ports are in controlling and
1142// |rport| has higher tiebreaker value than |lport|. Since |lport| has lower
1143// value of tiebreaker, when it receives ping request from |rport| it will
1144// send role conflict signal.
1145TEST_F(PortTest, TestIceRoleConflict) {
1146 rtc::scoped_ptr<TestPort> lport(
1147 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1148 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1149 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1150 lport->SetIceTiebreaker(kTiebreaker1);
1151 rtc::scoped_ptr<TestPort> rport(
1152 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1153 rport->SetIceProtocolType(ICEPROTO_RFC5245);
1154 rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1155 rport->SetIceTiebreaker(kTiebreaker2);
1156
1157 lport->PrepareAddress();
1158 rport->PrepareAddress();
1159 ASSERT_FALSE(lport->Candidates().empty());
1160 ASSERT_FALSE(rport->Candidates().empty());
1161 Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
1162 Port::ORIGIN_MESSAGE);
1163 Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
1164 Port::ORIGIN_MESSAGE);
1165 rconn->Ping(0);
1166
1167 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
1168 IceMessage* msg = rport->last_stun_msg();
1169 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1170 // Send rport binding request to lport.
1171 lconn->OnReadPacket(rport->last_stun_buf()->Data(),
1172 rport->last_stun_buf()->Length(),
1173 rtc::PacketTime());
1174
1175 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1176 EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
1177 EXPECT_TRUE(role_conflict());
1178}
1179
1180TEST_F(PortTest, TestTcpNoDelay) {
1181 TCPPort* port1 = CreateTcpPort(kLocalAddr1);
1182 int option_value = -1;
1183 int success = port1->GetOption(rtc::Socket::OPT_NODELAY,
1184 &option_value);
1185 ASSERT_EQ(0, success); // GetOption() should complete successfully w/ 0
1186 ASSERT_EQ(1, option_value);
1187 delete port1;
1188}
1189
1190TEST_F(PortTest, TestDelayedBindingUdp) {
1191 FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1192 FakePacketSocketFactory socket_factory;
1193
1194 socket_factory.set_next_udp_socket(socket);
1195 scoped_ptr<UDPPort> port(
1196 CreateUdpPort(kLocalAddr1, &socket_factory));
1197
1198 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1199 port->PrepareAddress();
1200
1201 EXPECT_EQ(0U, port->Candidates().size());
1202 socket->SignalAddressReady(socket, kLocalAddr2);
1203
1204 EXPECT_EQ(1U, port->Candidates().size());
1205}
1206
1207TEST_F(PortTest, TestDelayedBindingTcp) {
1208 FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1209 FakePacketSocketFactory socket_factory;
1210
1211 socket_factory.set_next_server_tcp_socket(socket);
1212 scoped_ptr<TCPPort> port(
1213 CreateTcpPort(kLocalAddr1, &socket_factory));
1214
1215 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1216 port->PrepareAddress();
1217
1218 EXPECT_EQ(0U, port->Candidates().size());
1219 socket->SignalAddressReady(socket, kLocalAddr2);
1220
1221 EXPECT_EQ(1U, port->Candidates().size());
1222}
1223
1224void PortTest::TestCrossFamilyPorts(int type) {
1225 FakePacketSocketFactory factory;
1226 scoped_ptr<Port> ports[4];
1227 SocketAddress addresses[4] = {SocketAddress("192.168.1.3", 0),
1228 SocketAddress("192.168.1.4", 0),
1229 SocketAddress("2001:db8::1", 0),
1230 SocketAddress("2001:db8::2", 0)};
1231 for (int i = 0; i < 4; i++) {
1232 FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1233 if (type == SOCK_DGRAM) {
1234 factory.set_next_udp_socket(socket);
1235 ports[i].reset(CreateUdpPort(addresses[i], &factory));
1236 } else if (type == SOCK_STREAM) {
1237 factory.set_next_server_tcp_socket(socket);
1238 ports[i].reset(CreateTcpPort(addresses[i], &factory));
1239 }
1240 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1241 socket->SignalAddressReady(socket, addresses[i]);
1242 ports[i]->PrepareAddress();
1243 }
1244
1245 // IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate.
1246 if (type == SOCK_STREAM) {
1247 FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
1248 factory.set_next_client_tcp_socket(clientsocket);
1249 }
1250 Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()),
1251 Port::ORIGIN_MESSAGE);
1252 EXPECT_TRUE(NULL == c);
1253 EXPECT_EQ(0U, ports[0]->connections().size());
1254 c = ports[0]->CreateConnection(GetCandidate(ports[1].get()),
1255 Port::ORIGIN_MESSAGE);
1256 EXPECT_FALSE(NULL == c);
1257 EXPECT_EQ(1U, ports[0]->connections().size());
1258
1259 // IPv6 Port, connects to IPv4 candidate and to IPv6 candidate.
1260 if (type == SOCK_STREAM) {
1261 FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
1262 factory.set_next_client_tcp_socket(clientsocket);
1263 }
1264 c = ports[2]->CreateConnection(GetCandidate(ports[0].get()),
1265 Port::ORIGIN_MESSAGE);
1266 EXPECT_TRUE(NULL == c);
1267 EXPECT_EQ(0U, ports[2]->connections().size());
1268 c = ports[2]->CreateConnection(GetCandidate(ports[3].get()),
1269 Port::ORIGIN_MESSAGE);
1270 EXPECT_FALSE(NULL == c);
1271 EXPECT_EQ(1U, ports[2]->connections().size());
1272}
1273
1274TEST_F(PortTest, TestSkipCrossFamilyTcp) {
1275 TestCrossFamilyPorts(SOCK_STREAM);
1276}
1277
1278TEST_F(PortTest, TestSkipCrossFamilyUdp) {
1279 TestCrossFamilyPorts(SOCK_DGRAM);
1280}
1281
1282// This test verifies DSCP value set through SetOption interface can be
1283// get through DefaultDscpValue.
1284TEST_F(PortTest, TestDefaultDscpValue) {
1285 int dscp;
1286 rtc::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
1287 EXPECT_EQ(0, udpport->SetOption(rtc::Socket::OPT_DSCP,
1288 rtc::DSCP_CS6));
1289 EXPECT_EQ(0, udpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1290 rtc::scoped_ptr<TCPPort> tcpport(CreateTcpPort(kLocalAddr1));
1291 EXPECT_EQ(0, tcpport->SetOption(rtc::Socket::OPT_DSCP,
1292 rtc::DSCP_AF31));
1293 EXPECT_EQ(0, tcpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1294 EXPECT_EQ(rtc::DSCP_AF31, dscp);
1295 rtc::scoped_ptr<StunPort> stunport(
1296 CreateStunPort(kLocalAddr1, nat_socket_factory1()));
1297 EXPECT_EQ(0, stunport->SetOption(rtc::Socket::OPT_DSCP,
1298 rtc::DSCP_AF41));
1299 EXPECT_EQ(0, stunport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1300 EXPECT_EQ(rtc::DSCP_AF41, dscp);
1301 rtc::scoped_ptr<TurnPort> turnport1(CreateTurnPort(
1302 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
1303 // Socket is created in PrepareAddress.
1304 turnport1->PrepareAddress();
1305 EXPECT_EQ(0, turnport1->SetOption(rtc::Socket::OPT_DSCP,
1306 rtc::DSCP_CS7));
1307 EXPECT_EQ(0, turnport1->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1308 EXPECT_EQ(rtc::DSCP_CS7, dscp);
1309 // This will verify correct value returned without the socket.
1310 rtc::scoped_ptr<TurnPort> turnport2(CreateTurnPort(
1311 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
1312 EXPECT_EQ(0, turnport2->SetOption(rtc::Socket::OPT_DSCP,
1313 rtc::DSCP_CS6));
1314 EXPECT_EQ(0, turnport2->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1315 EXPECT_EQ(rtc::DSCP_CS6, dscp);
1316}
1317
1318// Test sending STUN messages in GICE format.
1319TEST_F(PortTest, TestSendStunMessageAsGice) {
1320 rtc::scoped_ptr<TestPort> lport(
1321 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1322 rtc::scoped_ptr<TestPort> rport(
1323 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1324 lport->SetIceProtocolType(ICEPROTO_GOOGLE);
1325 rport->SetIceProtocolType(ICEPROTO_GOOGLE);
1326
1327 // Send a fake ping from lport to rport.
1328 lport->PrepareAddress();
1329 rport->PrepareAddress();
1330 ASSERT_FALSE(rport->Candidates().empty());
1331 Connection* conn = lport->CreateConnection(rport->Candidates()[0],
1332 Port::ORIGIN_MESSAGE);
1333 rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1334 conn->Ping(0);
1335
1336 // Check that it's a proper BINDING-REQUEST.
1337 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1338 IceMessage* msg = lport->last_stun_msg();
1339 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1340 EXPECT_FALSE(msg->IsLegacy());
1341 const StunByteStringAttribute* username_attr = msg->GetByteString(
1342 STUN_ATTR_USERNAME);
1343 ASSERT_TRUE(username_attr != NULL);
1344 EXPECT_EQ("rfraglfrag", username_attr->GetString());
1345 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
1346 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1347 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
1348
1349 // Save a copy of the BINDING-REQUEST for use below.
1350 rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
1351
1352 // Respond with a BINDING-RESPONSE.
1353 rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
1354 msg = rport->last_stun_msg();
1355 ASSERT_TRUE(msg != NULL);
1356 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1357 EXPECT_FALSE(msg->IsLegacy());
1358 username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
1359 ASSERT_TRUE(username_attr != NULL); // GICE has a username in the response.
1360 EXPECT_EQ("rfraglfrag", username_attr->GetString());
1361 const StunAddressAttribute* addr_attr = msg->GetAddress(
1362 STUN_ATTR_MAPPED_ADDRESS);
1363 ASSERT_TRUE(addr_attr != NULL);
1364 EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
1365 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_XOR_MAPPED_ADDRESS) == NULL);
1366 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
1367 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1368 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
1369
1370 // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
1371 // but we can do it here.
1372 rport->SendBindingErrorResponse(request.get(),
1373 rport->Candidates()[0].address(),
1374 STUN_ERROR_SERVER_ERROR,
1375 STUN_ERROR_REASON_SERVER_ERROR);
1376 msg = rport->last_stun_msg();
1377 ASSERT_TRUE(msg != NULL);
1378 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1379 EXPECT_FALSE(msg->IsLegacy());
1380 username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
1381 ASSERT_TRUE(username_attr != NULL); // GICE has a username in the response.
1382 EXPECT_EQ("rfraglfrag", username_attr->GetString());
1383 const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
1384 ASSERT_TRUE(error_attr != NULL);
1385 // The GICE wire format for error codes is incorrect.
1386 EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, error_attr->code());
1387 EXPECT_EQ(STUN_ERROR_SERVER_ERROR / 256, error_attr->eclass());
1388 EXPECT_EQ(STUN_ERROR_SERVER_ERROR % 256, error_attr->number());
1389 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
1390 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1391 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
1392 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
1393}
1394
1395// Test sending STUN messages in ICE format.
1396TEST_F(PortTest, TestSendStunMessageAsIce) {
1397 rtc::scoped_ptr<TestPort> lport(
1398 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1399 rtc::scoped_ptr<TestPort> rport(
1400 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1401 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1402 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1403 lport->SetIceTiebreaker(kTiebreaker1);
1404 rport->SetIceProtocolType(ICEPROTO_RFC5245);
1405 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1406 rport->SetIceTiebreaker(kTiebreaker2);
1407
1408 // Send a fake ping from lport to rport.
1409 lport->PrepareAddress();
1410 rport->PrepareAddress();
1411 ASSERT_FALSE(rport->Candidates().empty());
1412 Connection* lconn = lport->CreateConnection(
1413 rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1414 Connection* rconn = rport->CreateConnection(
1415 lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1416 lconn->Ping(0);
1417
1418 // Check that it's a proper BINDING-REQUEST.
1419 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1420 IceMessage* msg = lport->last_stun_msg();
1421 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1422 EXPECT_FALSE(msg->IsLegacy());
1423 const StunByteStringAttribute* username_attr =
1424 msg->GetByteString(STUN_ATTR_USERNAME);
1425 ASSERT_TRUE(username_attr != NULL);
1426 const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY);
1427 ASSERT_TRUE(priority_attr != NULL);
1428 EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value());
1429 EXPECT_EQ("rfrag:lfrag", username_attr->GetString());
1430 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1431 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1432 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length(),
1433 "rpass"));
1434 const StunUInt64Attribute* ice_controlling_attr =
1435 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
1436 ASSERT_TRUE(ice_controlling_attr != NULL);
1437 EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value());
1438 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
1439 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
1440 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1441 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1442 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1443
1444 // Request should not include ping count.
1445 ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
1446
1447 // Save a copy of the BINDING-REQUEST for use below.
1448 rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
1449
1450 // Respond with a BINDING-RESPONSE.
1451 rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
1452 msg = rport->last_stun_msg();
1453 ASSERT_TRUE(msg != NULL);
1454 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1455
1456
1457 EXPECT_FALSE(msg->IsLegacy());
1458 const StunAddressAttribute* addr_attr = msg->GetAddress(
1459 STUN_ATTR_XOR_MAPPED_ADDRESS);
1460 ASSERT_TRUE(addr_attr != NULL);
1461 EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
1462 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1463 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1464 rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
1465 "rpass"));
1466 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1467 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1468 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1469 // No USERNAME or PRIORITY in ICE responses.
1470 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
1471 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1472 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL);
1473 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL);
1474 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
1475 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
1476
1477 // Response should not include ping count.
1478 ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
1479
1480 // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
1481 // but we can do it here.
1482 rport->SendBindingErrorResponse(request.get(),
1483 lport->Candidates()[0].address(),
1484 STUN_ERROR_SERVER_ERROR,
1485 STUN_ERROR_REASON_SERVER_ERROR);
1486 msg = rport->last_stun_msg();
1487 ASSERT_TRUE(msg != NULL);
1488 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1489 EXPECT_FALSE(msg->IsLegacy());
1490 const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
1491 ASSERT_TRUE(error_attr != NULL);
1492 EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code());
1493 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
1494 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1495 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1496 rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
1497 "rpass"));
1498 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1499 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1500 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1501 // No USERNAME with ICE.
1502 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
1503 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1504
1505 // Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED
1506 // and (incremented) RETRANSMIT_COUNT attributes.
1507 rport->Reset();
1508 rport->set_send_retransmit_count_attribute(true);
1509 rconn->Ping(0);
1510 rconn->Ping(0);
1511 rconn->Ping(0);
1512 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
1513 msg = rport->last_stun_msg();
1514 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1515 const StunUInt64Attribute* ice_controlled_attr =
1516 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
1517 ASSERT_TRUE(ice_controlled_attr != NULL);
1518 EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value());
1519 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
1520
1521 // Request should include ping count.
1522 const StunUInt32Attribute* retransmit_attr =
1523 msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
1524 ASSERT_TRUE(retransmit_attr != NULL);
1525 EXPECT_EQ(2U, retransmit_attr->value());
1526
1527 // Respond with a BINDING-RESPONSE.
1528 request.reset(CopyStunMessage(msg));
1529 lport->SendBindingResponse(request.get(), rport->Candidates()[0].address());
1530 msg = lport->last_stun_msg();
1531
1532 // Response should include same ping count.
1533 retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
1534 ASSERT_TRUE(retransmit_attr != NULL);
1535 EXPECT_EQ(2U, retransmit_attr->value());
1536}
1537
1538TEST_F(PortTest, TestUseCandidateAttribute) {
1539 rtc::scoped_ptr<TestPort> lport(
1540 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1541 rtc::scoped_ptr<TestPort> rport(
1542 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1543 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1544 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1545 lport->SetIceTiebreaker(kTiebreaker1);
1546 rport->SetIceProtocolType(ICEPROTO_RFC5245);
1547 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1548 rport->SetIceTiebreaker(kTiebreaker2);
1549
1550 // Send a fake ping from lport to rport.
1551 lport->PrepareAddress();
1552 rport->PrepareAddress();
1553 ASSERT_FALSE(rport->Candidates().empty());
1554 Connection* lconn = lport->CreateConnection(
1555 rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1556 lconn->Ping(0);
1557 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1558 IceMessage* msg = lport->last_stun_msg();
1559 const StunUInt64Attribute* ice_controlling_attr =
1560 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
1561 ASSERT_TRUE(ice_controlling_attr != NULL);
1562 const StunByteStringAttribute* use_candidate_attr = msg->GetByteString(
1563 STUN_ATTR_USE_CANDIDATE);
1564 ASSERT_TRUE(use_candidate_attr != NULL);
1565}
1566
1567// Test handling STUN messages in GICE format.
1568TEST_F(PortTest, TestHandleStunMessageAsGice) {
1569 // Our port will act as the "remote" port.
1570 rtc::scoped_ptr<TestPort> port(
1571 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1572 port->SetIceProtocolType(ICEPROTO_GOOGLE);
1573
1574 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1575 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1576 rtc::SocketAddress addr(kLocalAddr1);
1577 std::string username;
1578
1579 // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
1580 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1581 "rfraglfrag"));
1582 WriteStunMessage(in_msg.get(), buf.get());
1583 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1584 out_msg.accept(), &username));
1585 EXPECT_TRUE(out_msg.get() != NULL); // Succeeds, since this is GICE.
1586 EXPECT_EQ("lfrag", username);
1587
1588 // Add M-I; should be ignored and rest of message parsed normally.
1589 in_msg->AddMessageIntegrity("password");
1590 WriteStunMessage(in_msg.get(), buf.get());
1591 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1592 out_msg.accept(), &username));
1593 EXPECT_TRUE(out_msg.get() != NULL);
1594 EXPECT_EQ("lfrag", username);
1595
1596 // BINDING-RESPONSE with username, as done in GICE. Should succeed.
1597 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_RESPONSE,
1598 "rfraglfrag"));
1599 in_msg->AddAttribute(
1600 new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
1601 WriteStunMessage(in_msg.get(), buf.get());
1602 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1603 out_msg.accept(), &username));
1604 EXPECT_TRUE(out_msg.get() != NULL);
1605 EXPECT_EQ("", username);
1606
1607 // BINDING-RESPONSE without username. Should be tolerated as well.
1608 in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
1609 in_msg->AddAttribute(
1610 new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
1611 WriteStunMessage(in_msg.get(), buf.get());
1612 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1613 out_msg.accept(), &username));
1614 EXPECT_TRUE(out_msg.get() != NULL);
1615 EXPECT_EQ("", username);
1616
1617 // BINDING-ERROR-RESPONSE with username and error code.
1618 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_ERROR_RESPONSE,
1619 "rfraglfrag"));
1620 in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
1621 STUN_ERROR_SERVER_ERROR_AS_GICE, STUN_ERROR_REASON_SERVER_ERROR));
1622 WriteStunMessage(in_msg.get(), buf.get());
1623 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1624 out_msg.accept(), &username));
1625 ASSERT_TRUE(out_msg.get() != NULL);
1626 EXPECT_EQ("", username);
1627 ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
1628 // GetStunMessage doesn't unmunge the GICE error code (happens downstream).
1629 EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, out_msg->GetErrorCode()->code());
1630 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
1631 out_msg->GetErrorCode()->reason());
1632}
1633
1634// Test handling STUN messages in ICE format.
1635TEST_F(PortTest, TestHandleStunMessageAsIce) {
1636 // Our port will act as the "remote" port.
1637 rtc::scoped_ptr<TestPort> port(
1638 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1639 port->SetIceProtocolType(ICEPROTO_RFC5245);
1640
1641 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1642 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1643 rtc::SocketAddress addr(kLocalAddr1);
1644 std::string username;
1645
1646 // BINDING-REQUEST from local to remote with valid ICE username,
1647 // MESSAGE-INTEGRITY, and FINGERPRINT.
1648 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1649 "rfrag:lfrag"));
1650 in_msg->AddMessageIntegrity("rpass");
1651 in_msg->AddFingerprint();
1652 WriteStunMessage(in_msg.get(), buf.get());
1653 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1654 out_msg.accept(), &username));
1655 EXPECT_TRUE(out_msg.get() != NULL);
1656 EXPECT_EQ("lfrag", username);
1657
1658 // BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT.
1659 in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
1660 in_msg->AddAttribute(
1661 new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
1662 in_msg->AddMessageIntegrity("rpass");
1663 in_msg->AddFingerprint();
1664 WriteStunMessage(in_msg.get(), buf.get());
1665 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1666 out_msg.accept(), &username));
1667 EXPECT_TRUE(out_msg.get() != NULL);
1668 EXPECT_EQ("", username);
1669
1670 // BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT.
1671 in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
1672 in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
1673 STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
1674 in_msg->AddFingerprint();
1675 WriteStunMessage(in_msg.get(), buf.get());
1676 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1677 out_msg.accept(), &username));
1678 EXPECT_TRUE(out_msg.get() != NULL);
1679 EXPECT_EQ("", username);
1680 ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
1681 EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code());
1682 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
1683 out_msg->GetErrorCode()->reason());
1684}
1685
1686// This test verifies port can handle ICE messages in Hybrid mode and switches
1687// ICEPROTO_RFC5245 mode after successfully handling the message.
1688TEST_F(PortTest, TestHandleStunMessageAsIceInHybridMode) {
1689 // Our port will act as the "remote" port.
1690 rtc::scoped_ptr<TestPort> port(
1691 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1692 port->SetIceProtocolType(ICEPROTO_HYBRID);
1693
1694 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1695 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1696 rtc::SocketAddress addr(kLocalAddr1);
1697 std::string username;
1698
1699 // BINDING-REQUEST from local to remote with valid ICE username,
1700 // MESSAGE-INTEGRITY, and FINGERPRINT.
1701 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1702 "rfrag:lfrag"));
1703 in_msg->AddMessageIntegrity("rpass");
1704 in_msg->AddFingerprint();
1705 WriteStunMessage(in_msg.get(), buf.get());
1706 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1707 out_msg.accept(), &username));
1708 EXPECT_TRUE(out_msg.get() != NULL);
1709 EXPECT_EQ("lfrag", username);
1710 EXPECT_EQ(ICEPROTO_RFC5245, port->IceProtocol());
1711}
1712
1713// This test verifies port can handle GICE messages in Hybrid mode and switches
1714// ICEPROTO_GOOGLE mode after successfully handling the message.
1715TEST_F(PortTest, TestHandleStunMessageAsGiceInHybridMode) {
1716 // Our port will act as the "remote" port.
1717 rtc::scoped_ptr<TestPort> port(
1718 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1719 port->SetIceProtocolType(ICEPROTO_HYBRID);
1720
1721 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1722 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1723 rtc::SocketAddress addr(kLocalAddr1);
1724 std::string username;
1725
1726 // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
1727 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1728 "rfraglfrag"));
1729 WriteStunMessage(in_msg.get(), buf.get());
1730 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1731 out_msg.accept(), &username));
1732 EXPECT_TRUE(out_msg.get() != NULL); // Succeeds, since this is GICE.
1733 EXPECT_EQ("lfrag", username);
1734 EXPECT_EQ(ICEPROTO_GOOGLE, port->IceProtocol());
1735}
1736
1737// Verify port is not switched out of RFC5245 mode if GICE message is received
1738// in that mode.
1739TEST_F(PortTest, TestHandleStunMessageAsGiceInIceMode) {
1740 // Our port will act as the "remote" port.
1741 rtc::scoped_ptr<TestPort> port(
1742 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1743 port->SetIceProtocolType(ICEPROTO_RFC5245);
1744
1745 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1746 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1747 rtc::SocketAddress addr(kLocalAddr1);
1748 std::string username;
1749
1750 // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
1751 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1752 "rfraglfrag"));
1753 WriteStunMessage(in_msg.get(), buf.get());
1754 // Should fail as there is no MI and fingerprint.
1755 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1756 out_msg.accept(), &username));
1757 EXPECT_EQ(ICEPROTO_RFC5245, port->IceProtocol());
1758}
1759
1760
1761// Tests handling of GICE binding requests with missing or incorrect usernames.
1762TEST_F(PortTest, TestHandleStunMessageAsGiceBadUsername) {
1763 rtc::scoped_ptr<TestPort> port(
1764 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1765 port->SetIceProtocolType(ICEPROTO_GOOGLE);
1766
1767 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1768 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1769 rtc::SocketAddress addr(kLocalAddr1);
1770 std::string username;
1771
1772 // BINDING-REQUEST with no username.
1773 in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
1774 WriteStunMessage(in_msg.get(), buf.get());
1775 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1776 out_msg.accept(), &username));
1777 EXPECT_TRUE(out_msg.get() == NULL);
1778 EXPECT_EQ("", username);
1779 EXPECT_EQ(STUN_ERROR_BAD_REQUEST_AS_GICE, port->last_stun_error_code());
1780
1781 // BINDING-REQUEST with empty username.
1782 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
1783 WriteStunMessage(in_msg.get(), buf.get());
1784 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1785 out_msg.accept(), &username));
1786 EXPECT_TRUE(out_msg.get() == NULL);
1787 EXPECT_EQ("", username);
1788 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1789
1790 // BINDING-REQUEST with too-short username.
1791 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "lfra"));
1792 WriteStunMessage(in_msg.get(), buf.get());
1793 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1794 out_msg.accept(), &username));
1795 EXPECT_TRUE(out_msg.get() == NULL);
1796 EXPECT_EQ("", username);
1797 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1798
1799 // BINDING-REQUEST with reversed username.
1800 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1801 "lfragrfrag"));
1802 WriteStunMessage(in_msg.get(), buf.get());
1803 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1804 out_msg.accept(), &username));
1805 EXPECT_TRUE(out_msg.get() == NULL);
1806 EXPECT_EQ("", username);
1807 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1808
1809 // BINDING-REQUEST with garbage username.
1810 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1811 "abcdefgh"));
1812 WriteStunMessage(in_msg.get(), buf.get());
1813 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1814 out_msg.accept(), &username));
1815 EXPECT_TRUE(out_msg.get() == NULL);
1816 EXPECT_EQ("", username);
1817 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1818}
1819
1820// Tests handling of ICE binding requests with missing or incorrect usernames.
1821TEST_F(PortTest, TestHandleStunMessageAsIceBadUsername) {
1822 rtc::scoped_ptr<TestPort> port(
1823 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1824 port->SetIceProtocolType(ICEPROTO_RFC5245);
1825
1826 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1827 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1828 rtc::SocketAddress addr(kLocalAddr1);
1829 std::string username;
1830
1831 // BINDING-REQUEST with no username.
1832 in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
1833 in_msg->AddMessageIntegrity("rpass");
1834 in_msg->AddFingerprint();
1835 WriteStunMessage(in_msg.get(), buf.get());
1836 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1837 out_msg.accept(), &username));
1838 EXPECT_TRUE(out_msg.get() == NULL);
1839 EXPECT_EQ("", username);
1840 EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
1841
1842 // BINDING-REQUEST with empty username.
1843 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
1844 in_msg->AddMessageIntegrity("rpass");
1845 in_msg->AddFingerprint();
1846 WriteStunMessage(in_msg.get(), buf.get());
1847 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1848 out_msg.accept(), &username));
1849 EXPECT_TRUE(out_msg.get() == NULL);
1850 EXPECT_EQ("", username);
1851 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1852
1853 // BINDING-REQUEST with too-short username.
1854 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra"));
1855 in_msg->AddMessageIntegrity("rpass");
1856 in_msg->AddFingerprint();
1857 WriteStunMessage(in_msg.get(), buf.get());
1858 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1859 out_msg.accept(), &username));
1860 EXPECT_TRUE(out_msg.get() == NULL);
1861 EXPECT_EQ("", username);
1862 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1863
1864 // BINDING-REQUEST with reversed username.
1865 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1866 "lfrag:rfrag"));
1867 in_msg->AddMessageIntegrity("rpass");
1868 in_msg->AddFingerprint();
1869 WriteStunMessage(in_msg.get(), buf.get());
1870 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1871 out_msg.accept(), &username));
1872 EXPECT_TRUE(out_msg.get() == NULL);
1873 EXPECT_EQ("", username);
1874 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1875
1876 // BINDING-REQUEST with garbage username.
1877 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1878 "abcd:efgh"));
1879 in_msg->AddMessageIntegrity("rpass");
1880 in_msg->AddFingerprint();
1881 WriteStunMessage(in_msg.get(), buf.get());
1882 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1883 out_msg.accept(), &username));
1884 EXPECT_TRUE(out_msg.get() == NULL);
1885 EXPECT_EQ("", username);
1886 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1887}
1888
1889// Test handling STUN messages (as ICE) with missing or malformed M-I.
1890TEST_F(PortTest, TestHandleStunMessageAsIceBadMessageIntegrity) {
1891 // Our port will act as the "remote" port.
1892 rtc::scoped_ptr<TestPort> port(
1893 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1894 port->SetIceProtocolType(ICEPROTO_RFC5245);
1895
1896 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1897 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1898 rtc::SocketAddress addr(kLocalAddr1);
1899 std::string username;
1900
1901 // BINDING-REQUEST from local to remote with valid ICE username and
1902 // FINGERPRINT, but no MESSAGE-INTEGRITY.
1903 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1904 "rfrag:lfrag"));
1905 in_msg->AddFingerprint();
1906 WriteStunMessage(in_msg.get(), buf.get());
1907 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1908 out_msg.accept(), &username));
1909 EXPECT_TRUE(out_msg.get() == NULL);
1910 EXPECT_EQ("", username);
1911 EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
1912
1913 // BINDING-REQUEST from local to remote with valid ICE username and
1914 // FINGERPRINT, but invalid MESSAGE-INTEGRITY.
1915 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1916 "rfrag:lfrag"));
1917 in_msg->AddMessageIntegrity("invalid");
1918 in_msg->AddFingerprint();
1919 WriteStunMessage(in_msg.get(), buf.get());
1920 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1921 out_msg.accept(), &username));
1922 EXPECT_TRUE(out_msg.get() == NULL);
1923 EXPECT_EQ("", username);
1924 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1925
1926 // TODO: BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked
1927 // by the Connection, not the Port, since they require the remote username.
1928 // Change this test to pass in data via Connection::OnReadPacket instead.
1929}
1930
1931// Test handling STUN messages (as ICE) with missing or malformed FINGERPRINT.
1932TEST_F(PortTest, TestHandleStunMessageAsIceBadFingerprint) {
1933 // Our port will act as the "remote" port.
1934 rtc::scoped_ptr<TestPort> port(
1935 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1936 port->SetIceProtocolType(ICEPROTO_RFC5245);
1937
1938 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1939 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1940 rtc::SocketAddress addr(kLocalAddr1);
1941 std::string username;
1942
1943 // BINDING-REQUEST from local to remote with valid ICE username and
1944 // MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail.
1945 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1946 "rfrag:lfrag"));
1947 in_msg->AddMessageIntegrity("rpass");
1948 WriteStunMessage(in_msg.get(), buf.get());
1949 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1950 out_msg.accept(), &username));
1951 EXPECT_EQ(0, port->last_stun_error_code());
1952
1953 // Now, add a fingerprint, but munge the message so it's not valid.
1954 in_msg->AddFingerprint();
1955 in_msg->SetTransactionID("TESTTESTBADD");
1956 WriteStunMessage(in_msg.get(), buf.get());
1957 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1958 out_msg.accept(), &username));
1959 EXPECT_EQ(0, port->last_stun_error_code());
1960
1961 // Valid BINDING-RESPONSE, except no FINGERPRINT.
1962 in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
1963 in_msg->AddAttribute(
1964 new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
1965 in_msg->AddMessageIntegrity("rpass");
1966 WriteStunMessage(in_msg.get(), buf.get());
1967 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1968 out_msg.accept(), &username));
1969 EXPECT_EQ(0, port->last_stun_error_code());
1970
1971 // Now, add a fingerprint, but munge the message so it's not valid.
1972 in_msg->AddFingerprint();
1973 in_msg->SetTransactionID("TESTTESTBADD");
1974 WriteStunMessage(in_msg.get(), buf.get());
1975 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1976 out_msg.accept(), &username));
1977 EXPECT_EQ(0, port->last_stun_error_code());
1978
1979 // Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT.
1980 in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
1981 in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
1982 STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
1983 in_msg->AddMessageIntegrity("rpass");
1984 WriteStunMessage(in_msg.get(), buf.get());
1985 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1986 out_msg.accept(), &username));
1987 EXPECT_EQ(0, port->last_stun_error_code());
1988
1989 // Now, add a fingerprint, but munge the message so it's not valid.
1990 in_msg->AddFingerprint();
1991 in_msg->SetTransactionID("TESTTESTBADD");
1992 WriteStunMessage(in_msg.get(), buf.get());
1993 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1994 out_msg.accept(), &username));
1995 EXPECT_EQ(0, port->last_stun_error_code());
1996}
1997
1998// Test handling of STUN binding indication messages (as ICE). STUN binding
1999// indications are allowed only to the connection which is in read mode.
2000TEST_F(PortTest, TestHandleStunBindingIndication) {
2001 rtc::scoped_ptr<TestPort> lport(
2002 CreateTestPort(kLocalAddr2, "lfrag", "lpass"));
2003 lport->SetIceProtocolType(ICEPROTO_RFC5245);
2004 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2005 lport->SetIceTiebreaker(kTiebreaker1);
2006
2007 // Verifying encoding and decoding STUN indication message.
2008 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
2009 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
2010 rtc::SocketAddress addr(kLocalAddr1);
2011 std::string username;
2012
2013 in_msg.reset(CreateStunMessage(STUN_BINDING_INDICATION));
2014 in_msg->AddFingerprint();
2015 WriteStunMessage(in_msg.get(), buf.get());
2016 EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr,
2017 out_msg.accept(), &username));
2018 EXPECT_TRUE(out_msg.get() != NULL);
2019 EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION);
2020 EXPECT_EQ("", username);
2021
2022 // Verify connection can handle STUN indication and updates
2023 // last_ping_received.
2024 rtc::scoped_ptr<TestPort> rport(
2025 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2026 rport->SetIceProtocolType(ICEPROTO_RFC5245);
2027 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2028 rport->SetIceTiebreaker(kTiebreaker2);
2029
2030 lport->PrepareAddress();
2031 rport->PrepareAddress();
2032 ASSERT_FALSE(lport->Candidates().empty());
2033 ASSERT_FALSE(rport->Candidates().empty());
2034
2035 Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
2036 Port::ORIGIN_MESSAGE);
2037 Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
2038 Port::ORIGIN_MESSAGE);
2039 rconn->Ping(0);
2040
2041 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
2042 IceMessage* msg = rport->last_stun_msg();
2043 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
2044 // Send rport binding request to lport.
2045 lconn->OnReadPacket(rport->last_stun_buf()->Data(),
2046 rport->last_stun_buf()->Length(),
2047 rtc::PacketTime());
2048 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
2049 EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
2050 uint32 last_ping_received1 = lconn->last_ping_received();
2051
2052 // Adding a delay of 100ms.
2053 rtc::Thread::Current()->ProcessMessages(100);
2054 // Pinging lconn using stun indication message.
2055 lconn->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime());
2056 uint32 last_ping_received2 = lconn->last_ping_received();
2057 EXPECT_GT(last_ping_received2, last_ping_received1);
2058}
2059
2060TEST_F(PortTest, TestComputeCandidatePriority) {
2061 rtc::scoped_ptr<TestPort> port(
2062 CreateTestPort(kLocalAddr1, "name", "pass"));
2063 port->set_type_preference(90);
2064 port->set_component(177);
2065 port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
2066 port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234));
2067 port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234));
2068 port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234));
2069 port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234));
2070 port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234));
2071 port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234));
2072 port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234));
2073 port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234));
2074 // These should all be:
2075 // (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177)
2076 uint32 expected_priority_v4 = 1509957199U;
2077 uint32 expected_priority_v6 = 1509959759U;
2078 uint32 expected_priority_ula = 1509962319U;
2079 uint32 expected_priority_v4mapped = expected_priority_v4;
2080 uint32 expected_priority_v4compat = 1509949775U;
2081 uint32 expected_priority_6to4 = 1509954639U;
2082 uint32 expected_priority_teredo = 1509952079U;
2083 uint32 expected_priority_sitelocal = 1509949775U;
2084 uint32 expected_priority_6bone = 1509949775U;
2085 ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority());
2086 ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority());
2087 ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority());
2088 ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority());
2089 ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority());
2090 ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority());
2091 ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority());
2092 ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority());
2093 ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority());
2094}
2095
2096TEST_F(PortTest, TestPortProxyProperties) {
2097 rtc::scoped_ptr<TestPort> port(
2098 CreateTestPort(kLocalAddr1, "name", "pass"));
2099 port->SetIceRole(cricket::ICEROLE_CONTROLLING);
2100 port->SetIceTiebreaker(kTiebreaker1);
2101
2102 // Create a proxy port.
2103 rtc::scoped_ptr<PortProxy> proxy(new PortProxy());
2104 proxy->set_impl(port.get());
2105 EXPECT_EQ(port->Type(), proxy->Type());
2106 EXPECT_EQ(port->Network(), proxy->Network());
2107 EXPECT_EQ(port->GetIceRole(), proxy->GetIceRole());
2108 EXPECT_EQ(port->IceTiebreaker(), proxy->IceTiebreaker());
2109}
2110
2111// In the case of shared socket, one port may be shared by local and stun.
2112// Test that candidates with different types will have different foundation.
2113TEST_F(PortTest, TestFoundation) {
2114 rtc::scoped_ptr<TestPort> testport(
2115 CreateTestPort(kLocalAddr1, "name", "pass"));
2116 testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1,
2117 LOCAL_PORT_TYPE,
2118 cricket::ICE_TYPE_PREFERENCE_HOST, false);
2119 testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1,
2120 STUN_PORT_TYPE,
2121 cricket::ICE_TYPE_PREFERENCE_SRFLX, true);
2122 EXPECT_NE(testport->Candidates()[0].foundation(),
2123 testport->Candidates()[1].foundation());
2124}
2125
2126// This test verifies the foundation of different types of ICE candidates.
2127TEST_F(PortTest, TestCandidateFoundation) {
2128 rtc::scoped_ptr<rtc::NATServer> nat_server(
2129 CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
2130 rtc::scoped_ptr<UDPPort> udpport1(CreateUdpPort(kLocalAddr1));
2131 udpport1->PrepareAddress();
2132 rtc::scoped_ptr<UDPPort> udpport2(CreateUdpPort(kLocalAddr1));
2133 udpport2->PrepareAddress();
2134 EXPECT_EQ(udpport1->Candidates()[0].foundation(),
2135 udpport2->Candidates()[0].foundation());
2136 rtc::scoped_ptr<TCPPort> tcpport1(CreateTcpPort(kLocalAddr1));
2137 tcpport1->PrepareAddress();
2138 rtc::scoped_ptr<TCPPort> tcpport2(CreateTcpPort(kLocalAddr1));
2139 tcpport2->PrepareAddress();
2140 EXPECT_EQ(tcpport1->Candidates()[0].foundation(),
2141 tcpport2->Candidates()[0].foundation());
2142 rtc::scoped_ptr<Port> stunport(
2143 CreateStunPort(kLocalAddr1, nat_socket_factory1()));
2144 stunport->PrepareAddress();
2145 ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
2146 EXPECT_NE(tcpport1->Candidates()[0].foundation(),
2147 stunport->Candidates()[0].foundation());
2148 EXPECT_NE(tcpport2->Candidates()[0].foundation(),
2149 stunport->Candidates()[0].foundation());
2150 EXPECT_NE(udpport1->Candidates()[0].foundation(),
2151 stunport->Candidates()[0].foundation());
2152 EXPECT_NE(udpport2->Candidates()[0].foundation(),
2153 stunport->Candidates()[0].foundation());
2154 // Verify GTURN candidate foundation.
2155 rtc::scoped_ptr<RelayPort> relayport(
2156 CreateGturnPort(kLocalAddr1));
2157 relayport->AddServerAddress(
2158 cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
2159 relayport->PrepareAddress();
2160 ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
2161 EXPECT_NE(udpport1->Candidates()[0].foundation(),
2162 relayport->Candidates()[0].foundation());
2163 EXPECT_NE(udpport2->Candidates()[0].foundation(),
2164 relayport->Candidates()[0].foundation());
2165 // Verifying TURN candidate foundation.
2166 rtc::scoped_ptr<Port> turnport1(CreateTurnPort(
2167 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2168 turnport1->PrepareAddress();
2169 ASSERT_EQ_WAIT(1U, turnport1->Candidates().size(), kTimeout);
2170 EXPECT_NE(udpport1->Candidates()[0].foundation(),
2171 turnport1->Candidates()[0].foundation());
2172 EXPECT_NE(udpport2->Candidates()[0].foundation(),
2173 turnport1->Candidates()[0].foundation());
2174 EXPECT_NE(stunport->Candidates()[0].foundation(),
2175 turnport1->Candidates()[0].foundation());
2176 rtc::scoped_ptr<Port> turnport2(CreateTurnPort(
2177 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2178 turnport2->PrepareAddress();
2179 ASSERT_EQ_WAIT(1U, turnport2->Candidates().size(), kTimeout);
2180 EXPECT_EQ(turnport1->Candidates()[0].foundation(),
2181 turnport2->Candidates()[0].foundation());
2182
2183 // Running a second turn server, to get different base IP address.
2184 SocketAddress kTurnUdpIntAddr2("99.99.98.4", STUN_SERVER_PORT);
2185 SocketAddress kTurnUdpExtAddr2("99.99.98.5", 0);
2186 TestTurnServer turn_server2(
2187 rtc::Thread::Current(), kTurnUdpIntAddr2, kTurnUdpExtAddr2);
2188 rtc::scoped_ptr<Port> turnport3(CreateTurnPort(
2189 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP,
2190 kTurnUdpIntAddr2));
2191 turnport3->PrepareAddress();
2192 ASSERT_EQ_WAIT(1U, turnport3->Candidates().size(), kTimeout);
2193 EXPECT_NE(turnport3->Candidates()[0].foundation(),
2194 turnport2->Candidates()[0].foundation());
2195}
2196
2197// This test verifies the related addresses of different types of
2198// ICE candiates.
2199TEST_F(PortTest, TestCandidateRelatedAddress) {
2200 rtc::scoped_ptr<rtc::NATServer> nat_server(
2201 CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
2202 rtc::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
2203 udpport->PrepareAddress();
2204 // For UDPPort, related address will be empty.
2205 EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil());
2206 // Testing related address for stun candidates.
2207 // For stun candidate related address must be equal to the base
2208 // socket address.
2209 rtc::scoped_ptr<StunPort> stunport(
2210 CreateStunPort(kLocalAddr1, nat_socket_factory1()));
2211 stunport->PrepareAddress();
2212 ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
2213 // Check STUN candidate address.
2214 EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(),
2215 kNatAddr1.ipaddr());
2216 // Check STUN candidate related address.
2217 EXPECT_EQ(stunport->Candidates()[0].related_address(),
2218 stunport->GetLocalAddress());
2219 // Verifying the related address for the GTURN candidates.
2220 // NOTE: In case of GTURN related address will be equal to the mapped
2221 // address, but address(mapped) will not be XOR.
2222 rtc::scoped_ptr<RelayPort> relayport(
2223 CreateGturnPort(kLocalAddr1));
2224 relayport->AddServerAddress(
2225 cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
2226 relayport->PrepareAddress();
2227 ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
2228 // For Gturn related address is set to "0.0.0.0:0"
2229 EXPECT_EQ(rtc::SocketAddress(),
2230 relayport->Candidates()[0].related_address());
2231 // Verifying the related address for TURN candidate.
2232 // For TURN related address must be equal to the mapped address.
2233 rtc::scoped_ptr<Port> turnport(CreateTurnPort(
2234 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2235 turnport->PrepareAddress();
2236 ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kTimeout);
2237 EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
2238 turnport->Candidates()[0].address().ipaddr());
2239 EXPECT_EQ(kNatAddr1.ipaddr(),
2240 turnport->Candidates()[0].related_address().ipaddr());
2241}
2242
2243// Test priority value overflow handling when preference is set to 3.
2244TEST_F(PortTest, TestCandidatePreference) {
2245 cricket::Candidate cand1;
2246 cand1.set_preference(3);
2247 cricket::Candidate cand2;
2248 cand2.set_preference(1);
2249 EXPECT_TRUE(cand1.preference() > cand2.preference());
2250}
2251
2252// Test the Connection priority is calculated correctly.
2253TEST_F(PortTest, TestConnectionPriority) {
2254 rtc::scoped_ptr<TestPort> lport(
2255 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
2256 lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST);
2257 rtc::scoped_ptr<TestPort> rport(
2258 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2259 rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY);
2260 lport->set_component(123);
2261 lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
2262 rport->set_component(23);
2263 rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234));
2264
2265 EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority());
2266 EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority());
2267
2268 // RFC 5245
2269 // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
2270 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2271 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2272 Connection* lconn = lport->CreateConnection(
2273 rport->Candidates()[0], Port::ORIGIN_MESSAGE);
2274#if defined(WEBRTC_WIN)
2275 EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority());
2276#else
2277 EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority());
2278#endif
2279
2280 lport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2281 rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2282 Connection* rconn = rport->CreateConnection(
2283 lport->Candidates()[0], Port::ORIGIN_MESSAGE);
2284#if defined(WEBRTC_WIN)
2285 EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority());
2286#else
2287 EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority());
2288#endif
2289}
2290
2291TEST_F(PortTest, TestWritableState) {
2292 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2293 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2294
2295 // Set up channels.
2296 TestChannel ch1(port1, port2);
2297 TestChannel ch2(port2, port1);
2298
2299 // Acquire addresses.
2300 ch1.Start();
2301 ch2.Start();
2302 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
2303 ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
2304
2305 // Send a ping from src to dst.
2306 ch1.CreateConnection();
2307 ASSERT_TRUE(ch1.conn() != NULL);
2308 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2309 EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); // for TCP connect
2310 ch1.Ping();
2311 WAIT(!ch2.remote_address().IsNil(), kTimeout);
2312
2313 // Data should be unsendable until the connection is accepted.
2314 char data[] = "abcd";
2315 int data_size = ARRAY_SIZE(data);
2316 rtc::PacketOptions options;
2317 EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options));
2318
2319 // Accept the connection to return the binding response, transition to
2320 // writable, and allow data to be sent.
2321 ch2.AcceptConnection();
2322 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2323 kTimeout);
2324 EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
2325
2326 // Ask the connection to update state as if enough time has passed to lose
2327 // full writability and 5 pings went unresponded to. We'll accomplish the
2328 // latter by sending pings but not pumping messages.
2329 for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2330 ch1.Ping(i);
2331 }
2332 uint32 unreliable_timeout_delay = CONNECTION_WRITE_CONNECT_TIMEOUT + 500u;
2333 ch1.conn()->UpdateState(unreliable_timeout_delay);
2334 EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
2335
2336 // Data should be able to be sent in this state.
2337 EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
2338
2339 // And now allow the other side to process the pings and send binding
2340 // responses.
2341 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2342 kTimeout);
2343
2344 // Wait long enough for a full timeout (past however long we've already
2345 // waited).
2346 for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2347 ch1.Ping(unreliable_timeout_delay + i);
2348 }
2349 ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT +
2350 500u);
2351 EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
2352
2353 // Now that the connection has completely timed out, data send should fail.
2354 EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options));
2355
2356 ch1.Stop();
2357 ch2.Stop();
2358}
2359
2360TEST_F(PortTest, TestTimeoutForNeverWritable) {
2361 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2362 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2363
2364 // Set up channels.
2365 TestChannel ch1(port1, port2);
2366 TestChannel ch2(port2, port1);
2367
2368 // Acquire addresses.
2369 ch1.Start();
2370 ch2.Start();
2371
2372 ch1.CreateConnection();
2373 ASSERT_TRUE(ch1.conn() != NULL);
2374 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2375
2376 // Attempt to go directly to write timeout.
2377 for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2378 ch1.Ping(i);
2379 }
2380 ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + 500u);
2381 EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
2382}
2383
2384// This test verifies the connection setup between ICEMODE_FULL
2385// and ICEMODE_LITE.
2386// In this test |ch1| behaves like FULL mode client and we have created
2387// port which responds to the ping message just like LITE client.
2388TEST_F(PortTest, TestIceLiteConnectivity) {
2389 TestPort* ice_full_port = CreateTestPort(
2390 kLocalAddr1, "lfrag", "lpass", cricket::ICEPROTO_RFC5245,
2391 cricket::ICEROLE_CONTROLLING, kTiebreaker1);
2392
2393 rtc::scoped_ptr<TestPort> ice_lite_port(CreateTestPort(
2394 kLocalAddr2, "rfrag", "rpass", cricket::ICEPROTO_RFC5245,
2395 cricket::ICEROLE_CONTROLLED, kTiebreaker2));
2396 // Setup TestChannel. This behaves like FULL mode client.
2397 TestChannel ch1(ice_full_port, ice_lite_port.get());
2398 ch1.SetIceMode(ICEMODE_FULL);
2399
2400 // Start gathering candidates.
2401 ch1.Start();
2402 ice_lite_port->PrepareAddress();
2403
2404 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
2405 ASSERT_FALSE(ice_lite_port->Candidates().empty());
2406
2407 ch1.CreateConnection();
2408 ASSERT_TRUE(ch1.conn() != NULL);
2409 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2410
2411 // Send ping from full mode client.
2412 // This ping must not have USE_CANDIDATE_ATTR.
2413 ch1.Ping();
2414
2415 // Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly
2416 // from port.
2417 ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
2418 IceMessage* msg = ice_full_port->last_stun_msg();
2419 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
2420
2421 // Respond with a BINDING-RESPONSE from litemode client.
2422 // NOTE: Ideally we should't create connection at this stage from lite
2423 // port, as it should be done only after receiving ping with USE_CANDIDATE.
2424 // But we need a connection to send a response message.
2425 ice_lite_port->CreateConnection(
2426 ice_full_port->Candidates()[0], cricket::Port::ORIGIN_MESSAGE);
2427 rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
2428 ice_lite_port->SendBindingResponse(
2429 request.get(), ice_full_port->Candidates()[0].address());
2430
2431 // Feeding the respone message from litemode to the full mode connection.
2432 ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->Data(),
2433 ice_lite_port->last_stun_buf()->Length(),
2434 rtc::PacketTime());
2435 // Verifying full mode connection becomes writable from the response.
2436 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2437 kTimeout);
2438 EXPECT_TRUE_WAIT(ch1.nominated(), kTimeout);
2439
2440 // Clear existing stun messsages. Otherwise we will process old stun
2441 // message right after we send ping.
2442 ice_full_port->Reset();
2443 // Send ping. This must have USE_CANDIDATE_ATTR.
2444 ch1.Ping();
2445 ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
2446 msg = ice_full_port->last_stun_msg();
2447 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
2448 ch1.Stop();
2449}
2450
2451// This test case verifies that the CONTROLLING port does not time out.
2452TEST_F(PortTest, TestControllingNoTimeout) {
2453 SetIceProtocolType(cricket::ICEPROTO_RFC5245);
2454 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2455 ConnectToSignalDestroyed(port1);
2456 port1->set_timeout_delay(10); // milliseconds
2457 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2458 port1->SetIceTiebreaker(kTiebreaker1);
2459
2460 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2461 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2462 port2->SetIceTiebreaker(kTiebreaker2);
2463
2464 // Set up channels and ensure both ports will be deleted.
2465 TestChannel ch1(port1, port2);
2466 TestChannel ch2(port2, port1);
2467
2468 // Simulate a connection that succeeds, and then is destroyed.
2469 ConnectAndDisconnectChannels(&ch1, &ch2);
2470
2471 // After the connection is destroyed, the port should not be destroyed.
2472 rtc::Thread::Current()->ProcessMessages(kTimeout);
2473 EXPECT_FALSE(destroyed());
2474}
2475
2476// This test case verifies that the CONTROLLED port does time out, but only
2477// after connectivity is lost.
2478TEST_F(PortTest, TestControlledTimeout) {
2479 SetIceProtocolType(cricket::ICEPROTO_RFC5245);
2480 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2481 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2482 port1->SetIceTiebreaker(kTiebreaker1);
2483
2484 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2485 ConnectToSignalDestroyed(port2);
2486 port2->set_timeout_delay(10); // milliseconds
2487 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2488 port2->SetIceTiebreaker(kTiebreaker2);
2489
2490 // The connection must not be destroyed before a connection is attempted.
2491 EXPECT_FALSE(destroyed());
2492
2493 port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
2494 port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
2495
2496 // Set up channels and ensure both ports will be deleted.
2497 TestChannel ch1(port1, port2);
2498 TestChannel ch2(port2, port1);
2499
2500 // Simulate a connection that succeeds, and then is destroyed.
2501 ConnectAndDisconnectChannels(&ch1, &ch2);
2502
2503 // The controlled port should be destroyed after 10 milliseconds.
2504 EXPECT_TRUE_WAIT(destroyed(), kTimeout);
2505}