turaj@webrtc.org | 3f39c00 | 2013-09-12 18:30:26 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
turaj@webrtc.org | ed0b4fb | 2013-09-13 23:06:59 | [diff] [blame^] | 11 | #include "webrtc/modules/audio_coding/main/acm2/nack.h" |
turaj@webrtc.org | 3f39c00 | 2013-09-12 18:30:26 | [diff] [blame] | 12 | |
| 13 | #include <stdint.h> |
| 14 | |
| 15 | #include <algorithm> |
| 16 | |
| 17 | #include "gtest/gtest.h" |
| 18 | #include "webrtc/typedefs.h" |
| 19 | #include "webrtc/modules/audio_coding/main/interface/audio_coding_module_typedefs.h" |
| 20 | #include "webrtc/system_wrappers/interface/scoped_ptr.h" |
| 21 | |
| 22 | namespace webrtc { |
| 23 | |
| 24 | namespace { |
| 25 | |
| 26 | const int kNackThreshold = 3; |
| 27 | const int kSampleRateHz = 16000; |
| 28 | const int kPacketSizeMs = 30; |
| 29 | const uint32_t kTimestampIncrement = 480; // 30 ms. |
| 30 | const int kShortRoundTripTimeMs = 1; |
| 31 | |
| 32 | bool IsNackListCorrect(const std::vector<uint16_t>& nack_list, |
| 33 | const uint16_t* lost_sequence_numbers, |
| 34 | size_t num_lost_packets) { |
| 35 | if (nack_list.size() != num_lost_packets) |
| 36 | return false; |
| 37 | |
| 38 | if (num_lost_packets == 0) |
| 39 | return true; |
| 40 | |
| 41 | for (size_t k = 0; k < nack_list.size(); ++k) { |
| 42 | int seq_num = nack_list[k]; |
| 43 | bool seq_num_matched = false; |
| 44 | for (size_t n = 0; n < num_lost_packets; ++n) { |
| 45 | if (seq_num == lost_sequence_numbers[n]) { |
| 46 | seq_num_matched = true; |
| 47 | break; |
| 48 | } |
| 49 | } |
| 50 | if (!seq_num_matched) |
| 51 | return false; |
| 52 | } |
| 53 | return true; |
| 54 | } |
| 55 | |
| 56 | } // namespace |
| 57 | |
| 58 | TEST(NackTest, EmptyListWhenNoPacketLoss) { |
| 59 | scoped_ptr<Nack> nack(Nack::Create(kNackThreshold)); |
| 60 | nack->UpdateSampleRate(kSampleRateHz); |
| 61 | |
| 62 | int seq_num = 1; |
| 63 | uint32_t timestamp = 0; |
| 64 | |
| 65 | std::vector<uint16_t> nack_list; |
| 66 | for (int n = 0; n < 100; n++) { |
| 67 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 68 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 69 | seq_num++; |
| 70 | timestamp += kTimestampIncrement; |
| 71 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 72 | EXPECT_TRUE(nack_list.empty()); |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | TEST(NackTest, NoNackIfReorderWithinNackThreshold) { |
| 77 | scoped_ptr<Nack> nack(Nack::Create(kNackThreshold)); |
| 78 | nack->UpdateSampleRate(kSampleRateHz); |
| 79 | |
| 80 | int seq_num = 1; |
| 81 | uint32_t timestamp = 0; |
| 82 | std::vector<uint16_t> nack_list; |
| 83 | |
| 84 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 85 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 86 | EXPECT_TRUE(nack_list.empty()); |
| 87 | int num_late_packets = kNackThreshold + 1; |
| 88 | |
| 89 | // Push in reverse order |
| 90 | while (num_late_packets > 0) { |
| 91 | nack->UpdateLastReceivedPacket(seq_num + num_late_packets, timestamp + |
| 92 | num_late_packets * kTimestampIncrement); |
| 93 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 94 | EXPECT_TRUE(nack_list.empty()); |
| 95 | num_late_packets--; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | TEST(NackTest, LatePacketsMovedToNackThenNackListDoesNotChange) { |
| 100 | const uint16_t kSequenceNumberLostPackets[] = { 2, 3, 4, 5, 6, 7, 8, 9 }; |
| 101 | static const int kNumAllLostPackets = sizeof(kSequenceNumberLostPackets) / |
| 102 | sizeof(kSequenceNumberLostPackets[0]); |
| 103 | |
| 104 | for (int k = 0; k < 2; k++) { // Two iteration with/without wrap around. |
| 105 | scoped_ptr<Nack> nack(Nack::Create(kNackThreshold)); |
| 106 | nack->UpdateSampleRate(kSampleRateHz); |
| 107 | |
| 108 | uint16_t sequence_num_lost_packets[kNumAllLostPackets]; |
| 109 | for (int n = 0; n < kNumAllLostPackets; n++) { |
| 110 | sequence_num_lost_packets[n] = kSequenceNumberLostPackets[n] + k * |
| 111 | 65531; // Have wrap around in sequence numbers for |k == 1|. |
| 112 | } |
| 113 | uint16_t seq_num = sequence_num_lost_packets[0] - 1; |
| 114 | |
| 115 | uint32_t timestamp = 0; |
| 116 | std::vector<uint16_t> nack_list; |
| 117 | |
| 118 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 119 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 120 | EXPECT_TRUE(nack_list.empty()); |
| 121 | |
| 122 | seq_num = sequence_num_lost_packets[kNumAllLostPackets - 1] + 1; |
| 123 | timestamp += kTimestampIncrement * (kNumAllLostPackets + 1); |
| 124 | int num_lost_packets = std::max(0, kNumAllLostPackets - kNackThreshold); |
| 125 | |
| 126 | for (int n = 0; n < kNackThreshold + 1; ++n) { |
| 127 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 128 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 129 | EXPECT_TRUE(IsNackListCorrect(nack_list, sequence_num_lost_packets, |
| 130 | num_lost_packets)); |
| 131 | seq_num++; |
| 132 | timestamp += kTimestampIncrement; |
| 133 | num_lost_packets++; |
| 134 | } |
| 135 | |
| 136 | for (int n = 0; n < 100; ++n) { |
| 137 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 138 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 139 | EXPECT_TRUE(IsNackListCorrect(nack_list, sequence_num_lost_packets, |
| 140 | kNumAllLostPackets)); |
| 141 | seq_num++; |
| 142 | timestamp += kTimestampIncrement; |
| 143 | } |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | TEST(NackTest, ArrivedPacketsAreRemovedFromNackList) { |
| 148 | const uint16_t kSequenceNumberLostPackets[] = { 2, 3, 4, 5, 6, 7, 8, 9 }; |
| 149 | static const int kNumAllLostPackets = sizeof(kSequenceNumberLostPackets) / |
| 150 | sizeof(kSequenceNumberLostPackets[0]); |
| 151 | |
| 152 | for (int k = 0; k < 2; ++k) { // Two iteration with/without wrap around. |
| 153 | scoped_ptr<Nack> nack(Nack::Create(kNackThreshold)); |
| 154 | nack->UpdateSampleRate(kSampleRateHz); |
| 155 | |
| 156 | uint16_t sequence_num_lost_packets[kNumAllLostPackets]; |
| 157 | for (int n = 0; n < kNumAllLostPackets; ++n) { |
| 158 | sequence_num_lost_packets[n] = kSequenceNumberLostPackets[n] + k * |
| 159 | 65531; // Wrap around for |k == 1|. |
| 160 | } |
| 161 | |
| 162 | uint16_t seq_num = sequence_num_lost_packets[0] - 1; |
| 163 | uint32_t timestamp = 0; |
| 164 | |
| 165 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 166 | std::vector<uint16_t> nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 167 | EXPECT_TRUE(nack_list.empty()); |
| 168 | |
| 169 | size_t index_retransmitted_rtp = 0; |
| 170 | uint32_t timestamp_retransmitted_rtp = timestamp + kTimestampIncrement; |
| 171 | |
| 172 | seq_num = sequence_num_lost_packets[kNumAllLostPackets - 1] + 1; |
| 173 | timestamp += kTimestampIncrement * (kNumAllLostPackets + 1); |
| 174 | size_t num_lost_packets = std::max(0, kNumAllLostPackets - kNackThreshold); |
| 175 | for (int n = 0; n < kNumAllLostPackets; ++n) { |
| 176 | // Number of lost packets does not change for the first |
| 177 | // |kNackThreshold + 1| packets, one is added to the list and one is |
| 178 | // removed. Thereafter, the list shrinks every iteration. |
| 179 | if (n >= kNackThreshold + 1) |
| 180 | num_lost_packets--; |
| 181 | |
| 182 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 183 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 184 | EXPECT_TRUE(IsNackListCorrect( |
| 185 | nack_list, &sequence_num_lost_packets[index_retransmitted_rtp], |
| 186 | num_lost_packets)); |
| 187 | seq_num++; |
| 188 | timestamp += kTimestampIncrement; |
| 189 | |
| 190 | // Retransmission of a lost RTP. |
| 191 | nack->UpdateLastReceivedPacket( |
| 192 | sequence_num_lost_packets[index_retransmitted_rtp], |
| 193 | timestamp_retransmitted_rtp); |
| 194 | index_retransmitted_rtp++; |
| 195 | timestamp_retransmitted_rtp += kTimestampIncrement; |
| 196 | |
| 197 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 198 | EXPECT_TRUE(IsNackListCorrect( |
| 199 | nack_list, &sequence_num_lost_packets[index_retransmitted_rtp], |
| 200 | num_lost_packets - 1)); // One less lost packet in the list. |
| 201 | } |
| 202 | ASSERT_TRUE(nack_list.empty()); |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | // Assess if estimation of timestamps and time-to-play is correct. Introduce all |
| 207 | // combinations that timestamps and sequence numbers might have wrap around. |
| 208 | TEST(NackTest, EstimateTimestampAndTimeToPlay) { |
| 209 | const uint16_t kLostPackets[] = { 2, 3, 4, 5, 6, 7, 8, 9, 10, |
| 210 | 11, 12, 13, 14, 15 }; |
| 211 | static const int kNumAllLostPackets = sizeof(kLostPackets) / |
| 212 | sizeof(kLostPackets[0]); |
| 213 | |
| 214 | |
| 215 | for (int k = 0; k < 4; ++k) { |
| 216 | scoped_ptr<Nack> nack(Nack::Create(kNackThreshold)); |
| 217 | nack->UpdateSampleRate(kSampleRateHz); |
| 218 | |
| 219 | // Sequence number wrap around if |k| is 2 or 3; |
| 220 | int seq_num_offset = (k < 2) ? 0 : 65531; |
| 221 | |
| 222 | // Timestamp wrap around if |k| is 1 or 3. |
| 223 | uint32_t timestamp_offset = (k & 0x1) ? |
| 224 | static_cast<uint32_t>(0xffffffff) - 6 : 0; |
| 225 | |
| 226 | uint32_t timestamp_lost_packets[kNumAllLostPackets]; |
| 227 | uint16_t seq_num_lost_packets[kNumAllLostPackets]; |
| 228 | for (int n = 0; n < kNumAllLostPackets; ++n) { |
| 229 | timestamp_lost_packets[n] = timestamp_offset + kLostPackets[n] * |
| 230 | kTimestampIncrement; |
| 231 | seq_num_lost_packets[n] = seq_num_offset + kLostPackets[n]; |
| 232 | } |
| 233 | |
| 234 | // We and to push two packets before lost burst starts. |
| 235 | uint16_t seq_num = seq_num_lost_packets[0] - 2; |
| 236 | uint32_t timestamp = timestamp_lost_packets[0] - 2 * kTimestampIncrement; |
| 237 | |
| 238 | const uint16_t first_seq_num = seq_num; |
| 239 | const uint32_t first_timestamp = timestamp; |
| 240 | |
| 241 | // Two consecutive packets to have a correct estimate of timestamp increase. |
| 242 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 243 | seq_num++; |
| 244 | timestamp += kTimestampIncrement; |
| 245 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 246 | |
| 247 | // A packet after the last one which is supposed to be lost. |
| 248 | seq_num = seq_num_lost_packets[kNumAllLostPackets - 1] + 1; |
| 249 | timestamp = timestamp_lost_packets[kNumAllLostPackets - 1] + |
| 250 | kTimestampIncrement; |
| 251 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 252 | |
| 253 | Nack::NackList nack_list = nack->GetNackList(); |
| 254 | EXPECT_EQ(static_cast<size_t>(kNumAllLostPackets), nack_list.size()); |
| 255 | |
| 256 | // Pretend the first packet is decoded. |
| 257 | nack->UpdateLastDecodedPacket(first_seq_num, first_timestamp); |
| 258 | nack_list = nack->GetNackList(); |
| 259 | |
| 260 | Nack::NackList::iterator it = nack_list.begin(); |
| 261 | while (it != nack_list.end()) { |
| 262 | seq_num = it->first - seq_num_offset; |
| 263 | int index = seq_num - kLostPackets[0]; |
| 264 | EXPECT_EQ(timestamp_lost_packets[index], it->second.estimated_timestamp); |
| 265 | EXPECT_EQ((index + 2) * kPacketSizeMs, it->second.time_to_play_ms); |
| 266 | ++it; |
| 267 | } |
| 268 | |
| 269 | // Pretend 10 ms is passed, and we had pulled audio from NetEq, it still |
| 270 | // reports the same sequence number as decoded, time-to-play should be |
| 271 | // updated by 10 ms. |
| 272 | nack->UpdateLastDecodedPacket(first_seq_num, first_timestamp); |
| 273 | nack_list = nack->GetNackList(); |
| 274 | it = nack_list.begin(); |
| 275 | while (it != nack_list.end()) { |
| 276 | seq_num = it->first - seq_num_offset; |
| 277 | int index = seq_num - kLostPackets[0]; |
| 278 | EXPECT_EQ((index + 2) * kPacketSizeMs - 10, it->second.time_to_play_ms); |
| 279 | ++it; |
| 280 | } |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | TEST(NackTest, MissingPacketsPriorToLastDecodedRtpShouldNotBeInNackList) { |
| 285 | for (int m = 0; m < 2; ++m) { |
| 286 | uint16_t seq_num_offset = (m == 0) ? 0 : 65531; // Wrap around if |m| is 1. |
| 287 | scoped_ptr<Nack> nack(Nack::Create(kNackThreshold)); |
| 288 | nack->UpdateSampleRate(kSampleRateHz); |
| 289 | |
| 290 | // Two consecutive packets to have a correct estimate of timestamp increase. |
| 291 | uint16_t seq_num = 0; |
| 292 | nack->UpdateLastReceivedPacket(seq_num_offset + seq_num, |
| 293 | seq_num * kTimestampIncrement); |
| 294 | seq_num++; |
| 295 | nack->UpdateLastReceivedPacket(seq_num_offset + seq_num, |
| 296 | seq_num * kTimestampIncrement); |
| 297 | |
| 298 | // Skip 10 packets (larger than NACK threshold). |
| 299 | const int kNumLostPackets = 10; |
| 300 | seq_num += kNumLostPackets + 1; |
| 301 | nack->UpdateLastReceivedPacket(seq_num_offset + seq_num, |
| 302 | seq_num * kTimestampIncrement); |
| 303 | |
| 304 | const size_t kExpectedListSize = kNumLostPackets - kNackThreshold; |
| 305 | std::vector<uint16_t> nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 306 | EXPECT_EQ(kExpectedListSize, nack_list.size()); |
| 307 | |
| 308 | for (int k = 0; k < 2; ++k) { |
| 309 | // Decoding of the first and the second arrived packets. |
| 310 | for (int n = 0; n < kPacketSizeMs / 10; ++n) { |
| 311 | nack->UpdateLastDecodedPacket(seq_num_offset + k, |
| 312 | k * kTimestampIncrement); |
| 313 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 314 | EXPECT_EQ(kExpectedListSize, nack_list.size()); |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | // Decoding of the last received packet. |
| 319 | nack->UpdateLastDecodedPacket(seq_num + seq_num_offset, |
| 320 | seq_num * kTimestampIncrement); |
| 321 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 322 | EXPECT_TRUE(nack_list.empty()); |
| 323 | |
| 324 | // Make sure list of late packets is also empty. To check that, push few |
| 325 | // packets, if the late list is not empty its content will pop up in NACK |
| 326 | // list. |
| 327 | for (int n = 0; n < kNackThreshold + 10; ++n) { |
| 328 | seq_num++; |
| 329 | nack->UpdateLastReceivedPacket(seq_num_offset + seq_num, |
| 330 | seq_num * kTimestampIncrement); |
| 331 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 332 | EXPECT_TRUE(nack_list.empty()); |
| 333 | } |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | TEST(NackTest, Reset) { |
| 338 | scoped_ptr<Nack> nack(Nack::Create(kNackThreshold)); |
| 339 | nack->UpdateSampleRate(kSampleRateHz); |
| 340 | |
| 341 | // Two consecutive packets to have a correct estimate of timestamp increase. |
| 342 | uint16_t seq_num = 0; |
| 343 | nack->UpdateLastReceivedPacket(seq_num, seq_num * kTimestampIncrement); |
| 344 | seq_num++; |
| 345 | nack->UpdateLastReceivedPacket(seq_num, seq_num * kTimestampIncrement); |
| 346 | |
| 347 | // Skip 10 packets (larger than NACK threshold). |
| 348 | const int kNumLostPackets = 10; |
| 349 | seq_num += kNumLostPackets + 1; |
| 350 | nack->UpdateLastReceivedPacket(seq_num, seq_num * kTimestampIncrement); |
| 351 | |
| 352 | const size_t kExpectedListSize = kNumLostPackets - kNackThreshold; |
| 353 | std::vector<uint16_t> nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 354 | EXPECT_EQ(kExpectedListSize, nack_list.size()); |
| 355 | |
| 356 | nack->Reset(); |
| 357 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 358 | EXPECT_TRUE(nack_list.empty()); |
| 359 | } |
| 360 | |
| 361 | TEST(NackTest, ListSizeAppliedFromBeginning) { |
| 362 | const size_t kNackListSize = 10; |
| 363 | for (int m = 0; m < 2; ++m) { |
| 364 | uint16_t seq_num_offset = (m == 0) ? 0 : 65525; // Wrap around if |m| is 1. |
| 365 | scoped_ptr<Nack> nack(Nack::Create(kNackThreshold)); |
| 366 | nack->UpdateSampleRate(kSampleRateHz); |
| 367 | nack->SetMaxNackListSize(kNackListSize); |
| 368 | |
| 369 | uint16_t seq_num = seq_num_offset; |
| 370 | uint32_t timestamp = 0x12345678; |
| 371 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 372 | |
| 373 | // Packet lost more than NACK-list size limit. |
| 374 | uint16_t num_lost_packets = kNackThreshold + kNackListSize + 5; |
| 375 | |
| 376 | seq_num += num_lost_packets + 1; |
| 377 | timestamp += (num_lost_packets + 1) * kTimestampIncrement; |
| 378 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 379 | |
| 380 | std::vector<uint16_t> nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 381 | EXPECT_EQ(kNackListSize - kNackThreshold, nack_list.size()); |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | TEST(NackTest, ChangeOfListSizeAppliedAndOldElementsRemoved) { |
| 386 | const size_t kNackListSize = 10; |
| 387 | for (int m = 0; m < 2; ++m) { |
| 388 | uint16_t seq_num_offset = (m == 0) ? 0 : 65525; // Wrap around if |m| is 1. |
| 389 | scoped_ptr<Nack> nack(Nack::Create(kNackThreshold)); |
| 390 | nack->UpdateSampleRate(kSampleRateHz); |
| 391 | |
| 392 | uint16_t seq_num = seq_num_offset; |
| 393 | uint32_t timestamp = 0x87654321; |
| 394 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 395 | |
| 396 | // Packet lost more than NACK-list size limit. |
| 397 | uint16_t num_lost_packets = kNackThreshold + kNackListSize + 5; |
| 398 | |
| 399 | scoped_array<uint16_t> seq_num_lost(new uint16_t[num_lost_packets]); |
| 400 | for (int n = 0; n < num_lost_packets; ++n) { |
| 401 | seq_num_lost[n] = ++seq_num; |
| 402 | } |
| 403 | |
| 404 | ++seq_num; |
| 405 | timestamp += (num_lost_packets + 1) * kTimestampIncrement; |
| 406 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 407 | size_t expected_size = num_lost_packets - kNackThreshold; |
| 408 | |
| 409 | std::vector<uint16_t> nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 410 | EXPECT_EQ(expected_size, nack_list.size()); |
| 411 | |
| 412 | nack->SetMaxNackListSize(kNackListSize); |
| 413 | expected_size = kNackListSize - kNackThreshold; |
| 414 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 415 | EXPECT_TRUE(IsNackListCorrect( |
| 416 | nack_list, &seq_num_lost[num_lost_packets - kNackListSize], |
| 417 | expected_size)); |
| 418 | |
| 419 | // NACK list does not change size but the content is changing. The oldest |
| 420 | // element is removed and one from late list is inserted. |
| 421 | size_t n; |
| 422 | for (n = 1; n <= static_cast<size_t>(kNackThreshold); ++n) { |
| 423 | ++seq_num; |
| 424 | timestamp += kTimestampIncrement; |
| 425 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 426 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 427 | EXPECT_TRUE(IsNackListCorrect( |
| 428 | nack_list, &seq_num_lost[num_lost_packets - kNackListSize + n], |
| 429 | expected_size)); |
| 430 | } |
| 431 | |
| 432 | // NACK list should shrink. |
| 433 | for (; n < kNackListSize; ++n) { |
| 434 | ++seq_num; |
| 435 | timestamp += kTimestampIncrement; |
| 436 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 437 | --expected_size; |
| 438 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 439 | EXPECT_TRUE(IsNackListCorrect( |
| 440 | nack_list, &seq_num_lost[num_lost_packets - kNackListSize + n], |
| 441 | expected_size)); |
| 442 | } |
| 443 | |
| 444 | // After this packet, NACK list should be empty. |
| 445 | ++seq_num; |
| 446 | timestamp += kTimestampIncrement; |
| 447 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 448 | nack_list = nack->GetNackList(kShortRoundTripTimeMs); |
| 449 | EXPECT_TRUE(nack_list.empty()); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | TEST(NackTest, RoudTripTimeIsApplied) { |
| 454 | const int kNackListSize = 200; |
| 455 | scoped_ptr<Nack> nack(Nack::Create(kNackThreshold)); |
| 456 | nack->UpdateSampleRate(kSampleRateHz); |
| 457 | nack->SetMaxNackListSize(kNackListSize); |
| 458 | |
| 459 | uint16_t seq_num = 0; |
| 460 | uint32_t timestamp = 0x87654321; |
| 461 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 462 | |
| 463 | // Packet lost more than NACK-list size limit. |
| 464 | uint16_t kNumLostPackets = kNackThreshold + 5; |
| 465 | |
| 466 | seq_num += (1 + kNumLostPackets); |
| 467 | timestamp += (1 + kNumLostPackets) * kTimestampIncrement; |
| 468 | nack->UpdateLastReceivedPacket(seq_num, timestamp); |
| 469 | |
| 470 | // Expected time-to-play are: |
| 471 | // kPacketSizeMs - 10, 2*kPacketSizeMs - 10, 3*kPacketSizeMs - 10, ... |
| 472 | // |
| 473 | // sequence number: 1, 2, 3, 4, 5 |
| 474 | // time-to-play: 20, 50, 80, 110, 140 |
| 475 | // |
| 476 | std::vector<uint16_t> nack_list = nack->GetNackList(100); |
| 477 | ASSERT_EQ(2u, nack_list.size()); |
| 478 | EXPECT_EQ(4, nack_list[0]); |
| 479 | EXPECT_EQ(5, nack_list[1]); |
| 480 | } |
| 481 | |
| 482 | } // namespace webrtc |